Основы биофизики

Изучение физических и физико-химических процессов, лежащих в основе жизни. Рассмотрение структуры и свойств биологически важных молекул, межклеточного взаимодействия, передачи информации в каналах связи. Механизмы воздействия на организм факторов среды.

Рубрика Биология и естествознание
Вид курс лекций
Язык русский
Дата добавления 10.05.2015
Размер файла 1,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Экспериментально установлено, что за счет гидролиза одной молекулы АТФ осуществляется активный транспорт трех ионов и двух ионов , то есть, их сопряженному трансмембранному переносу свойственна стехиометрия (3/2). Она сохраняется вне зависимости от величины и направления концентрационного и электрического градиентов. Стехиометрия обусловливает электрогенные свойства помпы. Перенос двух внутрь клетки и трех ионов Na из нее, создает разность потенциалов, относительно межклеточной среды. При этом цитозоль имеет отрицательный заряд относительно межклеточной среды (внутри клетки анионов больше, чем катионов).

насос угнетается различными агентами, из которых наиболее активны следующие:

1. Сердечные гликозиды.

2. Избыток ионов внутри клетки.

3. Дыхательные яды.

Дыхательные яды блокируют окислительное фосфорилирование в митохондриях и, соответственно, они останавливают работу любой системы активного транспорта, то есть, в их действии нет специфичности, так как они лишают свободной энергии активного транспорта. Специфичным плантатором насоса служит строфангин Г (уабаин), который является ингибитором АТФазы. Даже в концентрации, равной м/а, уабаин подавляет активность помпы на 50%. Под действием гликозидов подавляется выведение из клеток, и приток в них, тогда как пассивный выход из цитозоли не изменяется.

33. Кальциевый насос (КН)

КН обеспечивает стабильно низкий уровень в цитозолях, в отличие от насоса, он выводит избыток ионов , не в межклеточную среду, а в органеллы (главным образом, в эндоплазматическую сеть). Поэтому, основные места локализации насоса находятся в большинстве типов клеток на внутренней мембране, а не на плазмолемме (что имело место для насоса). Достаточно детально изучена работа помпы в мембранах саркоплазматической сети, где ее активность наиболее высока.

Источником энергии для системы активного транспорта ионов служит АТФ. Вторым и третьим компонентом работы насоса является активированная АТФаза. Кроме того, для работы АТФазы необходимо присутствие ионов . В саркоплазматической цепи на долю АТФазы приходится около 60% общего мембранного белка. Предполагается, что в мембране саркоплазматической сети нет другого белка, кроме АТФазы. Остальные 40% белков принадлежат периферическим протеинам. На перенос двух ионов затрачивается одна молекула АТФ, но, при очень высоких физико-химических градиентах, это отношение изменяется с двух к одному, до одного к одному.

В механизме действия насоса выделяется три этапа:

Во-первых, сигналом к активному транспорту служит увеличение допустимого уровня ионов в цитозоле. Установлено, что постоянная связывания ионов кальция - АТФазой, имеет порядок л/моль, то есть, адсорбция ионов на транспортном ферменте происходит уже при концентрации ионов в цитозоли примерно моль/л. - АТФаза связывает не только ионы, но и ионы . Центры захвата ионов и АТФ локализованы на поверхности фермента. Эта поверхность обращена к цитозоле.

Активированная ионами транспортная АТФаза катализирует гидролиз АТФ, что является основным событием второго этапа в работе помпы. При гидролизе АТФ, от нее отщепляется концевая фосфатная группа и присоединяется к - АТФазе, которая приобретает при этом дополнительную свободную энергию равную примерно 37,4 Дж/моль. За счет этой энергии образуется фермент-фосфатный комплекс.

Третий этап работы насоса - переход ионов на противоположную сторону внутри БМ, что связано с изменением конформации АТФазы. Изменение конформации приводит к перемещению молекулы фермента в пространстве БМ. Предполагается, что происходит сдвиг подвижных групп АТФазы, на которой адсорбированы ионы. На противоположной стороне БМ транспортная АТФаза освобождается от ионов, так как ферментно-фосфатный комплекс гидрализуется, после того, как затрачивает полученную энергию на активный транспорт ионов. Вслед за гидролизом ферментно-фосфатного комплекса, происходит дефосфорилирования фермента. Возвращение - связывающих центров в исходное состояние является следствием восстановительной конформации молекулы АТФазы. Это состояние переходит в то, которое ей является свойственным в нефосфорелированном состоянии.

насос, в отличие от насоса, не проявляет электрогенных свойств, то есть, активный транспорт ионов не сопровождается образованием разности потенциалов на БМ. Неэлектрогенность помпы обусловлена высокой проницаемостью этой мембраны для многих ионов. В этой связи, мембранный потенциал, который создается переносом ионов, сразу же падает из-за утечки других ионов.

34. Механизмы биоэлектрогенеза и его роль в возбуждении. Физико-химические свойства биоэлектрогенеза (БЭГ)

Живая ткань обладает не только пассивными, но и активными электрическими свойствами, являясь источниками электромагнитной энергии. Природа БЭГ была установлена только после появления теории электрической диссоциации, которая была разработана в 1887 г. Аррениусом. Живые ткани обладают свойствами электролита, которые диссоциируются на катионы и анионы. В этой связи, самой простой моделью источника электромагнитной энергии биологических тканей служит концентрационный элемент Нернста. В нем растворы соли разной концентрации разделены мембраной, имеющей неодинаковую проницаемость для катионов и анионов, на которые диссоциирует данная соль. Вследствие существования разности концентрации, электролит стремится диффундировать через мембрану. Но, в силу неодинаковой проникающей способности образующих его ионов, один из них преодолевает мембрану, а другой задерживается ею. В результате, на мембране образуется двойной слой зарядов. При этом, более разбавленный раствор принимает заряд того иона, который лучше проникает сквозь мембрану. Если это катион, то электрический ток во внешней цепи концентрационного электролита течет от электрода, погруженного в раствор с меньшей концентрацией, к электроду, находящемуся в более крепком растворе. При одинаковой проникающей способности катионов и анионов, на которые диссоциирует электролит, электрическая энергия не генерируется, как бы ни был высок концентрационный градиент на мембране.

Схематически электролит Нернста можно представить:

- проницаемость катионов

- проницаемость анионов

Электродвижущая сила, возникающая в концентрированном электролите, который образован раствором одной соли, определяется из уравнения Нернста:

- универсальная газовая постоянная;

- температура;

- валентность ионов;

- число Фарадея;

- концентрация анионов в первой области;

- проницаемость для катионов через мембрану;

- концентрация катионов во второй области;

- концентрация анионов в первой области;

- концентрация анионов во второй области;

- проницаемость для анионов через мембрану.

Уравнение Нернста явилось результатом математической обработки многочисленных результатов экспериментального исследования функциональной зависимости ЭДС концентрационного элемента от соотношения концентрации соли в растворах, разделяемых мембраной. По Нернсту, десятикратная разность концентраций однозарядного иона создает ЭДС примерно 60 мВ (а двухзарядные ионы создают ЭДС примерно 30 мВ), следовательно, одновалентные ионы вносят наибольший вклад в БЭГ.

Наличие концентрационных градиентов является необходимым, но недостаточным условием БЭГ. Он обусловливается также тем, что сквозь БМ катионы проникают лучше, чем анионы. Концентрационные градиенты стремятся выровнять содержание всех ионов по обе стороны БМ. Однако, БМ препятствует этому процессу, поддерживая тем самым ионную асимметрию. Важный вклад в поддержание ионной асимметрии и соответствующих концентрационных градиентов (например, ионов и ) на плазмолемме любой клетки вносит их активный транспорт.

Таким образом, при наличии БЭГ всегда соблюдается два обязательных условия:

1. Существование концентрационных градиентов электролитов на клеточной мембране.

2. Наличие неодинаковой проницаемости этой мембраны для катионов и анионов, на которые диссоциируют электролиты в живой клетке (внутри и вне клетки).

При рассмотрении живых тканей в качестве концентрационного элемента, необходимо учитывать диффузию через БМ не одного иона, а всех, концентрации которых неодинаковы внутри и вне клетки, и которые способны при этом проникать через БМ.

35. Потенциал покоя

Уравнение Гольдмана позволяет рассчитывать разность потенциалов, существующую у разных клеток между цитоплазмой и межклеточной средой в состоянии покоя и в состоянии возбуждения. Это уравнение имеет вид:

ЭДС в состоянии покоя называют потенциалом покоя (ПП),

в состоянии возбуждения - потенциалом действия (ПД). Результаты расчетов довольно близко совпадают с результатами экспериментов. Наилучшее совпадение имеет место для ПП.

Анализ результатов эксперимента показал, что в состоянии покоя проницаемость для больше проницаемости для и . Это позволяет считать проницаемости для ионов и анионов бесконечно малыми величинами по отношению к проницаемости для . В этом случае численное значение потенциала покоя можно рассчитывать по формуле:

Необходимо отметить, что ПП возник не за счет более быстрой диффузии ионов по сравнению с . Разница между проницаемостями и определяет только направление катионного потока, который создает ПП на БМ. Поскольку содержание в цитоплазме больше, чем в межклеточной среде, то катионный поток направлен из клетки наружу (выходящий ток). Соотношение концентрации ионов в межклеточной среде и внутри клетки определяет амплитуду ПП. Причиной возникновения трансмембранной разности потенциалов в состоянии покоя, является скорость диффузии через БМ ионов и анионов высокомолекулярных органических веществ, находящихся в цитозоли. Катионы проходят сквозь плазмолемму, а анионы задерживаются ею, что приводит к образованию не плазмоалемме двойного электрического слоя зарядов. При этом, межклеточная среда, как более разбавленный раствор, приобретает "+" заряд, а цитоплазма "-".

Расчеты экспериментальных данных свидетельствуют о том, что все клетки организма в состоянии покоя характеризуются определяемым потенциалом (поляризацией). Клеточная мембрана всегда заряжена и всегда на ее внутренней поверхности поддерживается "-" заряд (разность потенциала), а на внешней - "+" заряд. Трансмембранная разность потенциалов в разных клетках различна, но всегда составляет несколько десятков мВ. Так, например, для гигантского аксона кальмара потенциал покоя составляет примерно -85 мВ, в то время, как для мембран эпителиальных клеток ПП - в 2-3 раза ниже. Незначительная на первый взгляд величина потенциала покоя создает высокий градиент потенциала на плазмолемме, так как толщина БМ составляет примерно 10 нм, следовательно, напряженность электрического поля на плазмолемме может достигать В/м.

Избирательная проницаемость плазмолеммы каждой клетки обеспечивает стабильное разобщение катионов и анионов, вследствие чего, на ней стойко поддерживается высокий градиент потенциала, и она обладает ЭДС. Эта ЭДС направлено против причины ее вызывающей и противодействует дальнейшему разобщению зарядов на БМ. Существование ионных градиентов на БМ связано с работой системы активного транспорта и является энергоемким процессом. В этой связи, потенциал покоя частично экономит энергетические затраты свободной энергии на поддержание этих градиентов, так как потенциал покоя действует в противоположном направлении концентрационному градиенту.

36. Потенциал действия

При действии на живые ткани раздражителей, изменяются условия генерации ЭДС в клеточных концентрационных элементах, что выражается в возникновении ПД. Согласно натриевой теории (гипотезе), при возбуждении нервных или мышечных волокон, изменяется проницаемость плазмолеммы клеточных структур для ионов и . Мгновенно, на короткий промежуток времени, проницаемость для ионов и становится равным, как 1:30.

При этом, проницаемость для оказывается намного больше проницаемости для анионов, с которыми ион образует соли в межклеточной среде. Следовательно, в момент возбуждения, проницаемость для ионов намного больше проницаемости для ионов и анионов. Это позволяет принять проницаемости для ионов и анионов за бесконечно малые величины. После преобразования уравнения Гольдмана, получаем формулу для расчета так называемого натриевого потенциала. Он равен превышению по абсолютной величине потенциала действия над потенциалом покоя.

Разность модулей ПД и ПП называют потенциалом инверсии. В аксоне он эквивалентен натриевому потенциалу, то есть:

Численное значение потенциала инверсии неодинаково в разных клетках, но всегда составляет десятки мВ, и знак этого потенциала положительный, относительно потенциала покоя:

Как правило, потенциал меньше ПП по модулю. Так, например, в гигантском аксоне кальмара примерно равен +55 мВ, а в миакардиальных волокнах он составляет примерно +20 мВ (для сердца человека). ПД определяется суммой абсолютных значений ПП и .

Продолжительность существования ПД в большинстве нервных и мышечных волокон невелика (в пределах долей единиц мс.), причем, не требуется никаких воздействий, чтобы нейрон или мышечное волокно вернулось к исходному состоянию поляризации, то есть, приобрело обычный ПП. Возбудимый участок цитоплазмы приобретает положительный потенциал, относительно межклеточной среды, и такое состояние называют деполяризацией. Возвращение к прежней поляризации называют реполяризацией.

ПД создается за счет более быстрой диффузии сквозь плазмолемму ионов , по сравнению с анионами, которые образуют с анионами соли в межклеточной среде, следовательно, деполяризация (появление ) связана с вхождением в цитоплазму ионов .

Возникновение ПД обусловлено не нарушением ионных концентраций в цитозоли, а падением электрического сопротивления плазматической мембраны, вследствие повышения ее проницаемости для ионов . Так, при деполяризации сопротивление плазмолеммы уменьшается примерно в 40 раз. Входящий поток ионов является результатом его пассивного транспорта по мембранным каналам под действием концентрационного и электрического градиентов, а выходящий поток ионов обеспечивается работой натриевой помпы (активный транспорт). В состоянии покоя, встречные потоки ионов уравновешенны, в то время, как при возбуждении в течение времени существования ПД, система встречных потоков нарушается, и ионы устремляются из межклеточной среды внутрь клетки. При этом система активного транспорта оказывается неспособна моментально ликвидировать (компенсировать) резкое усиление входящего потока. Она делает это с некоторым запозданием, в фазу реполяризации. Мембранные потенциалы являются не равновесными, а стационарными, так как они поддерживаются в условиях существования встречных потоков через БМ. Сдвиги мембранных потенциалов связаны с нарушением действия стационарного режима, причем, возбуждение сопровождается усилением входящего и выходящего потоков ионов . Следовательно, возбуждение не включает систему активного транспорта ионов , а напротив, активизирует ее, однако, даже при максимальной активизации работы натриевой помпы, она не может воспрепятствовать кратковременному накоплению небольшого количества ионов в цитоплазме. В промежутках между последовательными генерациями ПД (в состоянии покоя) помпа откачивает из цитоплазмы избыток ионов , который образовался при возбуждении, и ликвидирует созданный дефицит ионов .

37. Возбудимые и невозбудимые мембраны

Все клеточные БМ можно разделить на возбудимые (электрогенные) и невозбудимые (неэлектрогенные). Для неэлектрогенных БМ присущ только ПП, а для возбудимых БМ присущи как ПП, так и ПД. Указанное различие обусловлено присутствием в БМ потенциал зависимых ионных каналов. В невозбудимых биологических мембранах находятся только потенциал независимые ионные каналы, а в возбудимых присутствуют и те, и другие. В физиологии свойства возбудимости не ограничивают мембранами, а распространяют на ткани, подразделяя их на возбудимые и невозбудимые. Считают возбудимыми такие ткани, клеточная мембрана которых обладает потенциал зависимыми ионными каналами. К ним относят нервную и мышечную ткани. Только в них под действием раздражителей возникают ПД, причем, они сопровождаются целым комплексом других процессов, также, развивающихся в ответ на стимуляцию (на раздражение). Среди них можно отметить: изменение обмена веществ, изменение температуры, изменение электрического импеданса, а также, специфические реакции, например, проведение нервных импульсов и сокращение мышечных волокон.

Способность возбудительной ткани отвечать таким образом на действия раздражителей, называют возбудимостью - . Ее количественной мерой служит интенсивность порогового раздражителя , то есть, самого слабого стимула, в ответ на который возникает ПД, а вслед за ним и специфическая реакция. Чем ниже интенсивность , тем выше .

Следовательно, между ними существует обратно пропорциональная зависимость:

Реакцию возбудимой ткани на раздражение называют возбуждением. У возбуждения много различных проявлений, но одним из важнейших является ПД, поскольку он проявляется при любых специфических реакциях. Плазматические мембраны нейрона или мышечного волокна возбудимы не на всем протяжении. На поверхности этих микроструктур, участки возбудимых и невозбудимых БМ чередуются, так как не везде в плазмолемму встроен потенциал зависимый ионный канал.

Существенные различия между возбудимыми и невозбудимыми БМ проявляются и из ВАХ. Для невозбудимых БМ ВАХ имеет вид:

Из ВАХ видно, что при изменении мембранного потенциала от уровня ПП (-85 мВ) до 0, ее электропроводность остается неизменной. С понижением абсолютного значения мембранного потенциала, плотность тока сквозь невозбудимые БМ пропорционально уменьшается.

ВАХ возбудимых БМ не линейна, и имеет следующий вид:

При понижении трансмембранной разности потенциалов до определенного значения, плотность тока падает до 0, а затем, дальнейшее уменьшение абсолютного значения мембранного потенциала приводит к резкому нарастанию плотности тока, который к тому же изменяет свое направление (с выходящего из волокна на входящее в него). Уровень мембранного потенциала, который соответствует излому на ВАХ, называют критическим мембранным потенциалом (КМП). На рисунке КМП равен -55 мВ, что характерно для гигантского аксона кальмара. ВАХ свидетельствует о том, что деполяризация возбудимой мембраны, начиная с уровня КМП, вызывает изменение мембраной электропроводности.

ВАХ возбудимой БМ имеет N-образную форму, при этом, особое внимание заслуживает второй участок ВАХ. Его называют участком отрицательного диффузионного сопротивления (ОДС). Поскольку, при падении абсолютного значения U, I может нарастать только в том случае, если изменение напряжения сопровождается понижением сопротивления. Такая аномалия ВАХ возбудимой мембраны обусловлена присутствием в ней потенциал зависимых ионных каналов. Дело в том, что плотность трансмембранного ионного тока может определяться, в принципе, только двумя факторами:

1. Числом открытых каналов.

2. Электропроводностью каждого из них.

Известно, что электропроводность отдельного канала равна либо 0, при закрытых воротах, либо максимальному значению, порядка , что соответствует переносу ионов за 1 секунду, при открытых воротах. Не бывает промежуточных значений электропроводности отдельного канала, поэтому, изменение сопротивления возбудимой мембраны зависит от количества открытых каналов, при данном уровне мембранного потенциала. Сенсоры напряжения различных потенциал зависимых ионных каналов, даже, если они принадлежат одному типу, например, иону , обладают неодинаковой чувствительностью к сдвигам трансмембранной разности потенциалов, то есть, у них неодинаков порог срабатывания, поэтому, в разных каналах воротные процессы включаются при различном уровне мембранного потенциала. Очевидно, что КМП соответствует такой деполяризации, при которой начинают открываться наиболее чувствительные потенциал зависимые натриевые каналы данной БМ. Начавшееся по ним движение ионов усиливает деполяризацию, которая, по мере нарастания, открывает все новые и новые потенциал зависимые натриевые каналы до тех пор, пока все они не перейдут в открытое состояние.

Следовательно, при изменении напряжения на аксолемме от -55 до -10 мВ (в нашем случае), потенциал зависимые натриевые каналы работают, как системы с положительной обратной связью по току. Стоит запустить в действие наиболее чувствительные компоненты такой системы, чтобы в дальнейшем вся она вовлеклась в электрогенез. Это свойство любой возбудимой мембраны. Однако, конкретные значения мембранных потенциалов, соответствующие началу и концу действия, "+" обратной связи в разных мембранах различны.

После того, как все каналы откроются, чему соответствует максимальное значение тока ионов ,через возбудимые мембранные ворота натриевых каналов начинают закрываться, и ток падает до определенного значения.

38. Рефракторность

Процесс возбуждения сопровождается изменением возбудимости БМ. Рефрактерность - это слово, в переводе означающее "невпечатлительность". Рефрактерность - это изменение возбудимости при возбуждении. Динамику возбудимости при возбуждении во времени, можно представить в следующем виде:

АРФ - абсолютная рефракторная фаза;

ОРФ - относительная рефракторная фаза;

ФЭ - фаза экзальтации.

На кривой выделено три участка, которые называют фазами.

Развитие возбуждения в начале сопровождается полной утратой возбудимости (S=0). Это состояние называют абсолютной рефрактерной фазой (АРФ). Оно соответствует времени деполяризации возбудимой мембраны, то есть, переход мембранного потенциала от уровня ПП до пикового значения ПД (до максимального значения ) (см. ПД). В течение АРФ, возбудимая мембрана не может генерировать новый ПД, даже, если на нее подействовать сколь угодно сильным раздражителем. Природа АРФ состоит в том, что во время деполяризации все потенциал- зависимые ионные каналы находятся в открытом состоянии, и дополнительные стимулы (раздражители) не могут вызвать воротные процессы, так как им просто не на что действовать.

АРФ изменяется относительной рефрактерной фазой (ОРФ), в течение которой, возбудимость от 0 возвращается к исходному уровню (S=So). ОРФ совпадает по времени с реполяризацией возбудимой мембраны. В течение этого времени, все большее число потенциалзависимых каналов завершает воротные процессы, с которыми было связано предыдущее возбуждение. При этом каналы вновь обретают способность к следующему переходу из закрытого состояния в открытое, под действием очередного стимула. Во время ОРФ пороги возбуждения постепенно снижаются и, следовательно, возбудимость восстанавливается до исходного уровня (до Sо).

За ОРФ следует фаза экзальтации (ФЭ), для которой характерно повышенная возбудимость (S>So). Она, очевидно, связана с изменениями свойств сенсора напряжения во время возбуждения. Предполагается, что за счет конформационных перестроек белковых молекул изменяется их дипольный момент, что приводит к повышению чувствительности сенсора напряжения и к сдвигам мембранной разности потенциалов, то есть, критический мембранный потенциал как бы приближается к ПП.

Разные мембраны имеют неодинаковые продолжительности каждой фазы. Так, например, в скелетных мышцах АРФ в среднем длится 2,5 мс, ОРФ - порядка 12 мс, ФЭ - 2 мс. Миокард человека отличается очень долгой АРФ, равной 250-300 мс, что обеспечивает четкую ритмичность сердечных сокращений. Различие во времени каждой фазы объясняется тем, какие каналы ответственны за этот процесс. В тех мембранах, где возбуждаемость обеспечивается натриевыми каналами, рефрактерные фазы наиболее быстротечны, и ПД имеет наименьшую продолжительность. Если же, за возбуждаемость ответственны кальциевые каналы, то рефрактерные фазы затягиваются до секунд. В мембране миокарда человека присутствуют и те, и другие каналы ( и ), вследствие чего, длительность рефракторных фаз занимает промежуточное значение.

39. Распространение возбуждения

Возбудимая мембрана относится к нелинейным и активным средам. Активной называют такую среду, которая генерирует электромагнитную энергию под действием приложенного к ней электромагнитного поля. Способность к БЭГ (к образованию ПД) отображает активный характер возбудимости мембраны. Активный характер проявляется также и в наличии участка ОДС на ее ВАХ. Это же свидетельствует о нелинейности возбудимой мембраны, поскольку, отличительным признаком нелинейности среды служит нелинейная функция, зависимость потоков от сил, которые их вызывают. В нашем случае - это зависимость ионного тока от трансмембранного напряжения. Применительно к электрическому процессу в целом, это означает нелинейную зависимость тока от напряжения.

Нервные и мышечные волокна, будучи генераторами ЭМЭ (электромагнитной энергии), обладают и пассивными электрическими свойствами. Пассивные электрические свойства характеризуют способность живых тканей поглощать энергию внешнего ЭМП (электромагнитного поля). Эта энергия затрачивается на их поляризацию, и она характеризуется потерями в тканях. Потери в живых тканях приводят к затуханию ЭМП, то есть, говорят о декременте. Закономерности затухания ЭМП идентичны для потенциалов, приложенных извне, и генерируемых самими живыми тканями (ПД). Степень декремента (затухания) зависит от сопротивления и емкости ткани. В электронике, сопротивление и емкость (индуктивность) называют пассивными свойствами электрических цепей.

Допустим, что в какой-то точке БМ потенциал мгновенно возрос до величины, в результате, затухания потенциал будет уменьшаться по exp закону:

- постоянная времени затухания, то есть, время, в течение которого амплитуда уменьшается в e раз (37%).

Постоянная времени зависит от пассивных свойств нервных или мышечных волокон:

Так, например, для гигантского аксона кальмара, Rн составляет примерно , а равно примерно, следовательно, равна примерно 1 мс.

Угасание потенциала происходит не только с течением времени в точке его возникновения, но и также, при распределения потенциала вдоль БМ, по мере удаления от этой точки. Такой декремент является функцией не времени, а расстояния:

- постоянная длины, то есть, это расстояние, на которое уменьшается в раз.

Декремент потенциала вдоль БМ происходит достаточно быстро в обе стороны от того места, где возник скачок мембранного потенциала. Распределение электрического потенциала на БМ устанавливается практически мгновенно, так как скорость распределения ЭМП близка к скорости распространения света ( м/с). С течением времени, потенциал падает во всех точках волокна (мышечного или нервного). Для длительно существующих сдвигов мембранного потенциала, постоянная длины вычисляется по формуле:

- погонное сопротивление мембраны ();

- сопротивление цитоплазмы (Ом);

- сопротивление межклеточной среды (Ом).

При коротких импульсах, как ПД, необходимо учитывать емкостные свойства БМ. Из экспериментов установлено, что емкость БМ вносит искажение в эту формулу. С учетом поправки, постоянная длины для ПД, оценивается величиной.

Чем больше , тем слабее декремент потенциала вдоль мембраны. Так, в гигантском аксоне кальмара примерно равна 2,5 мм. У больших волокон составляет примерно 10-40 их диаметров.

Таким образом, и являются основными параметрами, которые характеризуют кабельные свойства БМ. Они количественно определяют декремент потенциала, как во времени, так и в пространстве. Для уяснения механизмов распределения возбуждения, особо важное значение имеет волокон. Анализ кабельных свойств нервных и мышечных, свидетельствует о их крайне низкой электропроводности. Так называемый аксон, диаметром 1 микрон и длиной 1 м, имеет сопротивление . Поэтому, в невозбудимой мембране всякий сдвиг мембранного потенциала быстро затухает в окрестности того места, где он возник, что полностью соответствует кабельным свойствам.

Возбудимым мембранам также присущ декремент потенциала, по мере удаления от места возникновения возбуждения. Однако, если затухающий потенциал достаточен для включения воротного процесса потенциал зависимых ионных каналов, то на удалении от первичного очага возбуждения возникает новый ПД. Для этого должно соблюдаться условие:

Регенерированный ПД также будет распределяться с декрементом, но, угасая сам, он возбудит последующий участок волокна, и этот процесс повторяется многократно:

В силу огромной скорости декрементного распределения потенциала, электроизмерительные приборы не способны зарегистрировать угасание каждого предыдущего ПД на последующих участках БМ. Вдоль всей возбудимой мембраны, при распределении по ней возбуждения, приборы регистрируют только одинаковые по амплитуде ПД. Распределение возбуждения напоминает горение бикфордова шнура. Создается впечатление, будто электрический потенциал распределяется по БМ без декремента. На самом деле, бездекрементное движение ПД по возбудимой мембране, является результатом взаимодействия двух процессов:

1. Декрементного распределения потенциала от предыдущего ПД.

2. Генерация нового ПД. Этот процесс называют регенерацией.

Первый из них протекает на несколько порядков быстрее, чем второй, поэтому, скорость проведения возбуждения по волокну тем выше, чем реже приходится ретранслировать (регенерировать) ПД, что, в свою очередь, зависит от декремента потенциала вдоль БМ (). Волокно, обладающее большей , быстрее проводит нервные импульсы (импульсы возбуждения).

В физиологии принят и иной подход для описания распределения возбуждения по нервным и мышечным волокнам, которое не противоречит выше рассмотренному. Этот подход был разработан Германном, и его называют методом локальных токов

1 - возбудимый участок;

2 - невозбудимый участок.

Согласно этой теории, между возбудимым и невозбудимым участками волокна, течет электрический ток, так как внутренняя поверхность первого из них обладает положительным потенциалом относительно второго, и между ними существует разность потенциалов. Токи, возникающие в живых тканях вследствие возбуждения, называются локальными, так как распределяются на незначительное расстояние от возбужденного участка. Их ослабление обусловлено затратами энергии на заряд мембраны и на преодоление сопротивления цитоплазмы волокна. Локальный ток служит раздражителем для покоящихся участков, которые непосредственно прилегают к месту деполяризации (возбуждения). В них развивается возбуждение, а значит и новая деполяризация. Она приводит к установлению разности потенциалов между вновь деполяризированными и покоящимися (последующими) участками волокна, вследствие чего, возникает локальный ток в следующем микроконтуре, следовательно, распределение возбуждения представляет собой многократно повторяющийся процесс.

40. Факторы, влияющие на скорость распределения возбуждения

Скорость распределения возбуждения возрастает по мере понижения сопротивления цитоплазмы и емкости клеточной мембраны, так как, сопротивление определяется по формуле:

- длина нервного волокна;

- сечение нервного волокна;

- удельное сопротивление цитоплазмы.

Толстые волокна обладают низким сопротивлением, и, вследствие этого, быстрее проводят возбуждение. Так, в ходе эволюции, некоторые животные приобрели способность к быстрой передаче нервных импульсов, за счет образование в них толстых аксонов, путем слияния многих мелких в одно крупное. Примером служит гигантское нервное волокно кальмара. Его диаметр достигает 1-2 мм, тогда, как обычное нервное волокно имеет диаметр от 1-10 микрон.

Эволюция животного мира привела и к использованию другого пути повышения скорости передачи нервной импульсации, то есть, уменьшению емкости плазматической мембраны аксона (аксолемма). В результате появились нервные волокна, покрытые миелиновой оболочкой. Они называются мякотными или миелиновыми. Миелиновая оболочка образуется в процессе "наматывания" на аксон клеток. Оболочка представляет собой много мембранную систему, включающую от нескольких десятков, до 200 элементов клеточных мембран, которые прилегают друг к другу и, при этом, внутренний их слой образует плотный электрический контакт с аксолеммой. Толщина всей миелиновой оболочки сравнительно невелика (1 микрон), но это достаточно для значительного понижения емкости мембраны. Так как миелин является хорошим диэлектриком (удельное сопротивление миелиновой оболочки составляет примерно ), емкость мембраны миелинового аксона примерно в 200 раз меньше емкости аксона без мякотного волокна, то есть, примерно 0,005 и соответственно.

Диффузия ионов через миелиновую оболочку практически невозможна, кроме того, в участках аксона, покрытых ею, отсутствует потенциал зависимые ионные каналы. В этой связи, в мякотном нервном волокне, места генерации ПД сосредоточены только там, где миелиновая оболочка отсутствует. Эти места в мембране миелинового аксона называются перехватами Ранвье или активными узлами.

От перехвата к перехвату нервные импульсы проводятся за счет декрементного распределения электромагнитного поля (движение локальных токов).

Расстояние между соседними перехватами составляет в среднем 1 мм, но оно сильно зависит от диаметра аксона. Так, например, у животных эта зависимость выражается следующим образом:

Перехваты Ранвье занимают примерно 0,02% общей длины нервного волокна. Площадь каждого из них около 20 .

Время проведения возбуждения между соседними активными узлами составляет примерно 5-10% длительности ПД. В этой связи, сравнительно большой путь (около 1 мм) между следующими друг за другом участками ретрансляции ПД обеспечивает высокую скорость проведения нервного импульса. Необходимо отметить, что локальные токи, достаточные для регенерации ПД, могут даже протекать через 2-3 последовательно расположенные перехвата Ранвье. Более частое, чем необходимо для обеспечения нормального распределения возбуждения, расположение активных узлов в мякотных аксонах, служит повышением надежности нервных коммуникаций в организме. У гомойотерных животных надежность выше, чем у пойкилотерных (животных с переменной температурой). В без-мякотных аксонах ретрансляция ПД происходит значительно чаще. Там генераторы ПД расположены вдоль всей длины волокна, в непосредственной близости друг от друга (около 1 микрона). Это обусловлено сравнительно низкой скоростью проведения возбуждения по мембранам мышечных и нервных волокон, которые не покрыты миелиновой оболочкой. В отличие от них, миелиновые аксоны за счет малой емкости между участками перехватов Ранвье, приобрели высокую скорость передачи нервных импульсов (до 140 м/с).

Вследствие относительно большой протяженности участков аксона между соседними активными узлами, проведение нервного импульса в мякотном нервном волокне, происходит как бы скачками, и поэтому его называют сальтоторным. Сальтоторные проведения обеспечивают существенную экономию энергии. Так, например, потребление при нем, в 200 раз меньше, чем при непрерывном распределении нервных импульсов по без мякотным аксонам. Наибольшая скорость распределения возбуждения наблюдается в мякотных аксонах, диаметр которых составляет примерно 10-15 микрон, а толщина миелиновой оболочки достигает 30-50 % общего диаметра волокна. Скорость проведения нервных импульсов в миелиновых аксонах пропорциональна их диаметру. Тогда, как в без мякотных аксонах, скорость проведения возбуждения пропорциональна корню квадратному из диаметра.

41. Биофизические основы электрокардиографии. Элементы структры миокарда и их мембранные потенциалы

Механизмы биоэлектрогенеза в миокарде те же самые, что и в других возбудимых тканях. Источником электромагнитной энергии служит концентрационный элемент. ПП определяется более высокой проницаемостью плазмолеммы миокардиального волокна (сарколеммы) для ионов по сравнению с высокомолекулярными анионами, которые образуют соли в саркоплазме. ПД обусловлены открытием натриевых потенциалзависимых каналов в сарколемме. Некоторый вклад в ПД миокардиальных волокон, вносят ионы . Возбуждение распространяется по сердцу без декремента, благодаря существованию в миокардиальных волокнах положительной обратной связи между локальными токами и генерацией ПД. Вместе с тем, биоэлектрогенез (БЭГ) в миокарде имеет ряд своеобразий.

Сердечная мышца неоднородна в своем клеточном составе. Различают типичные (сократительные) миокардиокальные волокна (ТМВ) и атипичные миокардиокальные волокна (АТМВ).

Между ними выявлены существенные различия в структуре, функции и электрогенезе.

Мембранные потенциалы для АТМВ и ТМВ имеют следующий вид:

Мембранные потенциалы миокарда

Для типичных миокардиальных волокон (ТМВ), образующих основную массу сердечной мышцы и осуществляющей ее сократительную деятельность, характерны мембранные потенциалы (рис. Б). В них отчетливо просматривается стабильный уровень ПП (~-90мВ). Возбуждение ТМВ проявляется в потенциале действия, восходящая ветвь которого отображает изменение потенциала волокна (относительно межклеточной среды) от - 90 до +10 (максимум до + 20 мВ), происходящее примерно за 20 мс. В отличие от мышечных волокон и аксонов, миокардиальное волокно обладает большим потенциалом инверсии (не более +20 мВ). Однако наиболее характерные особенности присущи реполяризации сердечной мышцы. Если в волокнах скелетной мышцы реполяризация происходит в течение короткого времени (около 10 мс), то репорялизия ТМВ продолжается 250-350 мс. На реполяризационной ветви ПД ТМВ выражены три части:

- начальная быстрая реполяризация

- медленная реполяризация (плато)

- конечная быстрая реполяризация.

Реполяризация завершается возвращением мембранного потенциала на устойчивый уровень ПП.

Иначе выглядят мембранные потенциалы, регистрируемые в атипичных волокнах миокарда (АТМВ). В них нет устойчивого уровня поляризации, то есть нет ПП. Электрическая активность АТМВ представляет собой непрерывные колебания мембранного потенциала. По достижении им определенной величины (примерно -60мВ) спонтанно (произвольно) начинает развиваться медленная поляризация. Затем (на уровне примерно -40 мВ) процесс ускоряется, что соответствует возникновению в АТМВ ПД с присущей ему инверсией. Деполяризация сменяется реполяризацией, в конце которой снова начинается медленная реполяризация. Следовательно для АТМВ характерна безостановочная динамика мембранных потенциалов, лежащая в основе самопроизвольной ритмической деятельности сердца.

Свойство миокарда возбуждаться под влиянием ПД, который спонтанно возникает в нем самом (без внешних стимулов), называется автоматизмом (автоматией). Биофизическая природа автоматизма пока не выявлена. Электрические процессы, связанные с ним происходят в АТМВ. Установлено, что именно АТМВ служит источником автоматизма сердечной мышцы.

42. Механизм распространения возбуждения по миокарду

Ткань АТМВ сосредоточена в виде островков в различных отделах сердца. При таком распространении, АТМВ объединяются в единую систему, когда по сердцу происходит распространение возбуждения. Особенности проведения возбуждения по миокарду связаны со способом соединения между собой его отдельных волокон. Под электронным микроскопом между волокнами обнаружены так называемые вставочные диски. Они представляют собой дубликаторы мембран, в которых имеются щелевые контакты между волокнами, обеспечивающие электрическую синаптическую передачу. Ранее считали, что будто "протоплазматические мостики" между миокардиальными волокнами объединяют весь миокард в синцитий, под которым понимали цитоплазмазматическую (проводящую) среду, не разделенную мембранами. Открытие вставочных дисков внесло коррективу в морфологическое определение миокардиального синцития, но не опровергло представления о миокарде, как функциональном синцитии, поскольку электрический импульс (ПД), возникший в одном из волокон, распространяется на соседние посредством электрической, а не химической передачи. Благодаря этому сердцу присущи свойства отдельной клетки.

Необходимо подчеркнуть, что электрическая связь существует не только между ТМВ сердца. Аналогично связаны АТМВ как между собой так и с ТМВ и распространяется по всему сердцу.

Рис. Схема "проводящей системы" сердца.

Обозначения: 1 - синсо-аурикулярный узел (узел Кейта-Флака); 2 - миокард предсердий; 3 - атрио-вентрикулярный узел (узел Ашоффа-Тавары); 4 - пучок Гиса; 5 - ножки пучка Гиса; 6 - волокна Пуркинье; 7 - миокард желудочков. Стрелками показан путь распространения возбуждения.

Между островками тканей АТМВ установлена четкая субординация: ведущим является тот островок, который расположен в правом предсердии - между венозным синусом и ушком (auricolus). От расположения произошло его название - сино - аурикулярный узел. Когда он автоматически возбуждается (обычное состояние у здорового человека), другие островки АТМВ выполняют только функцию проведения возбуждения. При этом их собственный автоматизм подавляется. Поэтому сино - аурикулярный узел называют пейсмекером (отводитель ритма). Ритм его автоматических возбуждений определяет частоту сердечных сокращений.

Возбуждение спонтанно, в определенном ритме задается в сино - аурикулярном узле. Каждое его АТМВ связано со своими соседями примерно сотней щелевых контактов. Они обеспечивают взаимодействие между собой отдельных волокон узла при становлении единичного сердечного ритма, а также обеспечивают проведение возбуждения из узла в предсердие.

Благодаря тому, что водителем ритма является не одиночное АТМВ, а группа из 5000 волокон, сердце имеет высокую надежность в поддержании стойкого периода спонтанных колебаний. Экспериментально установлено, что в системе из-за АТМВ период колебаний крайне не устойчив, изменяясь в пределах 200% (от 340 до 620 мс), тогда как в системе из 100 АТМВ его вариации не выходят за 20%, то есть период изменяется от 500 до 580 мс.

С АТМВ сино-аурикулярного узла возбуждение переходит на ТМВ предсердий и переводится по ним со скоростью примерно 1 м/с. Уже через 40 мс после возникновения ПД в водителе ритма, все участки предсердий находятся в возбужденном состоянии. Возбуждение распределяется по предсердиям с широким фронтом (радиально), что обеспечивается наличием щелевых контактов не только между торцами отдельных волокон, но и торцевыми контактами по их бокам. Однако, плотность щелевых контактов в торцах вставочных дисков значительно выше, чем в боковых. Вследствие этого постоянная длины () для продольного направления составляет примерно 1 мм, а для поперечного в 3-10 раз меньше. В этой связи, по направлению к желудочкам возбуждение движется быстрее, чем поперек предсердий. Вместе с тем, существование торцевых вставочных дисков приводит к тому, что возбуждение распределяется по предсердиям единым фронтом (радиально). Боковые электрические связи выравнивают фронт, благодаря чему возбуждение, идущее в предсердиях по разным путям, практически одновременно достигает второго островка АТМВ - атрио-вентикулярного (предсердо-желудочкового) узла.

Предсердия отделены от желудочков фиброзной тканью, которая не способна проводить возбуждение, однако, в этой преграде есть узкая щель, шириной чуть больше 1 мм и длиной примерно 1,5-2 мм. В этой щели и расположен атрио-вентикулярный узел, который проводит возбуждения из предсердий в желудочки. Другого пути для проведения возбуждения нет. В местах контакта с ТМВ предсердий, АТМВ атрио-вентикулярного узла очень тонки, вследствие чего им присуще значительное электрическое сопротивление саркоплазмы. В этом одна из причин резкого (в 20-50 раз) замедления распределения возбуждения в атрио-вентикулярном узле по сравнению с предсердиями. Другая причина замедления заключается в том, что АТМВ в верхней части узла имеет не продольное, а поперечное расположение. Следовательно, по направлению к желудочкам возбуждение передается через боковые, а не торцевые щелевые контакты. Постоянная длины () для такого проведения составляет примерно 95 мкм, что обусловлено снижением скорости распределения возбуждения на порядок. Она составляет в верхней части атрио-вентикулярного узла примерно 0,02-0,05 м/с.

Замедление проведения возбуждения из предсердий в желудочки обеспечивает чрезвычайно важную для нормальной работы функцию, то есть паузу между сокращениями. Желудочки начинают сокращаться примерно через 0,1 с от начала сокращений предсердий. Задержка нужна для того, чтобы вся кровь, накопленная в предсердиях в диастолу, полностью перешла в желудочки до того момента, как они начнут сокращаться.

Торцевые контакты, расположенные в атрио-вентикулярном узле перпендикулярно основному направлению возбуждения, обеспечивают постоянную длины () примерно 270 мкм, и они обеспечивают сравнительно быстрое распространение потенциалов между отдельными волокнами АТМВ в поперечном направлении. Это делает весь узел единой системой, в которой возбуждение движется единым фронтом. Не обладай узел такой структурой, то из разных его точек с различной временной задержкой выходило бы несколько импульсов в нижестоящие отделы сердца.

Из атрио-вентикулярного узла возбуждение единым фронтом поступает в следующее звено проводящей системы - атрио-вентикулярный пучок (пучок Гиса). Там скорость проведения быстро возрастает, достигая 2-3 м/с. Увеличение скорости обусловлено в основном утолщением АТМВ и повышением плотности щелевых контактов во вставочных дисках. Плотность увеличивается примерно на 20 процентов их площади. Пучок Гиса лежит в толще миокардов желудочков, подобно изолированному кабелю, при этом он не образует синопсов (электрических контактов) с ТМВ желудочков. Ближе к верхушке сердца, от пучка Гиса отходят волокна Пуркинье. Эти атипичные миокардные волокна вступают в контакт с ТМВ желудочков. Волокна Пуркинье обладают наибольшим диаметром, по сравнению с другими волокнами миокарда, и значительной постоянной длины (), которая в десятки раз больше длины отдельных волокон АТМВ. В этой связи скорость проведения возбуждения ими достигает 4-5 м/с.

Связь между волокнами Пуркинье и ТМВ желудочков осуществляется многочисленными тонкими разветвлениями АТМВ. Отдельные такие волокна действуют на ТМВ, как точечный источник тока, поэтому от точки контакта между ними деполяризация (ПД) распределяется в виде сферической волны. Здесь нет условий для распределения фронта возбуждения, в силу чего, невелика. В этой связи, в контакте разветвленной сети волокон Пуркинье с желудочковыми ТМВ, осуществляется передача возбуждения с замедлением. Задержка импульса достигает 30 мс, что обеспечивает синхронизацию возбуждения всего сократительного миокарда желудочков. Возбуждение с отдельных волокон Пуркинье переходит на огромное число ТМВ одновременно. Благодаря чему, различные участки желудочков сокращаются симфазно. Задержка в проведении возбуждения с АТМВ на ТМВ проявляется в том, что скорость его распределения по миокарду желудочков в этот момент составляет всего 0,4 м/с. По миокарду желудочков возбуждение движется с верхушки к основанию, то есть в противоположном направлении, относительно движения по пучку Гиса. Последними возбуждаются те участки желудочков, которые расположены около предсердий.

43. Интегральный электрический вектор сердца (ИЭВС)

Сложный путь распространения возбуждения по сердцу отображается в электрокардиограмме (ЭКГ), которой свойственна весьма характерная и причудливая форма.

Моделью генератора ЭКГ является электрический токовый диполь. Согласно этой модели миокард, при распределении возбуждения по нему представляется совокупностью множества токовых диполей, которые постоянно возникают и исчезают, то есть ежемоментно возникают новые диполи и исчезают старые. В результате, на поверхности сердечной мышцы создается сложная динамическая мозаика электрических потенциалов. В этой связи бесполезно контролировать поведение отдельного электрического диполя для характеристики сердечной активности, а целесообразнее перейти от множества диполей к одному результирующему.

Результирующий дипольный момент равен векторной сумме всех отдельных токовых диполей. Результирующий дипольный момент миокарда получил название интегрального электрического вектора сердца (ИЭВС). Ритмический характер автоматизма водителя ритма, а также передача возбуждения посредством электрических синопсов обусловливают синфазность возбудительного процесса в миокардных волокнах. Поэтому ИЭВС имеют сравнительно большую амплитуду (особенно, при деполяризации желудочков), чем создается высокий уровень биопотенциалов, которые отображают сердечную деятельность даже на поверхности тела.

Типичные вектор электрокардиограммы (а) и электрокардиограммы (б)

В ходе сердечной деятельности ИЭВС претерпевают непрерывные изменения, которые вполне закономерны, так как отображают закономерности распределения возбуждения по миокарду. Ежемоментно амплитуда и направление ИЭВС - различны. Измеряя их, врач получает информацию о движении волны возбуждения по сердцу. Это позволяет ему оценить свойство миокарда и, в случае нарушений сердечной деятельности, понять их причину.

При подаче электрических потенциалов, отображающих распределение возбуждения по миокарду на пластины X и Y, на его экране возникают сложные фигуры Лиссажу, которые образуются в результате сложения взаимно перпендикулярных колебаний. В данном случае фигура Лиссажу представляет собой траектории движения ИЭВС, которые описывает вектор на плоскости перпендикулярно направлению распределения возбуждения (рис.1). Такое исследование электрической активности сердца называется векторэлектрокардиоскопией (ВЭКС). На векторэлектрокардиограмме выделяют обычно 3 эллипсоподобные фигуры. Самая малая из них отображает деполяризацию предсердий, самая большая - деполяризацию желудочков, и средняя - из реполяризацию.

Амплитуду вектора оценивают посредством измерения его проекций на координатные оси. Любое из отведений ЭКГ есть ничто иное, как проекция ИЭВС. В разнообразных способах отведения ЭКГ воплощаются различные системы координат. Наиболее широкое распространение получила гексагональная система координат, элементом которой является равносторонний треугольник. Эта система получила название стандартных отведений. При ее практической реализации электроды накладываются на левую ногу и запястья рук. Первым отведением считают регистрацию разности потенциалов между двумя руками, вторым отведением - между правой рукой и ногой, и третьим - между левой рукой и ногой.

44. ЭКГ отведения как проекции ИЭВС на координатные оси

При любых отведениях биопотенциалов сердца от поверхности тела человека, амплитуды зубцов ЭКГ представляют собой проекции ИЭВС на ту или иную ось координатной системы в соответствующий момент сердечной деятельности. Зубец Р отображает распределение возбуждения по предсердиям; комплекс QRS - при возбуждении желудочков; зубец Т - при их реполяризации. Отклонение от нормы, которое врач обнаруживает в том или ином элементе ЭКГ, дают ему информацию о соответствующих процессах в той или иной части сердца.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.