Определение вероятности события

Определение вероятности выпадения не менее 4-х очков на игральной кости при кидании ее один раз. Определение вероятности изготовления детали (если наудачу взятая сборщиком деталь оказалась отличного качества) первым заводом из используя формулу Байеса.

Рубрика Математика
Вид контрольная работа
Язык русский
Дата добавления 29.05.2012
Размер файла 11,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Министерство науки и образования РФ

Контрольная работа по учебной дисциплине

«Прикладная математика»

Задача №1.

Игральная кость бросается один раз. Найти вероятность появления не менее 4-х очков.

Решение:

Пусть событие А - число очков, появившееся на игральной кости.

А1- «1», А2- «2», А 3 - «3», А4 - «4», А5 - «5», А6- «6». Следовательно, получим 3 благоприятных события А4 - «4», А5 - «5», А6- «6».

Известно, что вероятность выпадения любой стороны у любой кости равняется 1/6.

Вероятность равна отношению числа испытаний (m), в которых появилось событие А, на общее число испытаний (n).

P=

Общее число испытаний равно числу размещений из 6 по 2.

Число испытаний (m), в которых появилось событие А равно 3.

Следовательно, вероятность того, что появиться не менее 4-х очков будет равна:

P==3/6=.

вероятность игральный байес

Задача №2.

Сборщик получает 50% деталей завода № I, 30% - завода №2, 20% - завода № 3. Вероятность того, что деталь первого завода отличного качества равна 0,7, для второго и третьего заводов эти вероятности соответственно равны 0,8 и 0,9. Наудачу взятая сборщиком деталь оказалась отличного качества. Найти вероятность того, что эта деталь изготовлена заводом № I.

Решение:

Пусть событие Н- детали с первого завода, тогда Р(Н)=0,5, аналогично событие Н-детали со второго завода Р(Н2)=0,3, событие Н- детали с третьего завода Р(Н)=0,2.

Событие А - деталь отличного качества, тогда вероятность того, что деталь с высшего качества с первого завода Р(А)=0,7, аналогично Р(А)=0,8, Р(А)=0,9.

Используя формулу Байеса, найдем вероятность того, что деталь изготовлена заводом № 1 (если наудачу взятая сборщиком деталь оказалась отличного качества):

Ответ. Вероятность того, что если наудачу взятая сборщиком деталь оказалась отличного качества, то она изготовлена заводом №1 равна 0,4545.

Размещено на Allbest.ru


Подобные документы

  • Определение вероятности наступления события, используя формулу Бернулли. Вычисление математического ожидания и дисперсии величины. Расчет и построение графика функции распределения. Построение графика случайной величины, определение плотности вероятности.

    контрольная работа [390,7 K], добавлен 29.05.2014

  • Показатели безотказности как показатели надежности невосстанавливаемых объектов. Классическое и геометрическое определение вероятности. Частота случайного события и "статистическое определение" вероятности. Теоремы сложения и умножения вероятностей.

    курсовая работа [328,1 K], добавлен 18.11.2011

  • Нахождение вероятности события, используя формулу Бернулли. Составление закона распределения случайной величины и уравнения регрессии. Расчет математического ожидания и дисперсии, сравнение эмпирических и теоретических частот, используя критерий Пирсона.

    контрольная работа [167,7 K], добавлен 29.04.2012

  • Вычисление по классической формуле вероятности. Определение вероятности, что взятая наугад деталь не соответствует стандарту. Расчет и построение графиков функции распределения и случайной величины. Вычисление коэффициента корреляции между величинами.

    контрольная работа [708,2 K], добавлен 02.02.2011

  • Возникновение теории вероятности как науки. Классическое определение вероятности. Частость наступления события. Операции над событиями. Сложение и умножение вероятности. Схема повторных независимых испытаний (система Бернулли). Формула полной вероятности.

    реферат [175,1 K], добавлен 22.12.2013

  • Вычисление вероятности непогашения кредита юридическим и физическим лицом, с помощью формулы Байеса. Расчет выборочной дисперсии, его методика, основные этапы. Определение вероятности выпадания белого шара из трех, взятых наудачу, обоснование результата.

    контрольная работа [419,7 K], добавлен 11.02.2014

  • Алгоритм определения вероятности события и выполнения статистических ожиданий. Оценка возможных значений случайной величины и их вероятности. Расчет математического ожидания, дисперсии и среднего квадратического отклонения. Анализ характеристик признака.

    контрольная работа [263,8 K], добавлен 13.01.2014

  • Классическое определение вероятности события. Способы вычисления наступления предполагаемого события. Построение многоугольника распределения. Поиск случайных величин с заданной плотностью распределения. Решение задач, связанных с темой вероятности.

    задача [104,1 K], добавлен 14.01.2011

  • Определение вероятности случайного события, с использованием формулы классической вероятности, схемы Бернулли. Составление закона распределения случайной величины. Гипотеза о виде закона распределения и ее проверка с помощью критерия хи-квадрата Пирсона.

    контрольная работа [114,3 K], добавлен 11.02.2014

  • Определение и оценка вероятности наступления заданного события. Методика решения задачи, с использованием теоремы сложения и умножения, формулы полной вероятности или Байеса. Применение схемы Бернулли при решении задач. Расчет квадратического отклонения.

    практическая работа [55,0 K], добавлен 23.08.2015

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.