Системы с одним и двумя воздействиями
Передаточные функции - центральное понятие классической теории автоматического управления. Они основаны на использовании преобразования Лапласа всех процессов как функций времени. Определение передаточной функции. Статические и астатические системы.
Рубрика | Математика |
Вид | реферат |
Язык | русский |
Дата добавления | 30.11.2008 |
Размер файла | 74,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
14
БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ
Кафедра Информационных технологий автоматизированных систем
РЕФЕРАТ
На тему:
«Системы с одним и двумя воздействиями»
МИНСК, 2008
1 Основные свойства преобразования Лапласа
Передаточные функции являются центральным понятием классической теории автоматического управления. Они основаны на использовании преобразования Лапласа всех процессов как функций времени. Поэтому напомним его основные свойства. Все они вытекают из самого определения преобразования Лапласа и легко доказываются.
Прямое и обратное преобразования Лапласа функции определяются выражениями
, .
Преобразование Лапласа является функцией комплексного переменного . Отсюда и следует, что преобразование Фурье является частным случаем преобразования Лапласа при , т.е. при чисто мнимом значении переменной s.
Итак, напомним основные свойства (теоремы) преобразования Лапласа, точнее, только те их них, которые будут использоваться нами в дальнейшем. При этом для краткости прямое и обратное преобразование Лапласа будем обозначать как оператор одной буквой
,
или даже заменять строчную букву прописной с одновременной заменой переменной t на переменную s в тех случаях, когда это не требует пояснений.
1. Теорема линейности. Для любых коэффициентов a и b
или, что то же самое,
.
2. Теорема запаздывания. Для любого постоянного > 0
().
3. Теорема дифференцирования оригинала.
Применив эту теорему к производным высших порядков, получим:
При нулевых начальных условиях это выражение упрощается:
4. Теоремы о начальном и конечном значениях оригинала.
, .
5. Теорема о свертке в вещественной области.
.
Последнее выражение означает, что произведению изображений соответствует свертка оригиналов.
2 Определение передаточной функции системы
Приступим теперь к определению передаточной функции. Пусть система или какое-либо звено ее описываются дифференциальным уравнением n порядка
. (1)
При определении вынужденных колебаний начальные условия, как входного воздействия, так и выходной координаты, как правило, полагаются нулевыми. При нулевых начальных условиях применим преобразование Лапласа к обеим частям данного уравнения
Учитывая теоремы о линейности и дифференцировании, получим
.
Отсюда
. (2)
Передаточной функцией системы W(s) называется отношение изображения по Лапласу выходной величины к изображению по Лапласу входной величины при нулевых начальных условиях.
Таким образом,
. (3)
Сказанное справедливо вне зависимости от того, каким образом определено это отношение. Даже если оно определено не по дифференциальному уравнению, то все равно считается, что передаточная функция имеет вид отношения двух полиномов от s:
(4)
и параметры этих полиномов равны соответствующим параметрам дифференциального уравнения.
Если же передаточная функция определена другим образом, то ее можно попытаться представить отношением двух полиномов. При этом следует иметь в виду, что это все же отношение изображений двух процессов, один из которых описывает входной процесс в каком-либо частном случае, а другой - соответствующий ему выходной процесс при нулевых начальных условиях.
Итак, вне зависимости от того, каким образом определена передаточная функция, она позволяет по изображению входного процесса определить изображение выходного процесса
,
как это следует из выражения (3).
Такое использование передаточной функции является основным, но не единственным его применением. В частности, простая замена позволяет получить из передаточной функции частотную характеристику, которая имеет ясный содержательный смысл.
Используя это обстоятельство, можно пояснить некоторые свойства передаточных функций. Например, при полиномиальном представлении числителя и знаменателя передаточной функции всегда оговаривается, что порядок полинома в числителе m не может превышать порядок полинома в знаменателе n. Это требование, известное под названием условия физической осуществимости, легко доказывается или, по крайней мере, поясняется на примере соответствующей частотной характеристики.
Действительно, положив , получим частотную характеристику некоторой системы. Ее можно рассматривать как комплексный коэффициент усиления гармонических процессов в зависимости от частоты. Порядок числителя не может превышать порядок знаменателя, потому что в противном случае придется допустить, что величина коэффициента усиления системы стремится к бесконечности с ростом частоты входного сигнала, чего в реальных системах быть не может.
Вообще говоря, физически не осуществимо и устройство, сохраняющее постоянное значение коэффициента усиления в бесконечно большом диапазоне высоких и сверхвысоких частот. Математической моделью такого устройства и является частотная характеристика, у которой порядки числителя и знаменателя совпадают. Однако, это очень удобная математическая модель идеального преобразователя, изменением частотной характеристики которого можно пренебречь во всем диапазоне частот, представляющем хоть какой-то интерес. Например, идеальное тождественное преобразование имеет передаточную функцию, равную единице. Все частоты проходят через это устройство не искажаясь, с единичным коэффициентом усиления. Этого, конечно, тоже быть не может, но такую идеальную картину можно допустить. Поэтому случай равенства порядков числителя и знаменателя передаточной функции не относят к физически не реализуемым.
Для определения выходного процесса по входному следует, в соответствии с только что приведенным выражением, сначала получить изображение (преобразование Лапласа) входного процесса, умножить его на передаточную функцию системы и определить оригинал (обратное преобразование Лапласа) полученного выражения. В общем случае это довольно трудоемкая работа, но в некоторых частных случаях это не трудно сделать. Для иллюстрации основных понятий и положений теории автоматического управления требуется определять реакцию (отклик) системы на небольшое число типовых воздействий, преобразования Лапласа которых, во-первых, не трудно вычислить, а во-вторых, они давно уже вычислены и приведены в соответствующих таблицах во всех руководствах по теории автоматического управления.
Определение выходного процесса по входному несколько отличается по постановке задачи от задачи нахождения частного решения дифференциального уравнения при заданной правой части или внешнем воздействии. Основное отличие заключается в ограничении нулевыми начальными условиями при определении и использовании самого понятия передаточной функции.
Однако не трудно повторить все рассуждения, связанные с использованием преобразования Лапласа, для нахождении решения дифференциального уравнения при ненулевых начальных условиях. Приведенная выше теорема о дифференцировании предоставляет для этого все условия.
Применим преобразование Лапласа к правой и левой частям уравнения (1), используя теорему о дифференцировании при ненулевых начальных условиях. В результате получим уравнение
,
где полиномы те же самые, что и в выражении (4), т.е. полностью совпадают с полиномами, полученными при нулевых начальных условиях, поскольку не содержат значений начальных условий. В свою очередь, коэффициенты полиномов и зависят только от начальных условий выходного и входного процессов соответственно.
Если объединить полиномы, зависящие от начальных условий, в один полином, то станет очевидным, что выходной процесс состоит из двух слагаемых, одно из которых определяется только входным процессом (при нулевых начальных условиях), а второе - только начальными условиями и не зависит от входного процесса.
.
Итак, для определения частного решения дифференциального уравнения операторным методом наличие ненулевых начальных условий не является препятствием. Следует также иметь в виду, что можно разделить эффекты внешнего воздействия и эффекты от ненулевых начальных условий.
Интересно отметить, что операторным методом можно определить не только вынужденные колебания, но и собственные. Для этого достаточно положить в последнем выражении изображение входного воздействия равным нулю.
Изображение входного процесса так же имеет вид отношения двух полиномов от переменной s. При фактическом вычислении выходного процесса операторным методом, определение оригинала выходного процесса по его изображению осуществляется посредством разложения изображения на простейшие дроби. И в этом отношении вычисление вынужденных колебаний мало чем отличается от вычисления собственных колебаний.
Вычислительная сторона дела не является предметом пристального внимания в настоящей работе. Заметим только для знакомых с теорией функций комплексного переменного, что при разложении на элементарные множители отдают предпочтение использованию вычетов, а не методу неопределенных коэффициентов, как это обычно преподносится при первом знакомстве с предметом.
3 Передаточные функции основных видов соединений звеньев
Системы, как правило, состоят из подсистем или звеньев по терминологии теории автоматического управления. Зная передаточные функции звеньев не трудно вычислить передаточную функцию системы. Для этого пользуются выражениями передаточных функций основных видов соединений звеньев. Большая часть из них очевидна, тем не менее, рассмотрим все три основных вида соединений.
Последовательное соединение. Структурная схема последовательного соединения двух звеньев приведена на рисунке 1, где приведены изображения координат, являющихся функциями времени.
14
Рисунок 1 - Последовательное соединение звеньев
Не трудно выразить преобразование Лапласа выходной координаты через преобразование Лапласа входной координаты и выражения передаточных функций отдельных звеньев
.
Отсюда следует, что передаточная функция последовательного соединения звеньев равна произведению передаточных функций этих звеньев.
.
Параллельное соединение. Структурная схема данного соединения приведена на рисунке 2.
14
Рисунок 2 - Параллельное соединение
Выразим преобразование Лапласа выходной координаты через преобразование Лапласа входной координаты и выражения передаточных функций отдельных звеньев параллельного соединения, под которым понимается суммирование выходных координат этих звеньев:
.
Отсюда следует, что передаточная функция параллельного соединения звеньев равна алгебраической сумме передаточных функций этих звеньев.
.
Соединение по схеме обратной связи. Как и сам принцип обратной связи, эта схема соединения является важнейшей для теории автоматического управления. Она показана на рисунке 3.3.
14
Рисунок 3 - Соединение по схеме обратной связи
Выразим преобразование Лапласа выходной координаты через преобразование Лапласа входной координаты и выражения передаточных функций отдельных звеньев рассматриваемого соединения. Сначала составим уравнение связи между изображениями различных координат:
,
а затем и изображения выходной координаты через изображение входной:
.
Таким образом, выражение передаточной функции замкнутой системы выражается через передаточную функцию прямой цепи и обратной связи дробью вида
.
Здесь рассматривался только случай отрицательной обратной связи. Случай положительной обратной связи в теории автоматического управления практически не используется. Поэтому он и остался вне поля зрения, хотя повторить все выкладки в случае, когда сигнал обратной связи не вычитается из входного сигнала, а складывается с ним, не представляет труда.
В связи с широким использованием этого типа соединения последняя формула читается многими способами, самый распространенный из которых: «передаточная функция замкнутой системы равна передаточной функции прямой цепи, деленной на единицу плюс передаточная функция разомкнутой цепи».
Полезность такой словесной формулировки проявляется в тех случаях, когда структурная схема замкнутой системы несколько отличается от только что рассмотренной. В этом случае можно и не повторять вывод формулы замыкания, а только уточнить, что понимать в данном конкретном случае под передаточной функцией прямой цепи и передаточной функцией разомкнутой цепи.
В качестве примера рассмотрим определение передаточной функции (замкнутой системы) по ошибке . Под передаточной функцией по ошибке понимается отношение изображения сигнала рассогласования (ошибки) к изображению входного сигнала (при нулевых, конечно, условиях). Если повторить вывод формулы замыкания для определения коэффициента пропорциональности между изображением сигнала ошибки и входного сигнала , то получим, что
.
Это же самое можно было бы получить, используя словесное описание формулы замыкания, если считать выходной координатой сигнал ошибки. Действительно, в прямой цепи в этом случае нет никакого преобразования или, что то же самое, единичное преобразование, а передаточная функция разомкнутой цепи та же самая, что и в рассмотренном ранее случае.
В другом часто встречающемся частном случае единичной обратной связи передаточные функции замкнутой системы и по ошибке имеют вид:
, .
4 Передаточные функции по управлению и по возмущению
До сих пор рассматривались системы с одним входом и одним выходом, т.е. простейший вид одномерных систем. Даже в рамках одномерных систем входных процессов может быть несколько. В классической теории управления нередко рассматриваются системы с двумя входными воздействиями: управляющим и возмущающим, полезным сигналом и помехой.
Аппарат передаточных функций и в этом случае оказывается полезным. Для примера рассмотрим случай системы с обратной связью, в которой наряду с управляющим воздействием имеется возмущающее.
Приведем ее структурную схему и соответствующую систему дифференциальных уравнений. В теории автоматического управления, как правило, отдается предпочтение первой из этих двух эквивалентных форм описания систем. Точнее, основную часть информации о замкнутой системе приводят в виде структурной схемы, а недостающую - в виде дифференциальных уравнений или передаточных функций.
Итак, пусть структурная схема системы такая, как она изображена на рисунке 4.
14
Рисунок 4 - Структурная схема системы с двумя воздействиями
Эта же система пусть описывается системой уравнений:
уравнением сравнивающего звена
;
уравнением регулятора
, ();
уравнением объекта регулирования
, ().
Здесь p - символ дифференцирования, B, N, D, M, C - полиномы от p. Другими словами, два последних уравнения являются, в действительности дифференциальными уравнения, только записанными в символьной форме. При нулевых начальных условиях применим преобразования Лапласа к каждой части уравнения этой системы уравнений. Тем самым будут получены те же самые уравнения в изображениях:
уравнение сравнивающего звена
;
уравнения регулятора
, ;
уравнения объекта
, ;
и выражения соответствующих передаточных функций, с использованием которых можно наиболее наглядным образом представить взаимосвязь между входом и выходом в каждом звене:
передаточную функцию регулятора :
, ;
передаточную функцию объекта по управлению и по возмущению :
,
, .
Проще всего дать определение этих передаточных функций в виде отношения полиномов, коэффициенты которых определяются соответствующими коэффициентами дифференциальных уравнений, как это только что проделано. Однако полезней всего определить их как отношение изображений по Лапласу соответствующих координат не только при нулевых начальных условиях, но и при равенстве нулю всех остальных координат, которые в рассматриваемой ситуации не рассматривается как входная координата.
Например, передаточной функцией объекта по управлению является отношение изображений выходной координаты объекта к изображению входной координаты объекта при нулевых начальных условиях на упомянутые координаты и равенстве нулю возмущающего воздействия f(t).
Исключая переменные и из системы уравнений связывающей значения всех переменных (в изображениях), получим уравнение связи
Определим теперь выражение изображения выходной координаты замкнутой системы через изображения входных координат (управляющего и возмущающего воздействий)
.
Отсюда видно, что передаточная функция замкнутой системы по управлению имеет в точности такой же вид, как если бы возмущение, вообще, отсутствовало
,
а передаточная функция замкнутой системы по возмущению имеет вид:
.
Ее можно определить точно так же, как и ранее упомянутую, если предположить отсутствие управляющего воздействия.
Вообще, в классической теории управления все координаты равноправны. Хотя считается, что в данной теории рассматриваются системы с одной входной и одной выходной координатой, имеется некоторый выбор среди небольшого числа координат, какую из них считать входной, а какую - выходной. По умолчанию предполагается, что входной координатой является управляющее воздействие, а выходной - регулируемая или управляемая координата. Всякое отклонение от этого варианта уточняется. Например, говоря о передаточной функции по ошибке, подразумевается, что входной координатой считается управляющее воздействие, а выходной - координата ошибки. Аналогично, говоря о передаточной функции по возмущению, имеют в виду, что входной координатой является возмущение, а выходной - управляемая координата.
5 Статические и астатические системы
Свойство астатизма является одним из важнейших свойств систем управления. По передаточной функции системы очень просто судить о наличии у нее этого свойства. И все же это свойство системы, а не передаточной функции. Поэтому и начнем рассуждения с качественной стороны дела.
Свойство астатизма может быть по отношению к управляющему или возмущающему воздействию. По умолчанию подразумевается первый случай.
Система называется астатической, если при стремлении управляющего воздействия к постоянной величине, отличной от нуля, сигнал ошибки стремится к нулю.
Уточнение того, что постоянная величина, к которой стремится управляющее воздействие, отлична от нуля, потребовалось только потому, что в противном случае сигнал ошибки стремится к нулю вне зависимости от того, астатическая система или нет.
Об астатизме системы легко судить по ее передаточной функции. Выясним условия, которым должна удовлетворять передаточная функция астатической системы.
По теореме о начальных и конечных значениях условие равенства нулю предельного значения сигнала ошибки имеет вид:
.
Условие же неравенства нулю предельного значения входного процесса имеет вид:
.
Последнее неравенство возможно в случае, когда изображение Y(s) можно представить в виде
,
таком что
.
Подставим такое значение изображения по Лапласу входного воздействия в выражение предельного значения сигнала ошибки:
Так как второй сомножитель здесь не равен нулю, то условием равенства произведения в правой части последнего выражения является равенство нулю первого сомножителя.
Говорят, что функция имеет нуль -го порядка () в начале координат, если она может быть представлена в виде
и .
Таким образом, система астатическая тогда и только тогда, когда ее передаточная функция по ошибке имеет нуль какого-либо порядка в начале координат.
Суждение об астатизме замкнутой системы ведется обычно по виду передаточной функции разомкнутой системы. Под передаточной функцией разомкнутой системы понимается передаточная функция той последовательности операторов, которая начинается с выхода сравнивающего звена и кончается одним из входов в это звено.
Передаточная функция замкнутой системы по ошибке достаточно просто выражается через передаточную функцию разомкнутой системы :
.
Не трудно доказать, что передаточная функция по ошибке имеет нуль -го порядка в начале координат, когда передаточная функция разомкнутой системы имеет полюс того же порядка в начале координат.
Действительно, пусть это условие выполнено, т.е. возможно представление передаточной функции разомкнутой системы в виде
, ().
Тогда
, .
Строго говоря, если передаточная функция по ошибке имеет нуль -го порядка в начале координат, то можно говорить об астатизме того же порядка системы управления. Астатизм выше первого порядка редко встречается и его трудно организовать, поэтому, говоря об астатизме, имеют в виду, как правило, именно астатизм первого порядка.
Все ранее сказанное об астатизме имело отношение к астатизму по управляющему воздействию. Если в качестве входного воздействия рассматривать возмущающее воздействие, то приведенные выше определения будут относиться к астатизму по возмущения, а не по управлению.
Пример. Простейшим примером воздействия, стремящегося к постоянному, не равному нулю значению, является, так называемое единичное ступенчатое воздействие. В дальнейшем оно будет рассмотрено достаточно подробно, а пока только скажем, что оно равно единице при положительных значениях моментов времени и нулю при отрицательных. Преобразование Лапласа такой функции равно 1/s.
На рисунке 5 показана кривой 1 показана реакция астатической системы, а кривой 2 - реакция статической системы на единичное ступенчатое воздействие. Самым существенным здесь является то, что в первом случае величина установившейся ошибки равна нулю, а во втором - некоторой постоянной величине.
14
Рисунок 5 - Статические и астатические системы
Различие между статическими и астатическими системами принципиально с теоретической точки зрения, хотя с практической это не совсем так. Действительно, если значение передаточной функций по ошибке в начале координат пренебрежимо мало, то следует ожидать столь же малым значение установившейся ошибки.
ЛИТЕРАТУРА
1. Мирошник И.В. Теория автоматического управления. Линейные системы. - СПб.: Питер, 2005.
2. Филлипс Ч., Харбор Р. Системы управления с обратной связью. М.: Лаборатория Базовых Знаний, 2001.
3. Методы классической и современной теории автоматического управления в 3-х т. Т.1: Анализ и статистическая динамика систем автоматического управления / Под ред. Н.Д. Егупова. - Изд. МГТУ им. Н.Э. Баумана, 2000.
4. Медведев В.С., Потемкин В.Г. Control System Toolbox. MATLAB 5 для студентов/ Под общ. ред. В.Г. Потемкина. - М.: ДИАЛОГ-МИФИ, 1999.
Подобные документы
Расчет передаточной функции разомкнутой системы, передаточные функции замкнутой системы по заданию, по возмущению, по ошибке для одноконтурной АСР с дифференциальным уравнением объекта управления. Структурная схема объекта и расчет устойчивости системы.
контрольная работа [545,7 K], добавлен 13.12.2010Определение связи между выходом и входом для непрерывных систем. Вычисление передаточной функции и основы структурного метода дискретной системы. Расчет передаточной функции дискретной системы с обратной связью. Передаточные функции цифровых алгоритмов.
реферат [67,2 K], добавлен 19.08.2009Статическая характеристика элемента. Выполнение аналитической линеаризации заданной функции в определенной точке. Обратное превращение Лапласа заданной передаточной функции ОАУ. Преобразование дифференциального уравнения к нормальной форме Коши.
контрольная работа [564,9 K], добавлен 30.03.2015Описание уравнениями в конечных разностях динамических процессов в дискретных системах управления. Операционный метод решения разностных уравнений, основанный на дискретном преобразовании Лапласа. Обобщение обычного преобразования на дискретные функции.
реферат [61,7 K], добавлен 21.08.2009Прямое, обратное, двустороннее и дискретное преобразование Лапласа. Применение преобразования Лапласа. Прямое и обратное преобразования Лапласа некоторых функций. Связь с другими преобразованиями. Преобразование Лапласа по энергии и по координатам.
реферат [674,0 K], добавлен 26.11.2010Нахождение АЧХ, ФЧХ, ЛАЧХ для заданных параметров. Построение ЛФЧХ. Определение параметров передаточной функции разомкнутой системы. Исследование на устойчивость по критериям: Гурвица, Михайлова и Найквиста. Определение точности структурной схемы.
курсовая работа [957,8 K], добавлен 11.12.2012Определение и порядок расчета для многомерной системы трех имеющихся матриц: передаточной и частотной передаточной функции, годографа, импульсной и переходной характеристики. Порядок составления структурной схемы полученной системы матриц А, В и С.
контрольная работа [206,5 K], добавлен 13.09.2010Определение системы с двумя переменными, способ ее решения. Специфика преобразования линейных уравнений с двумя переменными. Способ сложения и замены переменных в этом виде уравнений, примеры их графиков. Алгоритм нахождения количества системы уравнений.
презентация [226,6 K], добавлен 08.12.2011Моделирование непрерывной системы контроля на основе матричной модели объекта наблюдения. Нахождение передаточной функции формирующего фильтра входного процесса. Построение графика зависимости координаты и скорости от времени, фазовой траектории системы.
курсовая работа [1,5 M], добавлен 25.12.2013Построение сигнального графа и структурной схемы системы управления. Расчет передаточной функции системы по формуле Мейсона. Анализ устойчивости по критерию Ляпунова. Синтез формирующего фильтра. Оценка качества эквивалентной схемы по переходной функции.
курсовая работа [462,5 K], добавлен 20.10.2013