Передаточные функции одноконтурной системы

Расчет передаточной функции разомкнутой системы, передаточные функции замкнутой системы по заданию, по возмущению, по ошибке для одноконтурной АСР с дифференциальным уравнением объекта управления. Структурная схема объекта и расчет устойчивости системы.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 13.12.2010
Размер файла 545,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

2

Практическая работа № 1

1. По заданным дифференциальным уравнениям определить операторные уравнения при нулевых начальных условиях, передаточные функции, структурные схемы звеньев, характеристические уравнения и их корни. Показать распределение корней на комплексной плоскости.

Оценить устойчивость каждого из звеньев.

а) ; б).

2. По заданной передаточной функции записать дифференциальное уравнение:

.

1. а). Дифференциальное уравнение можно записать в виде:

.

Обозначим Y(s) и F(s) как изображения сигналов соответственно y и f, тогда операторное уравнение (при нулевых начальных условиях) примет вид:

1,25s3Y(s) - 4s2Y(s) + 5sY(s) = 3F(s) - sF(s).

Данное уравнение можно преобразовать, вынеся Y(s) и F(s) за скобки:

Y(s). (1,25s3 - 4s2 + 5s) = F(s). (3 - s).

Отсюда получено:

.

Очевидно, что входной сигнал x отсутствует, и выходной сигнал у определяется только внешним воздействием f (система, действующая по возмущению): , то получается уравнение Y(s) = WF(s).F(s). Структурная схема объекта приведена на рис. 1.

Рис.1

Рис. 2

Передаточная функция имеет знаменатель, называемый характеристическим выражением:

A(s) =.

Если приравнять данное выражение к нулю, то образуется характеристическое уравнение , корни которого:

, и .

Распределение корней на комплексной плоскости показано на рис. 2. По рисунку видно, что корни лежат в правой полуплоскости, следовательно, объект неустойчив.

б) Дифференциальное уравнение можно записать в виде:

.

Обозначим Y(s), X(s) и F(s) как изображения сигналов соответственно y, x и f, тогда операторное уравнение (при нулевых начальных условиях) примет вид:

2s2Y(s) + 4sY(s) + 10Y(s) = 3X(s) + 4sF(s).

Данное уравнение можно преобразовать, вынеся Y(s) и X(s) за скобки:

Y(s). (5s2 + 4s + 10) = 3X(s) + 4sF(s).

Отсюда получено:

.

Если обозначить передаточные функции объекта как

и ,

то получается уравнение Y(s) = Wx(s).X(s) + WF(s).F(s). Структурная схема объекта приведена на рис. 3.

Рис. 3

Характеристическая функция имеет вид:

,

а характеристическое уравнение:

.

Корни этого уравнения равны:

и .

Распределение корней на комплексной плоскости показано на рис. 4:

Рис. 4.

Все корни характеристического уравнения лежат в левой полуплоскости, очевидно, что объект устойчив.

2. Дана передаточная функция вида:

Зная, что по определению, , получим:

, тогда:

.

Раскрывая скобки:

Применяя к полученному выражению обратное преобразование Лапласа, находим искомое дифференциальное уравнение:

.

Практическая работа № 2

Дана одноконтурная АСР, для которой определена передаточная функция регулятора (Р) с настройками и дифференциальное уравнение объекта управления (ОУ). Требуется определить:

- передаточную функцию разомкнутой системы W?(s),

- характеристическое выражение замкнутой системы (ХВЗС),

- передаточные функции замкнутой системы Фз(s) - по заданию, Фв(s) - по возмущению, ФЕ(s) - по ошибке,

- коэффициенты усиления АСР,

- устойчивость системы.

Р - ПИ-регулятор с ПФ вида ;

дифференциальное уравнение объекта управления:

.

Определим передаточную функцию объекта:

Wоб(s).

Передаточная функция разомкнутой системы имеет вид:

Характеристическое выражение замкнутой системы:

;

Передаточные функции замкнутой системы:

- по заданию;

- по ошибке;

- по возмущению.

По передаточным функциям определим коэффициенты усиления путем подстановки в них s = 0:

К3 = Ф3(0) = 1 - по заданию;

КЕ = ФЕ(0) = 0 - по ошибке;

Кв = Фв(0) = 0 - по возмущению.

Определим устойчивость АСР по критерию Гурвица.

Так как коэффициенты ХВЗС а3 = 4, а2 = 6, а1 = 18, а0 = 4 (степень полинома n = 3), то матрица Гурвица имеет вид:

Диагональные миноры матрицы равны соответственно:

Поскольку все определители положительны, то АСР является устойчивой.

Практическая работа № 3

По табличным данным построить переходную кривую объекта, определить параметры передаточной функции объекта, рассчитать настройки ПИД-регулятора, обеспечивающие 20%-е перерегулирование.

Xвх = 5,5 кПа; Y = 0,149 %; зап = 40 сек

t, мин

0

20

50

80

110

140

170

200

230

260

Y

0

0,009

0,032

0,060

0,089

0,116

0,130

0,141

0,149

0,149

Полученная переходная характеристика изображена на рисунке 5:

Рис. 5. Переходная характеристика.

Установившееся значение выходной величины составляет:

;

Коэффициент усиления равен:

;

Постоянная времени равна:

.

Для процесса с 20 % перерегулированием ПИД-регулятора, его настройки:

;

;

.

Практическая работа № 4

Дана одноконтурная АСР. Требуется определить:

· передаточные функции регулятора и объекта управления,

· передаточную функцию разомкнутой системы W?(s),

· характеристическое выражение замкнутой системы (ХВЗС),

· передаточные функции замкнутой системы Фз(s) - по заданию,

Фв(s) - по возмущению, ФЕ(s) - по ошибке,

· коэффициенты усиления АСР,

· примерный вид переходных процессов по заданию, ошибке и возмущению,

· устойчивость системы.

Структурная схема АСР:

W1(s): ; W2(s): ;

K1 = 1,2; K0 = 1,0; K = 1,0

· Передаточная функция регулятора:

.

· Передаточная функция объекта управления:

.

Определим операторные уравнения звеньев объекта управления: для этого обозначим Y(s) и U(s) как изображения сигналов соответственно y и u, тогда операторные уравнения примут вид:

W1(s): sY(s) = 2U(s);

W2(s): 2s2Y(s)+sY(s)+4Y(s)=7U(s).

Данные уравнения можно преобразовать, вынеся Y(s) и U(s) за скобки:

W1(s): sY(s) = 2U(s);

W2(s): Y(s)·(2s2+s+4)=7U(s).

Отсюда получено:

W1(s): Y(s) =

W2(s): Y(s) =.

Тогда:

.

Передаточная функция объекта управления:

· Передаточная функция разомкнутой системы:

· Характеристическое выражение замкнутой системы:

· передаточные функции замкнутой системы

Ф3(s) - по заданию:

ФЕ(s) - по ошибке:

ФВ(s) - по возмущению:

При определении передаточной функции по возмущению принимается Wу.в. = Wоу. Тогда:

.

· По передаточным функциям определим коэффициенты усиления путем подстановки в них s = 0:

К3 = Ф3(0) = 1 - по заданию;

КЕ = ФЕ(0) = 0 - по ошибке;

Кв = Фв(0) = 0 - по возмущению.

· Определим устойчивость АСР по критерию Гурвица.

Так как коэффициенты ХВЗС (степень полинома n = 4), то матрица Гурвица имеет вид:

Диагональные миноры матрицы равны соответственно:

Поскольку все определители положительны, то АСР является устойчивой.

· Определим вид переходных процессов по заданию, ошибке и возмущению:

а) По заданию:

Корни знаменателя:

Изображение разбивается на сумму дробей:

.

Тогда оригинал y(t), согласно таблицам, имеет вид:

y(t) = y0 + y1,2(t) + y 3,4(t) =

+;

где 1,2, б3,4 и 1,2, 3,4 - действительная и мнимая части пары комплексных корней s1,2 и s3,4 соответственно.

C1,2, С3,4 и D1,2, D3,4 - действительная и мнимая части пары коэффициентов М1 и М3 соответственно.

Для корня s0 = 0:

;

Для корней :

=;

Для корней :

;

Тогда:

Получим оригинал:

б) По ошибке:

Корни знаменателя:

Изображение разбивается на сумму дробей:

.

Тогда оригинал y(t), согласно таблицам, имеет вид:

y(t) = y1,2(t) + y 3,4(t) =

+;

где 1,2, б3,4 и 1,2, 3,4 - действительная и мнимая части пары комплексных корней s1,2 и s3,4 соответственно.

C1,2, С3,4 и D1,2, D3,4 - действительная и мнимая части пары коэффициентов М1 и М3 соответственно.

Для корней :

Для корней :

;

Тогда:

Получим оригинал:

в) По возмущению:

Корни знаменателя:

Изображение разбивается на сумму дробей:

.

Тогда оригинал y(t), согласно таблицам, имеет вид:

y(t) = y1,2(t) + y 3,4(t) =

+;

где 1,2, б3,4 и 1,2, 3,4 - действительная и мнимая части пары комплексных корней s1,2 и s3,4 соответственно.

C1,2, С3,4 и D1,2, D3,4 - действительная и мнимая части пары коэффициентов М1 и М3 соответственно.

Для корней :

Для корней :

;

Тогда:

Получим оригинал:


Подобные документы

  • Передаточные функции - центральное понятие классической теории автоматического управления. Они основаны на использовании преобразования Лапласа всех процессов как функций времени. Определение передаточной функции. Статические и астатические системы.

    реферат [74,0 K], добавлен 30.11.2008

  • Определение связи между выходом и входом для непрерывных систем. Вычисление передаточной функции и основы структурного метода дискретной системы. Расчет передаточной функции дискретной системы с обратной связью. Передаточные функции цифровых алгоритмов.

    реферат [67,2 K], добавлен 19.08.2009

  • Определение передаточной функции регулятора, обеспечивающего желаемое расположение корней характеристического уравнения замкнутой системы. Моделирование стандартной формы Баттерворта. Исследование динамики замкнутой системы с модальным регулятором.

    контрольная работа [160,7 K], добавлен 10.01.2014

  • Построение сигнального графа и структурной схемы системы управления. Расчет передаточной функции системы по формуле Мейсона. Анализ устойчивости по критерию Ляпунова. Синтез формирующего фильтра. Оценка качества эквивалентной схемы по переходной функции.

    курсовая работа [462,5 K], добавлен 20.10.2013

  • Уточнение понятия функции функционального объекта. Соотношение его структурных и качественных свойств. Отличия функции системы от математической функции. Текущая и предельная внутренняя детерминанта. Эволюция системы, исходная внутренняя детерминанта.

    реферат [23,6 K], добавлен 19.02.2011

  • Исследования устойчивости разомкнутой и замкнутой систем. Понятие разомкнутой системы – системы, в которой отсутствует обратная связь между входом и выходом, то есть управляемая величина (выходная) не контролируется. Логарифмический частотный критерий.

    реферат [189,7 K], добавлен 30.01.2011

  • Методика экспериментального определения кривых разгона объекта управления по каналам регулирования и возмущения для напорного бака. Динамические характеристики объекта управления, математическое описание динамики линейным дифференциальным уравнением.

    лабораторная работа [277,7 K], добавлен 14.12.2010

  • Статическая характеристика элемента. Выполнение аналитической линеаризации заданной функции в определенной точке. Обратное превращение Лапласа заданной передаточной функции ОАУ. Преобразование дифференциального уравнения к нормальной форме Коши.

    контрольная работа [564,9 K], добавлен 30.03.2015

  • Моделирование непрерывной системы контроля на основе матричной модели объекта наблюдения. Нахождение передаточной функции формирующего фильтра входного процесса. Построение графика зависимости координаты и скорости от времени, фазовой траектории системы.

    курсовая работа [1,5 M], добавлен 25.12.2013

  • Определение и порядок расчета для многомерной системы трех имеющихся матриц: передаточной и частотной передаточной функции, годографа, импульсной и переходной характеристики. Порядок составления структурной схемы полученной системы матриц А, В и С.

    контрольная работа [206,5 K], добавлен 13.09.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.