Формы представления аберраций (поперечная, продольная, волновая). Монохроматические аберрации

Вычисление аберраций, определение точки референтного (идеального) изображения. Поперечные аберрации в сагиттальной и меридиональной плоскости. Зрачковые канонические координаты. Волновая аберрация, отклонение реального волнового фронта от идеального.

Рубрика Коммуникации, связь, цифровые приборы и радиоэлектроника
Вид реферат
Язык русский
Дата добавления 15.01.2009
Размер файла 81,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

БЕЛОРУССКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ИНФОРМАТИКИ И РАДИОЭЛЕКТРОНИКИ

Кафедра ЭТТ

РЕФЕРАТ

На тему:

«Формы представления аберраций (поперечная, продольная, волновая). Монохроматические аберрации»

МИНСК, 2008

В идеальной оптической системе все лучи, исходящие из точки A, пересекаются в сопряженной с ней точке A?0. После прохождения реальной оптической системы либо нарушается гомоцентричность пучка и лучи не имеют общей точки пересечения, либо гомоцентричность сохраняется, но лучи пересекаются в некоторой точке A?, которая не совпадает с точкой идеального изображения (рисунок 1). Это является следствием аберраций. Основная задача расчета оптических систем - устранение аберраций.

Рисунок 1 - Идеальное и реальное изображения точки

Для вычисления аберраций необходимо определить точку референтного (идеального) изображения A?0 , в которой должно находиться изображение по законам гауссовой оптики. Относительно этой точки и определяют аберрации.

Поперечные аберрации

Поперечные аберрации - это отклонения координат точки A? пересечения реального луча с плоскостью изображения от координат точки A?0 идеального изображения в направлении, перпендикулярном оптической оси (рисунок 2):

. (1)

Если точки A? и A?0 совпадают, то поперечные аберрации равны нулю .

Рисунок 2 - Поперечные аберрации

Различают поперечные аберрации в сагиттальной плоскости и в меридиональной плоскости . Поперечные аберрации для изображения ближнего типа выражаются в миллиметрах, для изображения дальнего типа - в угловой мере. Для изображения дальнего типа поперечная аберрация - это угловое отклонение между реальным и идеальным лучом (рисунок 3).

Рисунок 3 - Поперечные аберрации для удаленного изображения

У каждого луча в пучке своя величина поперечной аберрации. Для всего пучка поперечные аберрации - это функции от зрачковых координат:

, (2)

где - реальные зрачковые координаты.

Зрачковые канонические координаты.

Зрачковые координаты определяют положение луча в пучке. Канонические (относительные) зрачковые координаты определяются следующим образом:

, (3)

где , - входные и выходные реальные зрачковые координаты, , - входные и выходные апертуры. Апертуры определяют максимальные значения зрачковых координат.

Таким образом, верхний луч пучка имеет координаты , нижний луч пучка - , главный луч пучка - , сагиттальный луч - (рисунок 4).

Рисунок 4 - Канонические зрачковые координаты

Канонические зрачковые координаты можно выразить через полярные координаты ? и ?:

, (4)

где .

Волновая аберрация

Волновая аберрация - это отклонение реального волнового фронта от идеального (рисунок 5), измеренное вдоль луча в количестве длин волн:

(5)

Из выражения (5) следует, что волновая аберрация пропорциональна отклонениям оптических длин лучей пучка. Поэтому влияние волновой аберрации на качество изображения не зависит от типа изображения, а определяется тем, сколько длин волн она составляет.

Рисунок 5 - Волновая аберрация

Референтная сфера - это волновой фронт идеального пучка с центром в точке идеального изображения A?0, проходящий через центр выходного зрачка O?. При нахождении волновой аберрации с референтной сферой сравнивается ближайший к ней волновой фронт.

Для всего пучка волновая аберрация - это функция канонических зрачковых координат:

. (6)

Поперечная и волновая аберрации - это разные формы представления одного явления, они связаны между собой соотношениями:

. (7)

Таким образом, поперечные аберрации прямо пропорциональны первым частным производным волновой аберрации по каноническим координатам.

Продольные аберрации

Продольные аберрации - это отклонения координаты точки пересечения реального луча с осью от координаты точки идеального изображения вдоль оси (рисунок 6):

, (8)

где S? - положение точки пересечения луча с осью, S?0 - положение идеальной точки пересечения.

Рисунок 6 - Продольные аберрации осевого пучка для изображения ближнего типа

Для изображения ближнего типа продольные аберрации выражаются в миллиметрах, для изображения дальнего типа (рис.8.7) продольные аберрации выражаются в обратных миллиметрах:

. (9)

Рисунок 7 - Продольные аберрации осевого пучка для изображения дальнего типа

Продольные аберрации связаны с поперечными, и, следовательно, с волновыми тоже:

, (10)

где А?0 - задняя апертура осевого пучка.

Выражение (10) приближенное, оно может использоваться только для случая небольших апертур.

Итак, из выражений (7) и (10) следует, что волновая, поперечная и продольная аберрация - это разные формы представления одного явления нарушения гомоцентричности пучков. При оценке качества изображения за исходную модель аберрационных свойств оптической системы берут волновую аберрацию (по величине волновой аберрации судят о качестве оптической системы). Однако, если аберрации велики, то более целесообразно использовать для оценки качества изображения поперечные аберрации.

Монохроматические аберрации

Аберрации делятся на монохроматические и хроматические. Монохроматические аберрации присутствуют, даже если оптическая система работает при монохроматическом излучении.

Монохроматические аберрации делятся на несколько типов:

- сферическая,

- кома,

- астигматизм и кривизна изображения,

- дисторсия.

Обычно все последующие аберрации добавляются к уже существующим. Но мы будем рассматривать каждый тип аберрации по отдельности, как если бы только он и существовал.

Разложение волновой аберрации в ряд

Если в оптической системе присутствуют все типы аберраций, то для описания отдельных типов аберраций волновую аберрацию можно разложить в ряд по степеням относительных зрачковых координат в следующем виде:

(11)

или в полярных координатах:

, (12)

где (n - степень , m - степень cos) - коэффициент, значение которого определяет вклад конкретного типа (и порядка) аберрации в общую волновую аберрацию:

- постоянная составляющая, которая может быть сведена к нулю соответствующим выбором референтной сферы,

- продольная дефокусировка,

и - сферическая аберрация 3 и 5 порядка,

- дисторсия,

- кома 3 и 5 порядка,

- астигматизм 3 и 5 порядка.

В разложении могут участвовать и более высокие порядки, но мы их рассматривать не будем.

Порядок аберрации определяется по степени координаты ? в разложении поперечной аберрации в ряд.

Этот ряд получаем путем дифференцирования выражения (12). Таким образом, поперечная аберрация определяется следующим образом:

. (13)

Разложение в ряд продольной аберрации имеет вид:

. (14)

Радиально симметричные аберрации (дефокусировка и сферическая аберрация)

Радиально симметричные аберрации (расфокусировка и сферическая аберрация) анализируются и изучаются при рассмотрении осевой точки предмета. Для описания радиально симметричных аберраций достаточно использовать одну радиальную зрачковую координату :

. (15)

ЛИТЕРАТУРА

1. Бегунов Б.Н., Заказнов Н.П. и др. Теория оптических систем. - М.: Машиностроение, 2004

2. Заказнов Н.П. Прикладная оптика. - М.: Машиностроение, 2000

3. Дубовик А.С. Прикладная оптика. - М.: Недра, 2002

4. Нагибина И.М. и др. Прикладная физическая оптика. Учебное пособие.- М.: Высшая школа, 2002


Подобные документы

  • Дисторсия ("искажение") абсолютная и относительная. Хроматические аберрации, проявление зависимости характеристик оптической системы от длины волны света. Принципы ахроматизации оптических систем. Абсолютный и относительный хроматизм увеличения.

    реферат [170,1 K], добавлен 15.01.2009

  • Дефокусировка, продольное смещение плоскости изображения. Сферическая аберрация, ею обладают все линзы со сферическими поверхностями. Структура пучка лучей при наличии комы. Условия апланатизма и изопланатизма. Закон синусов Аббе (условие апланатизма).

    реферат [121,8 K], добавлен 15.01.2009

  • Частота затухающих колебаний. Переходная и логарифмическая амплитудно-частотная характеристики колебательного звена. Определение постоянной времени идеального дифференцирующего звена. Характеристики форсирующего звена, идеального интегрирующего звена.

    реферат [143,9 K], добавлен 21.01.2009

  • Понятия амплитудной и фазовой частотных характеристик и формулы для их определения. Расчет частотной передаточной функции для инерционного, колебательного, интегро-дифференцирующего, идеального и реального интегрирующих звеньев и устройств регулирования.

    лабораторная работа [1,3 M], добавлен 06.06.2016

  • Анализ и расчет схемы, состоящей из идеального источника напряжения треугольной формы с заданными параметрами, резистора и стабилитрона. Построение временных диаграмм сигналов. Определение режима покоя и расчет цепи смещения для усилительного каскада.

    контрольная работа [309,9 K], добавлен 26.01.2013

  • Задание звена в командном окне. Амплитудно-частотная характеристика звена, его передаточная функция и дифференциальное уравнение. Исследование безинерционного, инерционного звена первого порядка, интегрирующего идеального дифференцирующего реального.

    контрольная работа [1,1 M], добавлен 17.01.2013

  • Основные требования к катодам электронных устройств. Свойства термокатода, параметров идеального и реального катода, параметров катода с учетом его охлаждения держателями. Режим работы и конструкция катода. Расчет способов увеличения тока эмиссии.

    курсовая работа [315,7 K], добавлен 28.11.2011

  • Расчёт амплитуды аналоговых сигналов яркости. Аналого-цифровое преобразование сигнала яркости. Графики изменения сигнала цветности. Координаты точки внутри цветового треугольника. Преимущества в качестве изображения телевизоров со 100 Гц разверткой.

    курсовая работа [993,4 K], добавлен 16.10.2014

  • Типы лазеров: усилители, генераторы. Характеристики приборов: энергия импульса, расходимость лазерного луча, диапазон длин волн. Типы газоразрядных лазеров. Поперечная и продольная накачка электронным пучком. Принцип работы лазера на свободных электронах.

    реферат [108,2 K], добавлен 11.12.2014

  • Разработка нейронной сети, выполняющей задачу распознавания и обучения. Использование пакета Simulink программы Matlab. Проектирование архитектуры нейронной сети, удовлетворяющей поставленной задаче. Создание модели импульсного двухпорогового нейрона.

    дипломная работа [2,7 M], добавлен 14.10.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.