Методика навчання учнів основної школи методу інтервалів

Форми організації навчально-методологічної діяльності. Формалізування предметного способу дій. Аналіз програмних вимог. Властивості неперервних функцій. Ірраціональні та раціональні нерівності. Розв'язування квадратичних нерівностей методом інтервалів.

Рубрика Математика
Вид курсовая работа
Язык украинский
Дата добавления 07.01.2016
Размер файла 1,8 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Вступ

Актуальність теми: у сучасному процесі навчання математики більше уваги приділяється на розв'язанні рівнянь різних видів та нерівностей , разом з тим за розв'язання нерівностей за допомогою методу інтервалів. Учні вивчають різні схеми розв'язання нерівностей та рівносильні системи і совокупності. Цей спосіб ефективний під час вирішення простих нерівностей, які розглядають у шкільному курсі. У складних випадках, наприклад, в, які пропонують на вступних іспитах у вузи, навіть сильні учні часом опиняються у скруті, тому що їм доводиться робити громіздкі обчислення під час вирішення тих самих систем і сукупностей. Мало хто з кишені вчителів знайомить під час уроків учнів з іншими засобами розв'язання нерівностей, які полегшують пошук рішення, одним із таких методів є мотод інтервалів. Саме тому обрана нами тема курсової роботи є досить актуальною.

Об'єкт дослідження: методика навчання учнів основної школи розв'язувати нерівності методом інтервалів.

Предмет дослідження: метод інтервалів, та методика його навчання в курсі основної школи.

Мета дослідження: проаналізувати методичну, педагогічну літературу на тему курсової роботи (зокрема діючі підручники з алгебри для 9 класу);

Завдання дослідження:

1) Охарактеризувати діючі підручники з алгебри для учнів 9 класу

2) Систематизувати матеріал вивчення методу інтервалів

3) Проаналізувати методичні рекомендації щодо подання теми

Методи дослідження: розгляд подання матеріалу у шкільних підручниках, вивчення теми та аналіз її подачі в основній школі.

Логіка дослідження зумовила структуру курсової роботи: вступ, 3 розділи, висновки, список використаних джерел із…найменувань, Загальний обсяг 34 сторінки.

Розділ І. Метод інтервалів та предмет дослідження

квадратичний нерівність інтервал функція

Два математичні вирази, сполучені знаком «більше» (>), «менше» (<), «не більше» () або «не менше» (), називаються нерівностями.

Запис означає, що або .

Нерівності бувають числові і буквені. Числовими називають такі нерівності, обидві частини яких є числа, записані цифрами. Якщо хоча б одна частина нерівності є буквеним виразом, така нерівність називається буквеною.

Будь-яка правильна числова нерівність, а також будь-яка буквена нерівність, що справджується при всіх допустимих значеннях букв, які входять до неї, називається тотожною нерівністю. Наприклад:

Наведемо властивості тотожних нерівностей.

1. Якщо , то .

2. Якщо , , то .

3. Якщо , то .

4. Якщо , , то , .

5. Якщо , , то .

6. Якщо і n -- натуральне число, то , .

1.1 Нерівності першого степеня з одним невідомим

Нерівність, яка містить букви, що позначають невідомі числа, називається нерівністю з невідомими.

Якщо в нерівність з одним невідомим замість невідомого підставити яке-небудь число і в результаті дістанемо правильну числову нерівність, то кажуть, що це число задовольняє дану нерівність.

Кожне число, що задовольняє нерівність, називають розв'язком цієї нерівності.

Розв'язати нерівність -- означає знайти всі її розв'язки.

Нерівність виду називається нерівністю першого степеня з одним невідомим.

Приклад 1.1.1. Розв'язати нерівність

Після перетворень дістанемо , звідки .

Система двох нерівностей з одним невідомим зводиться до одного з таких випадків.

1) ; 2) ; 3) ; 4) .

Якщо , то розв'язок такої системи нерівностей подається у вигляді:

1) ; 2) ; 3) ; 4) .

1.2 Квадратні нерівності

Розглянемо квадратну нерівність

. (1)

Якщо , то нерівність (1) виконується для всіх при і не виконується для жодного (рис. 1).

Рис. 1.

Якщо , то нерівність (1) виконується для всіх при , причому в точці і не виконується для жодного крім де (рис. 2).

Рис. 2.

При знаходимо корені рівняння

, .

Якщо , нерівність (1) виконується при (рис. 3).

Рис. 3.

Якщо , нерівність (1) виконується при (рис. 4).

Рис. 4.

Можна сформулювати просте правило.

Якщо квадратна нерівність (1) виконується при великих значеннях , то вона виконується поза відрізком, обмеженим коренями рівняння . Якщо нерівність (1) не виконується при великих значеннях , то вона виконується на відрізку, обмеженому коренями рівняння (1).

Приклад. Розв'язати нерівність .

Оскільки нерівність не виконується при великих значеннях , то вона виконується між коренями рівняння , , тобто при .

Приклад 1.2.1. Розв'язати нерівність .

Дана нерівність виконується при великих значеннях , тому вона виконується поза інтервалом, обмеженим коренями рівняння , тобто при

Часто доводиться розв'язувати нерівність виду

, (2)

рівносильну системі нерівностей.

Приклад 1.2.2. Розв'язати нерівність

.

За формулою (2) дістаємо систему нерівностей:

, звідки .

1.3 Ірраціональні нерівності

Ірраціональні нерівності зводяться, як правило, до однієї з двох таких нерівностей:

; (1)

. (2)

Нерівність (1) виконується в одному з двох випадків:

Нерівність (2) виконується, якщо виконуються нерівності:

Приклад 1.3.1. Розв'язати нерівність

.

Маємо нерівність виду (1). Розв'яжемо системи нерівностей:

Остаточно знаходимо розв'язок

Приклад 1.3.2. Розв'язати ірраціональну нерівність

.

Маємо нерівність виду (2), розв'язання якої таке:

.

Приклад 1.3.3. Розв'язати нерівність

.

Розв'язуємо окрему нерівність і рівняння:

;

.

Остаточно дістаємо розв'язок

Кожну ірраціональну нерівність можна розв'язати методом інтервалів. Для цього знаходять її ОДЗ, а далі замінюють нерівність рівністю і розв'язують рівняння. Точки, що відповідають розв'язкам, розбивають ОДЗ на інтервали. Якщо в одній точці деякого інтервалу нерівність виконується, то вона виконується в усіх точках цього інтервалу. І навпаки: якщо в будь-якій одній точці інтервалу нерівність не виконується, то вона не виконується в усіх його точках.

Приклад 1.3.4. Розв'язати методом інтервалів нерівність

. (3)

З нерівності знаходимо ОДЗ:

Далі замість нерівності (3) розв'язуємо рівняння або звідки

Наносимо відповідні точки на числову вісь (див. рисунок).

Розглядаємо кожний з утворених інтервалів окремо.

1. Підставляємо значення з інтервалу у нерівність (3). Дістаємо нерівність , яка не виконується. Тому нерівність (3) не виконується в усіх точках інтервалу .

2. Підставляючи в нерівність (3) значення з інтервалу , дістаємо правильну нерівність . Отже, нерівність (3) виконується на інтервалі .

3. Підставляючи в (3) значення з інтервалу дістаємо неправильну нерівність . Це означає, що нерівність (3) не виконується ні в одній точці інтервалу .

Остаточно маємо розв'язок нерівності (3) .

1.4 Раціональні нерівності

Раціональною нерівністю з однією змінною x називають нерівність виду

де і -- раціональні вирази, тобто алгебраїчні вирази, складені з чисел, змінної x і за допомогою математичних дій, тобто операцій додавання, віднімання, множення, ділення і піднесення до натурального ступеня.

При розв'язанні раціональних нерівностей застосовують правила, які використовуються при розв'язанні лінійних і квадратних нерівностей.

За допомогою рівносильних перетворень раціональну нерівність призводять до вигляду , де -- алгебраїчний дріб або многочлен і застосовують метод інтервалів.

Приклад 1.4.1 Розв'язати нерівність

Розв'язання.

1. Знайдемо корені квадратного тричлена і розкладемо його на множники за формулою

;

.

2. Розділимо обидві частини нерівності на додатний при всіх значеннях вираз , при цьому знак нерівності > не зміниться.

3. Позначимо на числовій прямій корені і знайдемо знаки квадратного тричлена на кожному інтервалі. Для цього з кожного інтервалу достатньо взяти довільно по одному значенню і підставити замість x у тричлен.

На інтервалі візьмемо , тоді

На інтервалі візьмемо , тоді

На інтервалі візьмемо , тоді

Квадратний тричлен приймає додатні значення на інтервалах (??;?0,5) і (4;+?).

Відповідь: .

Висновок: в даному розділі було розглянуто 4 типи нерівностей, для того щоб, показати як розв'язувати методом інтервалів дані нерівності треба засвоїти спосіб їх розв'язання за означенням та властивостями функцій що задають ці нерівності.

1.5 Властивості неперервних функцій

Загальні властивості неперервних функцій однакові як для функцій однієї змінної, так і для функцій багатьох змінних.

Теорема 1. (Вейєрштрасса). Функція , визначена і неперервна в обмеженій замкненій області D, є обмеженою.

Для функції однієї змінної замкненою областю D є сегмент, наприклад, [а, b].

Сформулюємо теорему 3 для функції однієї змінної у = f(х). Функція f(х), неперервна на [а, b], є обмеженою.

Зауваження. Теорема 1 не виконується, якщо область D відкрита. Наприклад, у = неперервна в інтервалі (0, 1), але вона в цьому інтервалі не обмежена.

Теорема 2. (про знак функції). Якщо функція неперервна в точці А і f(А) ? 0, то функція в достатньо малому околі точки А зберігає знак.

Сформулюємо теорему 4 в термінах функції однієї змінної:

якщо функція у = f (х) неперервна в точці а і f(а) ? 0, то функція в достатньо малому околі точки а зберігає знак.

Дійсно, нехай , наприклад, f(а) > 0. Покажемо, що для будь-якого > 0 можна знайти таке > 0, що для всіх х (а -- , а + ) виконується нерівність f(х) > 0.

Побудуємо -окіл точки а і -окіл точки f(а) (рис. 3.75).

Якщо взяти = min (h1 h2), то завжди можна побудувати прямокутник із сторонами 2 і 2 такий, що f(х) > 0.

Теорема 3 (про корінь функції). Якщо функція визначена і неперервна в деякій однозв'язній області D, причому в цій області дві точки А (а1 а2, ..., аn) і В (b1, b2, ..., bn), в яких функція набуває значень різних знаків:

f(А) < 0, f(В) > 0,

то в цій області знайдеться принаймні одна точка С, в якій функція перетворюється в нуль, тобто f(С) = 0.

Введемо поняття однозв'язної області. Множина точок простору Е„ називається простою дугою Жордана (простою кривою), якщо цей простір можна дістати в результаті відображення деякого сегмента t0 ? t ? Т за допомогою системи функцій

неперервних на цьому сегменті, причому двом різним значенням параметра t відповідають, дві різні точки.

Якщо точка М0 (, (t0), ,…, збігається з точкою , то крива називається простою замкненою кривою.

Розглянемо просту криву, задану рівняннями

х = х(t), y = y(t) (1)

на площині. Якщо будь-які дві точки області, розміщеної на площині, можна сполучити простою кривою, яка міститься в цій області, то область називається зв'язною. Для утворення однозв'язної області необхідно розглядати замкнену криву (1).

Якщо побудувати просту замкнену криву (1) на площині, то площина розіб'ється на дві області -- внутрішню і зовнішню.

Область D на площині називається однозв'язною, якщо будь-яка область внутрішня відносно простої довільної замкненої кривої, яка міститься в D, також міститься в D. На рис. 3.76 області а і б однозв'язні, а область в -- неоднозв'язна. Поняття зв'язної і однозв'язної областей поширюється і на випадок n-вимірного простору.

Для функції однієї змінної теорема 5 формулюється таким чином: якщо у = f(х) неперервна на [а, b] і на кінцях сегмента набуває значень різних знаків, то всередині сегмента знайдеться принаймні одна точка така, що f () = 0.

Точка називається коренем (нулем) функції f(х), а сформульована теорема називається теоремою про корінь (про нуль).

На рис. б -- три корені, а на рис., a -- один.

Теорема 4 (про проміжне значення). Якщо функція неперервна в зв'язній області D (відкритій або замкненій) і набуває різних значень у точках М1 і М2, то яким би не було число С, що міститься між значеннями f(М1) і f(М2), існує принаймні одна така точка М3, яка лежить всередині D, що f(М3) = С

Сформулюємо теорему 4 для функції однієї змінної: якщо у = f(х) неперервна у проміжку і набуває різних значень у двох точках а і b сегмента [а, b] f(a) = А і f(b) = В, то для будь-якого С, що лежить між А і В, А < С < В, всередині сегмента знайдеться принаймні одна така точка , що С = f().

Теорема 5 (про найменше і найбільше значення). Якщо функція неперервна в обмеженій замкненій області D, то вона обмежена, тобто всі її значення містяться між двома скінченними числами та і М:

m ? f(X) ? M.

Числа т і М називаються найменшим і найбільшим значеннями функції. При цьому в області D знайдеться принаймні одна точка Х1 D, в якій функція f(X1) набуває найменшого значення f(Х1) = т; і принаймні одна точка Х2 D, в якій функція набуває найбільшого значення f(Х2) = М.

Сформулюємо теорему 5 для функції однієї змінної: якщо функція у = f(х) неперервна на [а, b], то вона обмежена, тобто всі її значення містяться між. двома скінченними числами т і М, які називаються найменшим і найбільшим значеннями функції на сегменті [а, b].

m ? f(x) ? M.

На рис. зображена неперервна на [а, b] функція, у якої є точки і такі, що

і одна точка х2, в якій f(х2) = М.

Теорема 6 (Кантора). Якщо функція неперервна в обмеженій замкнутій області D, то вона рівномірно неперервна в D.

1.6 Теоретичні відомості про метод інтервалів

Метод інтервалів застосовується при розв'язуванні будь-яких нерівностей, але найчастіше до нього вдаються, розв'язуючи раціональні нерівності виду

, (1)

де -- натуральні показники степеня. Щоб розв'язати таку нерівність, знаходимо корені многочлена в лівій її частині і позначають їх на числовій осі. Далі проводимо криву (орієнтовний графік цього многочлена) так, щоб вона проходила над віссю, коли многочлен (1) додатний і під віссю, коли цей многочлен від'ємний. Якщо многочлен не має квадратних коренів то зазначена крива ніде не дотикається до осі, а лише перетинає її в точках, які відповідають кореням многочлена. Тому достатньо визначити знак многочлена в якомусь одному інтервалі, на які поділяють числову вісь корені многочлена, щоб дізнатися, в яких інтервалах графік розглядуваного многочлена міститься вище від осі, а в яких -- нижче, тобто при яких значеннях x даний многочлен додатний, а при яких від'ємний. При переході через кратний корінь крива залишається з того самого боку від осі х бік, якщо показник парний, і переходить на інший відносно осі х бік, якщо показник непарний.

Приклад 1.6.1. Розв'язати нерівність

.

Позначаємо корені на осі х і зображуємо криву, що визначає знаки лівої частини нерівності (рис. 1).

Рис. 1.

Нерівність має розв'язок .

Приклад 1.6..2. Розв'язати нерівність

.

Розкладемо ліву частину нерівності на множники:

.

Поділивши обидві частини нерівності на множники і які завжди додатні, дістанемо:

.

Відкладаємо на числовій осі точки (рис. 2).

Рис. 2.

Отже, даний многочлен скрізь додатний, крім двох точок , які є розв'язками нерівності.

Приклад 1.6.3. Розв'язати раціональну нерівність

.

Відкладаємо на числовій осі точки , в яких ліва частина нерівності може змінити свій знак (рис. 3).

Рис. 3.

Точки , в яких нерівність не виконується, позначаємо порожнім кружечком. Отже, маємо такий розв'язок нерівності:

Розділ ІІ. Навчально - методична модель методу інтервалів в курсі основної школи

2.1 Аналіз програмних вимог

Цілі навчання математики

Навчання математики в основній школі спрямоване на досягнення таких цілей:

формування в учнів математичних знань як невід'ємної складової загальної культури людини, необхідної умови її повноцінного життя в сучасному суспільстві на основі ознайомлення школярів з ідеями і методами математики як універсальної мови науки і техніки, ефективного засобу моделювання і дослідження процесів і явищ навколишньої дійсності;

інтелектуальний розвиток учнів, розвиток їхнього логічного мислення, пам'яті, уваги, інтуїції, умінь аналізувати, класифікувати, узагальнювати, робити умовиводи за аналогією, діставати наслідки з даних передумов шляхом несуперечливих міркувань тощо;

опанування учнями системи математичних знань і вмінь, що є базою для реалізації зазначених цілей, а також необхідні у повсякденному житті й достатні для оволодіння іншими шкільними предметами та продовження навчання.

Таким чином, математичні знання і вміння розглядаються не стільки як самоціль, а як засіб розвитку особистості школяра, забезпечення його математичної грамотності як здатності розуміти роль математики в світі, в якому він живе, висловлювати обґрунтовані математичні судження і використовувати математичні знання для задоволення пізнавальних і практичних потреб.

Крім того, вивчення математики має сприяти формуванню в учнів загально навчальних умінь, культури мовлення, чіткості й точності думки, критичності мислення, здатності відчувати красу ідеї, методу розв'язання задачі або проблеми, таких людських якостей, як наполегливість, сила волі, здатність до переборення труднощів, чесність, працелюбство та ін.

Незамінні можливості математики у вихованні алгоритмічної культури як здатності діяти за заданим алгоритмом, а також самостійно конструювати нові алгоритми на основі аналізу й узагальнення послідовності виконуваних операцій і дій, що ведуть до шуканого результату.

Важливу роль у навчанні математики відіграє систематичне використання історичного матеріалу, який підвищує інтерес до вивчення математики, стимулює потяг до наукової творчості, пробуджує критичне ставлення до фактів, дає учням уявлення про математику як невід'ємну складову загальнолюдської культури. На дохідливих змістовних прикладах слід показувати учням, як розвивалися математичні поняття і відношення, теорії й методи. Ознайомлювати учнів з іменами та біографіями видатних учених, які створювали математику, зокрема видатних українських математиків, що сприятиме національному і патріотичному вихованню.

Характеристика навчального змісту і особливостей його реалізації.

Цілі й пріоритети математичної освіти реалізуються в її змісті, що втілюється у таких навчальних курсах: основна школа -- математика (5--6 кл.), алгебра (7--9 кл.), геометрія (7--9 кл.); старша школа -- математика (10--12 кл.), де в доцільній послідовності поєднуються теми з алгебри, початків аналізу, геометрії, комбінаторики, теорії ймовірностей, статистики.

Вивчення математики в основній школі має забезпечити базову математичну підготовку учнів, що спрямована на їх загальний розвиток, формування математичної грамотності та є достатньою для реалізації обраного шляху подальшого здобуття освіти.

Зміст математичної освіти в основній школі структурується за такими змістовими лініями: числа; вирази; рівняння і нерівності; функції; геометричні фігури; геометричні величини; елементи комбінаторики; початки теорії ймовірностей та елементи статистики. Кожна з них розвивається з урахуванням завдань вивчення математики на певному ступені шкільної математичної освіти, вікових особливостей і зумовлених ними навчальних можливостей школярів. В основній школі виокремлюються такі два ступені: 5--6 класи; 7--9 класи.

Курс математики 5--6 класів передбачає розвиток, збагачення і поглиблення знань учнів про числа і дії над ними, числові й буквені вирази, величини та їх вимірювання, рівняння і нерівності, а також уявлень про окремі геометричні фігури і геометричні тіла. Понятійний апарат, обчислювальні алгоритми, графічні уміння і навички, що мають бути сформовані на цьому ступені вивчення курсу, є тим підґрунтям, що забезпечує успішне вивчення в наступних класах алгебри і геометрії, а також інших навчальних предметів, де застосовуються математичні знання.

Основу курсу складає розвиток поняття числа та формування міцних обчислювальних і графічних навичок. У 5--6 класах відбувається розширення множини натуральних чисел і нуля до множини раціональних чисел шляхом послідовного введення дробів (звичайних і десяткових), а також від'ємних чисел разом з формуванням міцних обчислювальних навичок.

Розвиток інших змістових ліній здійснюється інтегровано з вивченням відповідних чисел і операцій над ними. Навчальний матеріал, що стосується виразів, величин, рівнянь і нерівностей, геометричних фігур, має загалом пропедевтичний характер. Ознайомлення з ним готує учнів до свідомого системного вивчення відповідних тем у курсах алгебри і геометрії. Зокрема, учні мають дістати уявлення про використання букв для запису законів арифметичних дій, формул, навчитись обчислювати значення простих буквених виразів, складати за умовою задачі і розв'язувати нескладні рівняння першого степеня спочатку на основі залежностей між компонентами арифметичних дій, а згодом з використанням основних властивостей рівнянь. Важливе значення для підготовки учнів до систематичного вивчення алгебри, геометрії та інших предметів мають початкові відомості про метод координат, які дістають учні 5--6 класів: зображення чисел на координатній прямій, прямокутна система координат на площині, виконання відповідних побудов.

Інший матеріал (вимірювання величин, їх середні значення, відношення і пропорції, відсотки) має переважно прикладний характер.

Істотне місце у вивченні курсу займають текстові задачі, основними функціями яких є розвиток логічного мислення учнів та ілюстрація практичного застосування математичних знань. Розв'язування таких задач супроводжує вивчення всіх тем, передбачених програмою.

Зміст геометричного матеріалу включає планіметричні (відрізок, промінь, пряма, кут, трикутник, прямокутник, квадрат, коло, круг) і стереометричні (прямокутний паралелепіпед, куб) фігури та простіші їх властивості, геометричні величини (довжина, градусна міра кута, площа, об'єм) та одиниці їх виміру, побудови геометричних фігур (без посилання на аксіоми конструктивної геометрії).

Вивчення геометричних фігур має передбачати використання наочних ілюстрацій, прикладів із довкілля, життєвого досвіду учнів, виконання побудов і сприяти виробленню вмінь виділяти форму і розміри як основні властивості геометричних фігур. Закріплення понять супроводжується їх класифікацією (кутів, трикутників, взаємного розміщення прямих на площині). Властивості геометричних фігур спочатку обґрунтовуються дослідно-індуктивно, потім застосовуються у конкретних ситуаціях, що сприяє виробленню в учнів дедуктивних міркувань.

Основа інтеграції геометричного матеріалу з арифметичним і алгебраїчним -- числові характеристики (довжина, площа, об'єм) геометричних фігур. Узагальнюються знання учнів про одиниці виміру довжини, площі, об'єму і вміння переходити від одних одиниць до інших, оскільки ці знання і вміння використовуються у вивченні предметів природничого циклу і в трудовому навчанні.

Розширюються уявлення учнів про вимірювання геометричних величин на прикладах вимірювання і порівняння відрізків і кутів, побудови відрізків даної довжини і кутів із заданою градусною мірою, оперування формулами периметрів, площ і об'ємів геометричних фігур -- знаходження невідомого компонента формули за відомими.

Побудова кута за допомогою транспортира або косинця (прямого кута), прямої та відрізка -- за допомогою лінійки використовується у процесі побудови прямокутника за даними його вимірами, а в подальшому при побудові перпендикулярних і паралельних прямих.

Вивчення математики у 5--6 класах здійснюється з переважанням індуктивних міркувань в основному на наочно-інтуїтивному рівні із залученням практичного досвіду учнів і прикладів з довкілля.

У 7--9 класах вивчається два математичні курси: алгебра і геометрія.

Основними завданнями курсу алгебри є вдосконалення обчислювальних навичок школярів, формування формально-оперативних умінь (виконання тотожних перетворень цілих і дробових виразів, розв'язування рівнянь і нерівностей та їх систем), достатніх для вільного їх використання у вивченні математики і суміжних предметів, а також у процесі розгляду різноманітних практичних застосувань математичного знання. Важливе завдання полягає у залученні учнів до використання рівнянь і розгляду функцій як засобів математичного моделювання реальних процесів і явищ, розв'язування на цій основі прикладних та інших задач. У процесі вивчення курсу посилюється роль обґрунтувань математичних тверджень, індуктивних і дедуктивних міркувань, формування різного роду алгоритмів, що має сприяти розвитку логічного мислення і алгоритмічної культури школярів.

На цьому етапі шкільної математичної освіти завершується формування поняття дійсного числа. До відомих учням числових множин долучається множина ірраціональних чисел.

Основу курсу становлять перетворення цілих і дробових раціональних та ірраціональних виразів. Розглядається поняття степеня з цілим показником та його властивості.

Істотного розвитку набуває змістова лінія рівнянь та нерівностей. Відомості про рівняння доповнюються поняттям рівносильних рівнянь. Процес розв'язування рівняння трактується як послідовна заміна даного рівняння рівносильними йому рівняннями. На основі узагальнення відомостей про рівняння, здобутих у попередні роки, вводиться поняття лінійного рівняння з однією змінною. Крім лінійних, передбачено вивчення квадратних рівнянь, рівнянь зі змінною в знаменнику та окремих видів рівнянь, що зводяться до квадратних. Розглядаються системи лінійних рівнянь та рівнянь другого степеня з двома змінними. Щодо останніх, то увага зосереджується на системах, де одне рівняння -- другого степеня, а друге -- першого степеня. Передбачається розгляд лише простіших систем рівнянь, у яких обидва рівняння другого степеня.

Значне місце відводиться застосуванню рівнянь до розв'язування різноманітних задач. Важливе значення надається усвідомленому формуванню алгоритму розв'язування задачі за допомогою рівняння і його реалізації. Рівняння і задачі з їх допомогою розв'язують під час вивчення кожної теми програми.

Елементарні відомості про числові нерівності доповнюються і розширюються за рахунок вивчення властивостей числових нерівностей, розгляду лінійних нерівностей з однією змінною та квадратних нерівностей і їх розв'язування. Розглядається розв'язування систем двох лінійних нерівностей з однією змінною.

У сьомому класі вводиться одне з фундаментальних математичних понять -- поняття функції. Тут же розглядається лінійна функція та її графік. Згодом ці відомості використовуються для графічної ілюстрації розв'язування лінійного рівняння з однією змінною, а також системи двох лінійних рівнянь з двома змінними. Інші види функцій розглядаються у зв'язку з вивченням відповідного матеріалу, що стосується решти змістових ліній курсу. Зокрема, у 8 класі в темах “Раціональні вирази” та “Квадратні корені” учні ознайомлюються з функціями у = і у = та їх властивостями. У 9 класі розглядається квадратична функція. Вивчення її властивостей пов'язується з розв'язуванням квадратних нерівностей.

Таким чином, функціональна лінія пронизує весь курс алгебри основної школи і розвивається у тісному зв'язку з тотожними перетвореннями, рівняннями і нерівностями. Властивості функцій встановлюються за їх графіками, тобто на основі наочних уявлень, і лише деякі властивості обґрунтовуються аналітично. У міру оволодіння учнями теоретичним матеріалом кількість властивостей, що підлягають вивченню, поступово збільшується. Під час вивчення функцій чільне місце відводиться формуванню умінь будувати і читати графіки функцій, характеризувати за графіками функцій процеси, які вони описують.

Прикладна спрямованість вивчення функцій, рівнянь, нерівностей та іншого матеріалу доповнюється окремими аспектами, пов'язаними з ознайомленням учнів з відсотковими розрахунками, початковими елементарними поняттями теорії ймовірностей і статистики.

Одна з основних змістових ліній курсу геометрії -- геометричні фігури та їх властивості. Об'єкти вивчення: на площині -- трикутник, чотирикутник, коло; в просторі -- призма, піраміда, циліндр, конус, куля. Учень повинен формулювати означення геометричних фігур та їх елементів і зображати їх на малюнку.

Властивості геометричних фігур на площині пов'язані з їх формою, розмірами, рівністю, взаємним розміщенням, інцидентністю прямих, точок і площин. Послідовність вивчення властивостей традиційна: спочатку вводяться на наочній основі шляхом узагальнення очевидних і відомих геометричних фактів аксіоми, потім доводяться теореми. Учень має усвідомити, що під час доведення теорем дозволяється користуватися аксіомами і раніше доведеними теоремами. Основний апарат доведення -- ознаки рівності трикутників, використовуються також геометричні перетворення і засоби алгебри (вектори і координати).

Поглиблюються і систематизуються відомості про геометричні величини. Вимірювання і відкладання відрізків і кутів обґрунтовується аксіомами. Виведення формул для обчислення площ простіших фігур (прямокутника, паралелограма, трикутника, трапеції) спирається на існування площі і основні її властивості. Під час обґрунтування формул застосовуються такі поняття, як рівноскладеність і доповнення до фігури, формула площі якої відома.

Графічні вміння учнів включають: зображення геометричних фігур та їх елементів, виконання допоміжних побудов за даними умов задач і простіші побудови фігур циркулем та лінійкою.

Структура програми.

Програма представлена в табличній формі, що містить дві частини: зміст навчання і вимоги до загальноосвітньої підготовки учнів. У змісті навчання вказано той навчальний матеріал, який підлягає вивченню у відповідному класі. Вимоги до загальноосвітньої підготовки учнів орієнтують на результати навчання, які є об'єктом контролю й оцінювання.

Зміст навчання математики структуровано за темами відповідних навчальних курсів з визначенням кількості годин на їх вивчення. Такий розподіл змісту і навчального часу є орієнтовним. Учителю та авторам підручників надається право коригувати його залежно від прийнятої методичної концепції та конкретних навчальних ситуацій. В кінці кожного року навчання передбачено години для узагальнення й систематизації вивченого.

9-й клас. Алгебра (70 годин. I семестр -- 32 години, 2 години на тиждень, II семестр -- 38 годин, 2 години на тиждень)

К-ть год.

Зміст навчального матеріалу

Державні вимоги до рівня загальноосвітньої підготовки учнів

16

Тема 1. Нерівності

Числові нерівності. Основні властивості числових нерівностей.

Почленне додавання і множення нерівностей.

Застосування властивостей числових нерівностей для оцінювання значення виразу.

Нерівності зі змінними. Лінійні нерівності з однією змінною. Розв'язок нерівності.

Числові проміжки. Об'єднання та переріз числових проміжків.

Розв'язування лінійних нерівностей з однією змінною. Рівносильні нерівності.

Системи лінійних нерівностей з однією змінною, їх розв'язування.

Наводить приклади:

числових нерівностей; нерівностей зі змінними; лінійних нерівностей з однією змінною, подвійних нерівностей.

Формулює:

означення: розв'язку лінійної нерівності з однією змінною; рівносильних нерівностей;

властивості числових нерівностей.

Обґрунтовує властивості числових нерівностей.

Зображує на числовій прямій:

задані нерівностями числові проміжки, виконує обернене завдання;

переріз, об'єднання числових множин.

Записує розв'язки нерівностей та їх систем у вигляді об'єднання, перерізу числових проміжків або у вигляді відповідних нерівностей.

Розв'язує:

лінійні нерівності з однією змінною; системи двох лінійних нерівностей з однією змінною.

22

Тема 2. КВАДРАТИЧНА ФУНКЦІЯ

Функції. Властивості функції: нулі функції, проміжки знакосталості, зростання і спадання функції.

Найпростіші перетворення графіків функцій.

Функція , а 0, її графік і властивості.

Квадратна нерівність. Розв'язування квадратних нерівностей.

Розв'язування систем рівнянь другого степеня з двома змінними.

Розв'язування текстових задач за допомогою систем рівнянь.

Обчислює значення функції в точці.

Описує:

перетворення графіків функцій: f(x)>f(x)+а;

f (x) >f (x+а); f (x) > kf (x), f (x) > - f(x);

алгоритм побудови графіка квадратичної функції.

Характеризує функцію за її графіком.

Розв'язує вправи, що передбачають:

побудову графіка квадратичної функції; побудову графіків функцій з використанням зазначених перетворень графіків; використання графіка квадратичної функції для розв'язування квадратних нерівностей; знаходження розв'язків систем двох рівнянь другого степеня з двома змінними; складання і розв'язування систем рівнянь з двома змінними як математичних моделей текстових задач.

10

Тема 3. Елементи прикладної математики

Математичне моделювання.

Відсоткові розрахунки. Формула складних відсотків.

Наводить приклади: математичних моделей реальних ситуацій, випадкових подій; подання статистичних даних у вигляді таблиць, діаграм, графіків.

Випадкова подія. Ймовірність випадкової події.

Статистичні дані. Способи подання даних. Частота. Середнє значення.

Описує поняття: випадкова подія; ймовірність випадкової події, частота, середнє значення статистичних вимірювань.

Розв'язує задачі, що передбачають: виконання відсоткових розрахунків; знаходження ймовірності випадкової події; подання статистичних даних у вигляді таблиць, діаграм, графіків; знаходження середнього значення.

12

Тема 4. ЧИСЛОВІ ПОСЛІДОВНОСТІ

Числові послідовності. Арифметична прогресія, її властивості. Формула n-го члена арифметичної прогресії. Сума перших n членів арифметичної прогресії.

Геометрична прогресія, її властивості. Формула n-го члена геометричної прогресії. Сума перших n членів геометричної прогресії.

Нескінченна геометрична прогресія (q ?? 1) та її сума.

Розв'язування вправ і задач на прогресії, в тому числі прикладного змісту.

Розпізнає арифметичну, геометричну прогресії серед даних послідовностей.

Наводить приклади арифметичної, геометричної прогресій.

Формулює означення і властивості арифметичної й геометричної прогресій.

Записує і пояснює формули: загального члена арифметичної та геометричної прогресій; суми перших n членів цих прогресій, суми нескінченної геометричної прогресії (q ?? 1).

Розв'язує вправи, що передбачають:

обчислення членів прогресії; задання прогресій за даними їх членами або співвідношеннями між ними; обчислення сум перших n членів арифметичної й геометричної прогресій; запис періодичного десяткового дробу у вигляді звичайного; використання формул загальних членів і сум прогресій для знаходження невідомих елементів прогресій.

10

Тема 5. Повторення і систематизація навчального матеріалу

2.2 Формалізація предметного способу дій

Коли йдеться про зміст шкільного курсу математики, то, звичайно, мають на увазі засвоєння учнями певної системи математичних знань, умінь і навичок. Але не можна зводити все математичне навчання в шкоді до передачі учням визначеної суми знань і навичок. Це обмежувало б роль математики в загальній освіті. Тому перед школою стоїть важливе завдання математичного розвитку учнів.

Математичні здібності -- це здатність утворювати на математичному матеріалі узагальнені, згорнуті, гнучкі й обернені асоціації та їх системи. До складових математичних здібностей слід віднести:

· здатність до формалізації математичного матеріалу, відокремлення форми від змісту, абстрагування від реальних ситуацій і їх кількісних відношень та просторових форм; оперування структурами відношень і зв'язків;

· здатність до узагальнення матеріалу;

· здатність до оперування числовою і знаковою символікою;

· здатність до логічних міркувань, пов'язаних з потребою доводити, робити висновки; здатність до скорочення процесу міркувань;

· здатність до переходу від прямого до оберненого ходу думки;

· гнучкість мислення незалежно від впливу шаблонів.

Математика сприяє виробленню особливого виду пам'яті -- пам'яті, спрямованої на узагальнення, творення логічних схем, формалізованих структур, виховує здатність до просторових уявлень.

Наявність математичних здібностей в одних учнів і недостатня розвинутість їх в інших вимагає від учителя постійного пошуку, шляхів формування і розвитку таких здібностей у школярів.

Рівнева диференціація з урахуванням психології математичних здібностей учнів збільшує можливості роботи вчителя. Такий підхід створює умови для розвитку здібностей учнів, які мають природжені задатки до занять математикою, і забезпечує посильною роботою учнів, які не мають таких задатків. Виконуючи посильні завдання, учень отримує впевненість у своїх силах.

Усі задачі я поділяю на три типи:

1. Задачі, які розв'язую для кращого засвоєння теорії;

2. Тренувальні вправи, мета яких - виробити навички;

3. Задачі, за допомогою яких розвиваю математичні здібності учнів.

Розв'язування задач - це робота дещо незвичайна, адже це розумова робота. А щоб навчитися будь-якій роботі, треба спочатку добре вивчити той матеріал, над яким доведеться працювати, ті інструменти, з допомогою яких буде виконуватись робота.

Отож, для того щоб навчити учнів розв'язувати задачі, я пропоную їм розібратись в тому, що вони собою являють, як побудовані, з яких частин складаються, що потрібно знати, щоб розв'язати ту чи іншу задачу.

Учні п'ятого класу вже знають, що під математичною задачею розуміють будь-яку вимогу обчислити, побудувати, довести що-небудь, пов'язане з числовими величинами або геометричними фігурами. Арифметичною задачею називають вимогу знайти числове значення деякої величини, якщо дано числове значення інших величин і залежність, яка зв'язує їх як між собою, так і з шуканою величиною. (У початкових класах в основному розглядаються так звані сюжетні задачі, в яких описується кількісна сторона деяких явищ. Сюжетну задачу, для розв'язання якої треба виконати дві чи більше пов'язаних між собою арифметичних дій, називають складеною. Щоб розв'язати складену задачу, пропоную учням спочатку скласти план розв'язування. План складається на основі аналізу задачі, який проводять від числових даних або від запитання.

Аналізу задачі передує ґрунтовне вивчення умови і запитання задачі.

Наприклад, задача. Велосипедист їхав 4 години із швидкістю 12 км/год. Йому залишилося проїхати на 16 км менше, ніж він проїхав. Яку відстань потрібно було проїхати велосипедисту?

Аналіз від числових даних. Відомо, що велосипедист їхав 4 години із швидкістю 12 км/год. За цими даними можна дізнатися, яку відстань проїхав велосипедист. Для цього треба швидкість помножити на час. Знаючи відстань, яку вже проїхав велосипедист, і те, що залишилося проїхати на 16 км менше, можна знайти відстань, яку залишилося проїхати. Для цього відстань, яку вже проїхав велосипедист, треба зменшити на 16 км. Знаючи, скільки кілометрів залишилося їхати, можна знайти весь шлях. Для цього треба виконати додавання знайдених відстаней.

Аналіз від запитання. У задачі треба знайти весь шлях, який має проїхати велосипедист. Ми не можемо одразу відповісти на це запитання, бо не відомо, скільки велосипедист вже проїхав і скільки йому залишилося їхати. Щоб знайти пройдений шлях, треба знати швидкість і час руху. Це в задачі відомо. Помножимо швидкість на час і дізнаємося про пройдений шлях. Відстань, яку велосипедист ще має проїхати, можна також знайти. Для цього знайдену відстань треба зменшити на 16 км. Отже, план розв'язування задачі такий:

1. Скільки кілометрів проїхав велосипедист за 4 години?

2. Скільки кілометрів велосипедисту залишилося проїхати?

3. Яку відстань мав проїхати велосипедист?

Отже, підвищення ефективності навчання математики можна досягти, продуктивно реалізуючи всі дидактичні функції математичних задач.

Велику роль відіграють задачі, які учні складають самі. Складання задачі часто вимагає роздумів, які під час розв'язку готових задач не потрібні. Тому складання задач сприяє розвитку творчого мислення учнів.

Щоб вивчення математики викликало в учня задоволення, треба, щоб він заглибився у суть ідеї цієї науки, відчув внутрішній зв'язок усіх ланок .міркувань, які дають можливість зрозуміти і саме доведення, і його логіку.

Якщо учень хоча б раз досяг ясності в розумінні суті, проник у внутрішній зв'язок понять і логічних висновків, то йому буде важко задовільнитися потім заучуванням без. розуміння. І тоді він здійснитиме відкриття: процес власної думки вимагає значно менших зусиль і витрат часу, ніж вивчення напам'ять.

Щоб привчити учнів самостійно мислити, викликати в них віру у власні сили і розумна також виховати впевненість у своїх можливостях, необхідно примусити їх пройти через певні труднощі, а не подавати все в готовому вигляді.

У системі розвиваючого навчання під час вивчення математики важливе місце посідає обчислювальна практика. На 5-6 класи припадає основний І обсяг роботи обчислень з раціональними числами. У наступних класах ці навички розвиваються і закріплюються, зростає питома вага наближених обчислень, використовується прикидка, оцінювання результатів обчислень. Широке використання мікрокалькуляторів не зменшує ролі обчислень без них і особливо усного виконання дій. Адже, користуючись мікрокалькуляторами, треба вміти робити прикидку очікуваного результату й округлювати його до потрібної точності, замінюючи деякі операції усним виконанням, уміти проаналізувати здобуту інформацію. Слід мати на увазі і розвиваючу функцію усних обчислень: вони активізують увагу і пам'ять учнів, спонукають їх до раціональної діяльності.

Якщо в учнів середніх класів добре сформовані ці навички, це є запорукою того, що в старших класах розв'язування задач не буде викликати особливих труднощів.

Уміння розв'язувати ту чи іншу задачу залежить від багатьох чинників. Але передусім необхідно навчитися розрізняти основні типи задач і уміти розв'язувати найпростіші з них.

Задачі, що розв'язуються у шкільному курсі математики, можна умовно розподілити на такі типи задач:

* задачі «на рух»;

* задачі «на сумісну роботу»;

* задачі «на планування»;

* задачі «на залежність між компонентами арифметичних дій»;

* задачі «на відсотки»;

* задачі «на суміші»;

* задачі «на розбавлення»;

* задачі «з буквеними коефіцієнтами”;

* інші види задач.

Отже, з яких етапів складається процес розв'язування задачі?

Очевидно, отримавши задачу, перше, що треба зробити, - це розібратися в тому, що це за задача, яка її умова, в чому складається її вимога, тобто провести аналіз задачі. Це і складає перший етап процесу розв'язування задачі.

У ряді випадків цей аналіз треба оформити, записати. Для цього використовуються різні схематичні записи задач, побудова яких складає другий етап процесу розв'язування.

Аналіз задачі і побудова її схематичного запису необхідні головним чином для того, щоб знайти спосіб розв'язання даної задачі. Пошук цього способу складає третій етап розв'язування.

Коли спосіб розв'язування задачі знайдений, його необхідно виконати - це буде вже четвертий етап процесу розв'язування.

Після того як розв'язування виконано (письмово чи усно), необхідно впевнитись, що це розв'язування правильне і задовольняє всім вимогам задачі. Для цього проводять перевірку, що складає п'ятий етап процесу розв'язування.

При розв'язуванні багатьох задач, крім перевірки, необхідно ще провести дослідження задачі, а саме: встановити, за яких умов задача має розв'язок і скільки різних розв'язків існує у кожному конкретному випадку; за якої умови задача зовсім не має розв'язку. Все це складає шостий етап процесу розв'язування.

Впевнившись у правильності розв'язування і, якщо потрібно, виконавши дослідження задачі, необхідно чітко сформулювати відповідь - це буде сьомий етап процесу розв'язування.

Нарешті, в навчальних і пізнавальних цілях корисно також провести аналіз виконаного розв'язування, тобто встановити, чи нема іншого, більш раціонального способу розв'язування, чи не можна задачу узагальнити, які висновки можна зробити із цього розв'язування. Все це складає останній - восьмий етап розв'язування.

Отже, весь процес розв'язування задачі можна розділити на вісім етапів:

1-й етап - аналіз задачі;

2-й етап - схематичний запис задачі;

3-й етап - пошук способу розв'язування задачі;

4-й етап - виконання розв'язування задачі;

5-й етап-перевірка розв'язку задачі;

6-й етап - дослідження задачі;

7-й етап - формулювання відповіді задачі;

8-й етап - аналіз розв'язування задачі.

Математичні задачі, для розв'язування яких в шкільному курсі математики існують готові правила, або ці правила безпосередньо випливають з означень чи теорем, що визначають програму розв'язування цих задач у вигляді послідовності кроків, називають стандартними. При цьому передбачається, що для виконання окремих кроків розв'язування стандартних задач в курсі математики існують конкретні правила.

Процес розв'язування стандартних задач має деякі особливості.

1. Аналіз задач зводиться до встановлення (розпізнавання) виду задач, до якого належить дана.

2. Пошук розв'язування полягає у складанні на підставі загального правила (формули, тотожності) або загального положення (означення, теореми) програми - послідовності кроків розв'язування задач даного виду. Звичайно, немає-необхідності цю програму формулювати в письмовій формі, достатньо її для себе намітити усно.

3. Саме розв'язання стандартної задачі полягає у застосуванні цієї загальної програми до умови даної задачі. Якщо деякі кроки програми розв'язування вимагають для свого виконання використання також інших програм, то стосовно них проводяться ті самі операції (розпізнавання виду задачі, складання програми розв'язування і виконання розв'язування на основі цієї програми). Звідси походить, що для того щоб легко розв'язувати стандартні задачі (а вони є основними математичними задачами, оскільки всі інші зрештою зводяться до них), треба:

1) пам'ятати всі вивчені в курсі математики загальні правила (формули, тотожності) і загальні положення (означення, теореми);

2) вміти розгортати згорнуті загальні правила, формули, тотожності, а також означення і теореми у програмі - послідовності кроків розв'язування задач відповідних видів.

У визначенні стандартних задач як основну ознаку цих задач вважають наявність в курсі математики таких загальних правил чи положень, які однозначно визначають програму розв'язання цих задач і виконання кожного кроку цієї програми.

Звідси зрозуміло, що нестандартні задачі - це такі задачі, для яких в курсі математики немає загальних правил і положень, що визначають точну програму їх розв'язування.

Процес розв'язування будь-якої нестандартної задача складається у послідовному застосуванні двох основних операцій:

1. Зведення (шляхом перетворення або переформулювання) нестандартної задачі до іншої, їй еквівалентної, але уже стандартної задачі;

2. Розбиття нестандартної задачі на декілька стандартних підзадач.

В залежності від характеру нестандартної задачами використовуємо одну із цих операцій або обидві. При розв'язуванні більш складних задач ці операції доводиться застосовувати багаторазово.

2.3 Форми та методи організації навчально-методологічної діяльності

Відомо, що будь-який урок -- це складне педагогічне явище, витвір вчителя, на якому учні демонструють свої знання, уміння та навички.

Чи цікаво дітям на уроці? Чи люблять вони вчитися?

На ці питання не можна відповісти напевне. Іноді діти ідуть на урок із задоволенням, іноді без нього. Як зацікавити дітей? Як привернути їх увагу до свого предмету? Звичайно, за допомогою того, що їм буде слухати найцікавіше, того, що вони будуть робити із задоволенням.

Як донести матеріал до їх свідомості яскраво і красиво, щоб запам'яталось надовго і назавжди?

Іноді можна почути, що математика складна, суха і нецікава наука. Людей, які люблять математику, це вражає й ображає. Математика сувора, але красива й глибока, як чиста криниця. А завдання -- вчителя і полягає в тому, щоб розкривати перед учнями її емоційний бік, чуйну і вродливу стать. Як краще цього домогтися?

Красивими, цікавими уроками. Уроками, які пробуджують цікавість і працьовитість, фокусують увагу і зосередженість. Отже, нестандартний урок. Він не вкладається в рамки виробленого і сформульованого дидактикою. На цьому уроці можна не дотримуватись чітких етапів навчального процесу, методів, традиційних видів роботи. Для такого уроку характерною є інформаційно-пізнавальна система навчання -- оволодіння готовими знаннями, пошук нових форм викладу, розкриття внутрішньої сутності явищ через гру, змагання або нетрадиційні форми роботи з дітьми, використовувати власні дидактичні матеріали, часто саморобні і тим більше корисні для учнів.

Для прикладу наведу урок у 6 класі з теми «Відсотки» під назвою «Бізнес-гейм».

Щоб наблизити математику до життя, щоб показати її різноманітність застосування, цей урок було проведено у вигляді ділової гри.

Учнів класу було поділено на три команди, і весь урок вони працювали за груповим методом. Кожна команда сиділа за окремим великим столом. Ідея уроку полягала в тому, що учні -- гості, які приїхали у місто «Відсоток», а вчитель -- бізнесмен, мешканець цього міста, знайомить їх з ними і його мешканцями. Під час цієї мандрівки з учнями трапляються цікаві пригоди -- вони витрачають і заробляють гроші, займаються бізнесом, а допомагають їм у цьому відсотки. Урок краще проводити в кінці теми, щоб діти були знайомі з усіма типами задач на відсотки. Цей урок вимагає гарної підготовки вчителя. Необхідно намалювати яскраві плакати з написами об'єктів продажу, картки з задачами, принести гральний кубик і кашкети з написами «Бізнес-гейм». У проведенні уроку вчителеві допомагають учні цього класу -- «працівники фірми». Учень начальник фінансів -- буде вести банківські рахунки команд на одній з відкидних дощок, троє менеджерів по одному біля кожного з трьох столів - для виплати коштів, зароблених учнем окремо та для того, щоб кидати гральний кубик.

Під час проведення цього уроку спостерігається велика зацікавленість учнів, вони активні, збуджені, працюють із задоволенням це можна пояснити, мабуть, тим, що учні відчувають себе у ролі бізнесменів, мають змогу заробити і витратити власний капі лат. Це урок - міні-модель сучасного життя, де без знань відсотків та їх застосування не обійтись. Тому ми бачимо і мотиваційний бік цього уроку. Під час підведення підсумків я відзначаю не тільки командну роботу певної групи учнів, але й індивідуальні відповіді.

Досвід роботи показує, що для поліпшення розуміння, закріплення та відтворення інформації доцільно проводити такі уроки як: урок-змагання; урок-вікторина, урок- “круглий стіл”; урок-гра та ін. Щоб зацікавленість учнів до вивчення математики не знижувалась, доречно систематично проводити ігри з використанням інтерактивних технологій.

Так у 9 класі практикую проведення уроків-змагання під час узагальнення і систематизації знань учнів з певної теми. Наприклад, урок узагальнення і систематизації знань за темою “Числові послідовності”. Клас поділено на три команди: “Трикутник”, “Квадрат”, “Коло”.


Подобные документы

  • Загальні відомості про раціональні нерівності, теореми про рівносильність нерівностей. Методи розв'язування раціональних нерівностей вищих степенів узвгальненим методом інтервалів, методом заміни змінної. Розв'язування дробово-раціональних нерівностей.

    курсовая работа [774,9 K], добавлен 01.04.2010

  • Неперервність функцій в точці, області, на відрізку. Властивості неперервних функцій. Точки розриву, їх класифікація. Знаходження множини значень функції та нулів функції. Розв’язування рівнянь. Дослідження функції на знак. Розв’язування нерівностей.

    контрольная работа [179,7 K], добавлен 04.04.2012

  • Розгляд програми вивчення паралельності прямих у просторі. Аналіз викладення теми конструювання геометричних тіл та дослідження їхніх властивостей у шкільних підручниках геометрії. Методика навчання учнів теоретичного матеріалу та розв’язування завдань.

    курсовая работа [699,1 K], добавлен 26.03.2014

  • Дослідження історії виникнення та розвитку координатно-векторного методу навчання розв'язування задач. Розкриття змісту даного методу, розгляд основних формул. Розв'язання факультативних стереометричних задач з використанням координатно-векторного методу.

    курсовая работа [2,5 M], добавлен 10.04.2011

  • Основні етапи розв'язування алгебраїчних рівнянь: аналіз задачі, пошук плану розв'язування та його здійснення; перевірка та розгляд інших способів виконання. Раціоналізація розв'язування алгебраїчних рівнянь вищих степенів методом заміни змінних.

    курсовая работа [229,8 K], добавлен 13.05.2013

  • Основні типи стереометричних задач на побудову та методи їх розв’язування. Методичні рекомендації до проведення уроків з навчання учнів розв’язуванню цих задач на побудову. Комп’ютерна підтримка навчання учнів розв’язуванню задач засобами пакету GRAN.

    дипломная работа [2,1 M], добавлен 26.08.2014

  • Теоретичні основи розв’язування рівнянь з параметрами. Функція пряма пропорційність. Загальне поняття про аналітичний та графічний метод. Дробово-раціональні рівняння з параметрами, що зводяться до лінійних. Система розв’язування задач для 9 класу.

    курсовая работа [596,8 K], добавлен 21.03.2013

  • Вивчення теорії інтегральних нерівностей типу Біхарі для неперервних і розривних функцій та її застосування. Розгляд леми Гронуолла–Беллмана–Бiхарi для нелiнiйних iнтегро-сумарних нерiвностей. Критерій стійкості автономної системи диференціальних рівнянь.

    курсовая работа [121,7 K], добавлен 21.04.2015

  • Розгляд теоретичних основ рівнянь з параметрами. Основні види даних рівнянь. Аналітичний та графічний методи розв’язування задач із використанням формул, властивостей функцій. Ознайомлення із системою розв’язування задач з параметрами для 9 класу.

    курсовая работа [605,9 K], добавлен 29.04.2014

  • Розв'язання графічним методом математичної моделі задачі з організації випуску продукції. Розв'язання транспортної задачі методом потенціалів. Знаходження умовних екстремумів функцій методом множників Лагранжа. Розв'язання задач симплекс-методом.

    контрольная работа [48,5 K], добавлен 16.07.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.