Симплексний метод лінійного програмування

Розв'язок задач лінійного програмування симплексним методом, графічне вирішення системи нерівностей, запис двоїстої задачі: визначення прибутку, отриманого підприємством від реалізації виробів; загальних витрат, пов’язаних з транспортуванням продукції.

Рубрика Математика
Вид контрольная работа
Язык украинский
Дата добавления 28.03.2011
Размер файла 296,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Завдання 1

Кондитерська фабрика для виробництва трьох видів карамелі А1, А2, А3 використовує три види сировини: цукор-пісок, патоку і фруктове пюре. Норми використання сировини кожного виду на виробництво однієї тони карамелі подано в таблиці, відома також загальна кількість сировини кожного виду і прибуток від реалізації 1 тонни карамелі певного виду.

Вид сировини

Норми витрат сировини (т) на 1 т карамелі

Об'єм сировини, т

А1

А2

А3

Цукор-пісок

0,8

0,5

0,6

1000

Патока

0,4

0,4

0,3

800

Фруктове пюре

-

0,1

0,1

150

Прибуток від реалізації 1 т продукції (грн. од.)

21

23

25

Розв'язок

Складаємо математичну модель задачі. Позначимо через х1 кількість карамелі 1-го виду, що виготовляє підприємство за деяким планом, а через х2 кількість карамелі 2-го виду та через х3 кількість карамелі 3-го виду. Тоді прибуток, отриманий підприємством від реалізації цих виробів, складає

? = 21х1+23х2+25х3.

Витрати сировини на виготовлення такої кількості виробів складають відповідно:

CI =0,8х1+0,5х2+0,6х3,

C =0,4х1+0,4х2+0,3х3,

CIІІ =0х1+0,1х2+0,1х3.

Оскільки запаси сировини обмежені, то повинні виконуватись нерівності:

0,8х1+0,5х2+0,6х3?1000

0,4х1+0,4х2+0,3х3?800

1+0,1х2+0,1х3?150.

Оскільки, кількість виробів є величина невід'ємна, то додатково повинні виконуватись ще нерівності: х1> 0, х2> 0, х3>0.

Таким чином, приходимо до математичної моделі:

Знайти х1, х2, х3 такі, що функція ? = 21х1+23х2+25х3 досягає максимуму при системі обмежень:

Розв'язуємо задачу лінійного програмування симплексним методом.

Для побудови першого опорного плану систему нерівностей приведемо до системи рівнянь шляхом введення додаткових змінних.

0,8x1 + 0,5x2 + 0,6x3 + 1x4 + 0x5 + 0x6 = 1000

0,4x1 + 0,4x2 + 0,3x3 + 0x4 + 1x5 + 0x6 = 800

0x1 + 0,1x2 + 0,1x3 + 0x4 + 0x5 + 1x6 = 150

де х1,...,х6>0

Матриця коефіцієнтів A = a(ij) цієї системи рівнянь має вигляд:

Базисні змінні це змінні, які входять лише в одне рівняння системи обмежень і притому з одиничним коефіцієнтом.

Вирішимо систему рівнянь відносно базисних змінних:

x4 , x5 , x6

Вважаючи, що вільні змінні рівні 0, отримаємо перший опорний план:

X1 = (0,0,0,1000,800,150)

Оскільки завдання вирішується на максимум, то ведучий стовпець вибираємо по максимальному негативному кількістю та індексного рядку. Всі перетворення проводимо до тих пір, поки не вийдуть в індексному рядку позитивні елементи.

Складаємо симплекс-таблицю:

План

Базис

В

x1

x2

x3

x4

x5

x6

min

1

x4

1000

0.8

0.5

0.6

1

0

0

1666.67

x5

800

0.4

0.4

0.3

0

1

0

2666.67

x6

150

0

0.1

0.1

0

0

1

1500

Індексний рядок

F(X1)

0

-21

-23

-25

0

0

0

0

Оскільки, в індексному рядку знаходяться негативні коефіцієнти, поточний опорний план неоптимальний, тому будуємо новий план. У якості ведучого виберемо елемент у стовбці х3, оскільки значення коефіцієнта за модулем найбільше.

План

Базис

В

x1

x2

x3

x4

x5

x6

min

2

x4

100

0.8

-0.1

0

1

0

-6

125

x5

350

0.4

0.1

0

0

1

-3

875

x3

1500

0

1

1

0

0

10

0

Індексний рядок

F(X2)

37500

-21

2

0

0

0

250

0

Даний план, також не оптимальний, тому будуємо знову нову симплексну таблицю. У якості ведучого виберемо елемент у стовбці х1.

План

Базис

В

x1

x2

x3

x4

x5

x6

min

3

x1

125

1

-0.13

0

1.25

0

-7.5

0

x5

300

0

0.15

0

-0.5

1

0

2000

x3

1500

0

1

1

0

0

10

1500

Індексний рядок

F(X3)

40125

0

-0.63

0

26.25

0

92.5

0

Оскільки, в індексному рядку знаходяться негативні коефіцієнти, поточний опорний план неоптимальний, тому будуємо новий план. У якості ведучого виберемо елемент у стовбці х2, оскільки значення коефіцієнта за модулем найбільше.

План

Базис

В

x1

x2

x3

x4

x5

x6

min

4

x1

312.5

1

0

0.13

1.25

0

-6.25

0

x5

75

0

0

-0.15

-0.5

1

-1.5

2000

x2

1500

0

1

1

0

0

10

1500

Індексний рядок

F(X4)

41062.5

0

0

0.63

26.25

0

98.75

0

Оскільки всі оцінки >0, то знайдено оптимальний план, що забезпечує максимальний прибуток: х1=312.5, х2=1500. Прибуток, при випуску продукції за цим планом, становить 41062,5 грн.

Завдання 2

Записати двоїсту задачу до поставленої задачі лінійного програмування. Розв'язати одну із задач симплексним методом і визначити оптимальний план іншої задачі. Оптимальні результати перевірити графічно.

Розв'язок

Розв'яжемо задачу лінійного програмування симплексним методом.

Визначимо мінімальне значення цільової функції F(X)=5x1+3x2 при наступних умовах-обмежень.

8x1-14x2?14

3x1+2x2?27

x2?11

Для побудови першого опорного плану систему нерівностей приведемо до системи рівнянь шляхом введення додаткових змінних.

8x1-14x2-1x3 + 0x4 + 0x5 = 14

3x1 + 2x2 + 0x3-1x4 + 0x5 = 27

0x1 + 1x2 + 0x3 + 0x4 + 1x5 = 11

Введемо штучні змінні x.

8x1-14x2-1x3 + 0x4 + 0x5 + 1x6 + 0x7 = 14

3x1 + 2x2 + 0x3-1x4 + 0x5 + 0x6 + 1x7 = 27

0x1 + 1x2 + 0x3 + 0x4 + 1x5 + 0x6 + 0x7 = 11

Для постановки задачі на мінімум цільову функцію запишемо так:

F(X) = 5x1+3x2+Mx6+Mx7 => min

Вважаючи, що вільні змінні рівні 0, отримаємо перший опорний план:

X1 = (0,0,0,0,11,14,27)

План

Базис

В

x1

x2

x3

x4

x5

х6

х7

0

х6

14

8

-14

-1

0

0

1

0

x7

27

3

2

0

-1

0

0

1

х5

11

0

1

0

0

1

0

0

Індексний рядок

F(X0)

0

0

0

0

0

0

0

0

Переходимо до основного алгоритму симплекс-методу.

План

Базис

В

x1

x2

x3

x4

x5

x6

х7

min

1

х6

14

8

-14

-1

0

0

1

0

1.75

x7

27

3

2

0

-1

0

0

1

9

х5

11

0

1

0

0

1

0

0

0

Індексний рядок

F(X1)

0

0

0

0

0

0

0

0

0

Оскільки, в індексному рядку знаходяться позитивні коефіцієнти, поточний опорний план неоптимальний, тому будуємо новий план. У якості ведучого виберемо елемент у стовбці х1, оскільки значення коефіцієнта за модулем найбільше.

План

Базис

В

x1

x2

x3

x4

x5

x6

х7

min

2

х1

1.75

1

-1.75

-0.125

0

0

0.125

0

0

x7

21.75

0

7.25

0.375

-1

0

-0.375

1

3

х5

11

0

1

0

0

1

0

0

11

Індексний рядок

F(X2)

0

0

0

0

0

0

0

0

0

Даний план, також не оптимальний, тому будуємо знову нову симплексну таблицю. У якості ведучого виберемо елемент у стовбці х2.

План

Базис

В

x1

x2

x3

x4

x5

x6

х7

3

х1

7

1

0

-0.0345

-0.2414

0

0.0345

0.2414

x2

3

0

1

0.0517

-0.1379

0

-0.0517

0.1379

х5

8

0

0

-0.0517

0.1379

1

0.0517

-0.1379

Індексний рядок

F(X3)

0

0

0

0

0

0

0

0

Оптимальний план можна записати так:

x1 = 7

x2 = 3

x5 = 8

F(X) = 5*7 + 3*3 = 44

Складемо двоїсту задачу до поставленої задачі лінійного програмування.

8y1+3y2?5

-14y1+2y2+y3?3

14y1+27y2+11y3 => max

y1 ? 0

y2 ? 0

y3 ? 0

Рішення двоїстої задачі дає оптимальну систему оцінок ресурсів. Використовуючи останню інтеграцію прямої задачі знайдемо, оптимальний план двоїстої задачі. Із теореми двоїстості слідує, що Y = C*A-1.

Сформуємо матрицю A із компонентів векторів, які входять в оптимальний базис.

Визначивши обернену матрицю А-1 через алгебраїчне доповнення, отримаємо:

Як видно із останнього плану симплексної таблиці, обернена матриця A-1 розміщена у стовбцях додаткових змінних.

Тоді Y = C*A-1 =

Запишемо оптимальний план двоїстої задачі:

y1 = 0.02

y2 = 1.62

y3 = 0

Z(Y) = 14*0.02+27*1.62+11*0 = 44

Завдання 3

Розв'язати транспортну задачу.

5

2

3

6

1

200

1

1

4

4

2

150

4

3

1

2

1

350

110

170

200

180

110

Розв'язок

Побудова математичної моделі. Нехай xij -- кількість продукції, що перевозиться з і-го пункту виробництва до j-го споживача . Оскільки , то задачу треба закрити, тобто збалансувати (зрівняти) поставки й потреби:

У нашому випадку робиться це введенням фіктивного постачальника, оскільки . З уведенням фіктивного постачальника в транспортній таблиці додатково заявляється n робочих клітинок.

Ціни додатковим клітинкам, щоб фіктивний рядок був нейтральним щодо оптимального вибору планових перевезень, призначаються усі рівні нулю.

Занесемо вихідні дані у таблицю

В1

В2

В3

В4

В5

Запаси

А1

5

2

3

6

1

200

А2

1

1

4

4

2

150

А3

4

3

1

2

1

350

А4

0

0

0

0

0

70

Потреби

110

170

200

180

110

Забезпечивши закритість розв'язуваної задачі, розпочинаємо будувати математичну модель даної задачі:

Економічний зміст записаних обмежень полягає в тому, що весь вантаж потрібно перевезти по пунктах повністю.

Аналогічні обмеження можна записати відносно замовників: вантаж, що може надходити до споживача від чотирьох баз, має повністю задовольняти його попит. Математично це записується так:

Загальні витрати, пов'язані з транспортуванням продукції, визначаються як сума добутків обсягів перевезеної продукції на вартості транспортування од. продукції до відповідного замовника і за умовою задачі мають бути мінімальними. Тому формально це можна записати так:

minZ=5x11+2x12+3x13+6x14+1x15+1x21+1x22+4x23+4x24+2x25+4x31+3x32+1x33

+2x34+ +1x35+0x41+0x42+0x43+0x44+0x45.

Загалом математична модель сформульованої задачі має вигляд:

minZ=5x11+2x12+3x13+6x14+1x15+1x21+1x22+4x23+4x24+2x25+4x31+3x32+1x33

+2x34+ +1x35+0x41+0x42+0x43+0x44+0x45.

за умов:

Запишемо умови задачі у вигляді транспортної таблиці та складемо її перший опорний план у цій таблиці методом «північно-західного кута».

Ai

Bj

ui

b1 = 110

b2 = 170

b3 = 200

b4=180

b5=110

а1 = 200

5

110

2

[-] 90

3

6

1

[+]

u1 = 0

а2 = 150

1

1

[+] 80

4

[-] 70

4

2

u2 = -1

а3 = 350

4

3

1

[+] 130

2

180

1

[-] 40

u3 = -4

а4 = 70

0

0

0

0

0

70

u4 = -5

vj

v1 = 5

v2 = 2

v3 = 5

v4 = 6

v5 = 5

В результаті отримано перший опорний план, який є допустимим, оскільки всі вантажі з баз вивезені, потреба магазинів задоволена, а план відповідає системі обмежень транспортної задачі.

Підрахуємо число зайнятих клітин таблиці, їх 8, а має бути m+n-1=8. Отже, опорний план є не виродженим.

Перевіримо оптимальність опорного плану. Знайдемо потенціали ui, vi. по зайнятих клітинам таблиці, в яких ui + vi = cij, вважаючи, що u1 = 0:

u1=0, u2=-1, u3=-4, u4=-5, v1=5, v2=2, v3=5 v4=6, v5=5.

Ці значення потенціалів першого опорного плану записуємо у транспортну таблицю.

Потім згідно з алгоритмом методу потенціалів перевіряємо виконання другої умови оптимальності ui + vj ? cij (для порожніх клітинок таблиці).

Опорний план не є оптимальним, тому що існують оцінки вільних клітин для яких ui + vi > cij

(1;3): 0 + 5 > 3

(1;5): 0 + 5 > 1

(2;1): -1 + 5 > 1

(2;4): -1 + 6 > 4

(2;5): -1 + 5 > 2

(4;4): -5 + 6 > 0

Тому від нього необхідно перейти до другого плану, змінивши співвідношення заповнених і порожніх клітинок таблиці. Вибираємо максимальну оцінку вільної клітини (А1B5): 1. Для цього в перспективну клітку (1;5) поставимо знак «+», а в інших вершинах багатокутника чергуються знаки «-», «+», «-». Цикл наведено в таблиці.

Тепер необхідно перемістити продукцію в межах побудованого циклу. З вантажів хij що стоять в мінусових клітинах, вибираємо найменше, тобто у = min (3;5) = 40. Додаємо 40 до обсягів вантажів, що стоять в плюсових клітинах і віднімаємо 40 з хij, що стоять в мінусових клітинах. В результаті отримаємо новий опорний план.

Для цього у порожню клітинку А1B4 переносимо менше з чисел хij, які розміщені в клітинках зі знаком «-». Одночасно це саме число хij додаємо до відповідних чисел, що розміщені в клітинках зі знаком «+», та віднімаємо від чисел, що розміщені в клітинках, позначених знаком «-».

Усі інші заповнені клітинки першої таблиці, які не входили до циклу, переписуємо у другу таблицю без змін. Кількість заповнених клітинок у новій таблиці також має відповідати умові невиродженості плану, тобто дорівнювати (n + m - 1).

Отже, другий опорний план транспортної задачі матиме такий вигляд:

Ai

Bj

ui

b1 = 110

b2 = 170

b3 = 200

b4=180

b5=110

а1 = 200

5

110

2

[-] 50

3

6

1

[+] 40

u1 = 0

а2 = 150

1

1

[+] 120

4

[-] 30

4

2

u2 = -1

а3 = 350

4

3

1

[+] 170

2

[-] 180

1

u3 = -4

а4 = 70

0

0

0

0

[+]

0

[-] 70

u4 = -1

vj

v1 = 5

v2 = 2

v3 = 5

v4 = 6

v5 = 1

Перевіримо оптимальність опорного плану. Знайдемо потенціали ui, vi. по зайнятих клітинам таблиці, в яких ui + vi = cij, вважаючи, що u1 = 0.

Опорний план не є оптимальним, тому що існують оцінки вільних клітин для яких ui + vi > cij

(1;3): 0 + 5 > 3

(2;1): -1 + 5 > 1

(2;4): -1 + 6 > 4

(4;1): -1 + 5 > 0

(4;2): -1 + 2 > 0

(4;3): -1 + 5 > 0

(4;4): -1 + 6 > 0

Вибираємо максимальну оцінку вільної клітини (А4B4): 0

Для цього в перспективну клітку (А4B4) поставимо знак «+», а в інших вершинах багатокутника чергуються знаки «-», «+», «-». Цикл наведено в таблиці.

З вантажів хij що стоять в мінусових клітинах, вибираємо найменше, тобто у = min (А2B3) = 30. Додаємо 30 до обсягів вантажів, що стоять в плюсових клітинах і віднімаємо 30 з Хij, що стоять в мінусових клітинах. В результаті отримаємо новий опорний план.

Ai

Bj

ui

b1 = 110

b2 = 170

b3 = 200

b4=180

b5=110

а1 = 200

5

[-] 110

2

20

3

6

1

[+] 70

u1 = 0

а2 = 150

1

1

150

4

4

2

u2 = -1

а3 = 350

4

3

1

200

2

150

1

u3 = 1

а4 = 70

0

[+]

0

0

0

30

0

[-] 40

u4 = -1

vj

v1 = 5

v2 = 2

v3 = 0

v4 = 1

v5 = 1

Перевіримо оптимальність опорного плану. Знайдемо потенціали ui, vi. по зайнятих клітинам таблиці, в яких ui + vi = cij, вважаючи, що u1 = 0.

Опорний план не є оптимальним, тому що існують оцінки вільних клітин для яких ui + vi > cij

(2;1): -1 + 5 > 1

(3;1): 1 + 5 > 4

(3;5): 1 + 1 > 1

(4;1): -1 + 5 > 0

(4;2): -1 + 2 > 0

Вибираємо максимальну оцінку вільної клітини (А4B1): 0

Для цього в перспективну клітку (А4B1) поставимо знак «+», а в інших вершинах багатокутника чергуються знаки «-», «+», «-». Цикл наведено в таблиці.

З вантажів хij що стоять в мінусових клітинах, вибираємо найменше, тобто у = min (А4B5) =40. Додаємо 40 до обсягів вантажів, що стоять в плюсових клітинах і віднімаємо 40 з Хij, що стоять в мінусових клітинах.

В результаті отримаємо новий опорний план.

Ai

Bj

ui

b1 = 110

b2 = 170

b3 = 200

b4=180

b5=110

а1 = 200

5

[-] 70

2

[+] 20

3

6

1

110

u1 = 0

а2 = 150

1

[+]

1

[-] 150

4

4

2

u2 = -1

а3 = 350

4

3

1

200

2

150

1

u3 = -3

а4 = 70

0

40

0

0

0

30

0

110

u4 = -5

vj

v1 = 5

v2 = 2

v3 = 4

v4 = 5

v5 = 1

Перевіримо оптимальність опорного плану. Знайдемо потенціали ui, vi. по зайнятих клітинам таблиці, в яких ui + vi = cij, вважаючи, що u1 = 0.

Опорний план не є оптимальним, тому що існують оцінки вільних клітин для яких ui + vi > cij

(1;3): 0 + 4 > 3

(2;1): -1 + 5 > 1

Вибираємо максимальну оцінку вільної клітини (А2B1): 1

Для цього в перспективну клітку (А2B1) поставимо знак «+», а в інших вершинах багатокутника чергуються знаки «-», «+», «-». Цикл наведено в таблиці.

З вантажів хij що стоять в мінусових клітинах, вибираємо найменше, тобто у = min (А1B1) =70. Додаємо 70 до обсягів вантажів, що стоять в плюсових клітинах і віднімаємо 70 з Хij, що стоять в мінусових клітинах.

В результаті отримаємо новий опорний план.

Ai

Bj

ui

b1 = 110

b2 = 170

b3 = 200

b4=180

b5=110

а1 = 200

5

2

90

3

6

1

110

u1 = 0

а2 = 150

1

70

1

80

4

4

2

u2 = -1

а3 = 350

4

3

1

200

2

150

1

u3 = 0

а4 = 70

0

40

0

0

0

30

0

110

u4 = -2

vj

v1 = 2

v2 = 2

v3 = 1

v4 = 2

v5 = 1

Перевіримо оптимальність опорного плану, тобто повторюємо описані раніше дії.

Знайдемо потенціали ui, vi. по зайнятих клітинам таблиці, в яких ui + vi = cij, вважаючи, що u1 = 0.

Перевірка останнього плану на оптимальність за допомогою методу потенціалів показує, що він оптимальний.

Розрахуємо значення цільової функції відповідно до другого опорного плану задачі:

F(x) = 2*90 + 1*110 + 1*70 + 1*80 + 1*200 + 2*150 + 0*40 + 0*30 = 940

За оптимальним планом перевезень загальна вартість перевезень всієї продукції є найменшою і становить 940 грн.

симплексний прибуток транспортування витрати

Завдання 4

Знайти графічним методом екстремуми функцій в області, визначеній нерівностями.

.

Розв'язок

Побудуємо область допустимих рішень, тобто вирішимо графічно систему нерівностей. Для цього побудуємо кожну пряму і визначимо півплощини, задані нерівностями (півплощини позначені штрихом).

Межі області

Цільова функція F(x) => min

Розглянемо цільову функцію завдання F = 3X1+6X2 => min.

Побудуємо пряму, що відповідає значенню функції F = 0: F = 3X1+6X2 = 0. Будемо рухати цю пряму паралельним чином. Оскільки нас цікавить мінімальне рішення, тому рухався прямо до першого торкання позначеної області. На графіку ця пряма позначена пунктирною лінією.

Рівний масштаб

Перетином півплощини буде область, яка представляє собою багатокутник, координати точок якого задовольняють умові нерівностей системи обмежень задачі.

Пряма F(x) = const перетинає область у точці C. Оскільки точка C отримана в результаті перетину прямих 4 i 2, то її координати задовольняють рівнянням цих прямих:

x2=0

x1+2x2?2

Вирішивши систему рівнянь, одержимо: x1 = 2, x2 = 0

Звідки знайдемо мінімальне значення цільової функції:

F(X) = 3*2 + 6*0 = 6

Оскільки функція мети F(x) паралельна прямій 2, то на відрізку CA функція F (x) буде приймає одне і теж мінімальне значення.

Для визначення координат точки A вирішимо систему двох лінійних рівнянь:

x1+2x2?2

x1=0

Вирішивши систему рівнянь, одержимо: x1 = 0, x2 = 1

Звідки знайдемо мінімальне значення цільової функції:

F(X) = 3*0 + 6*1 = 6

Размещено на Allbest.ru


Подобные документы

  • Послідовність графічного розв'язання задачі лінійного програмування. Сумісна система лінійних нерівностей, умови невід'ємності, визначення півплощини з граничними прямими. Графічний метод для визначення оптимального плану задачі лінійного програмування.

    задача [320,6 K], добавлен 31.05.2010

  • Складання плану виробництва при максимальному прибутку. Введення додаткових (фіктивних) змінних, які перетворюють нерівності на рівності. Розв’язування задачі лінійного програмування графічним методом та економічна інтерпретація отриманого розв’язку.

    контрольная работа [298,3 K], добавлен 20.11.2009

  • Дослідження предмету і сфери застосування математичного програмування в економіці. Класифікація задач цієї науки. Загальна задача лінійного програмування, деякі з методи її розв’язування. Економічна інтерпретація двоїстої задачі лінійного програмування.

    курс лекций [59,9 K], добавлен 06.05.2010

  • Методи зведення до канонічної форми задач лінійного програмування. Визначення шляхів знаходження екстремумів функцій графічним способом. Побудова початкового опорного плану методом "північно-західного" напрямку. Складання двоїстої системи матриць.

    контрольная работа [262,0 K], добавлен 08.02.2010

  • Сутність симплекс-методу у вирішенні задач лінійного програмування. Рішення задачі на відшукання максимуму або мінімуму лінійної функції за умови, що її змінні приймають невід'ємні значення і задовольняють деякій системі лінійних рівнянь або нерівностей.

    реферат [28,5 K], добавлен 26.02.2012

  • Розв'язання системи лінійних рівнянь методом повного виключення змінних (метод Гаусса) з використанням розрахункових таблиць. Будування математичної моделі задачі лінійного програмування. Умови для застосування симплекс-методу. Розв'язка спряженої задачі.

    практическая работа [42,3 K], добавлен 09.11.2009

  • Розв'язання завдання графічним способом. Зображення розв'язку системи нерівностей, визначення досягнення максимуму та мінімуму функції. Розв'язання транспортної задачі методом потенціалів та симплекс-методом, формування оціночної матриці з елементів.

    задача [134,9 K], добавлен 31.05.2010

  • Теорема Куна-Такера. Побудування функції Лагранжа. Задача квадратичного програмування. Узагальнення симплексного метода лінійного програмування згідно методу Біла. Правила переходу від однієї таблиці до іншої. Система обмежень у допустимої області.

    курсовая работа [252,9 K], добавлен 08.05.2014

  • Поняття та значення симплекс-методу як особливого методу розв'язання задачі лінійного програмування, в якому здійснюється скерований рух по опорних планах до знаходження оптимального рішення. Розв'язання задачі з використанням програми Simplex Win.

    лабораторная работа [264,1 K], добавлен 30.03.2015

  • Використання методів розв’язування одновимірних оптимізаційних задач (метод дихотомії, золотого перерізу, Фібоначі) для визначення найменшого значення функції на відрізку. Задача мінімізації за допомогою методу Ньютона і методу найшвидшого спуску.

    курсовая работа [739,5 K], добавлен 05.05.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.