Основы биофизики

Изучение физических и физико-химических процессов, лежащих в основе жизни. Рассмотрение структуры и свойств биологически важных молекул, межклеточного взаимодействия, передачи информации в каналах связи. Механизмы воздействия на организм факторов среды.

Рубрика Биология и естествознание
Вид курс лекций
Язык русский
Дата добавления 10.05.2015
Размер файла 1,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

В последние десятилетия были проведены большие исследования вкусового анализатора с помощью микро-ЭВМ. Было установлено, что вкусовые клетки имеют потенциал покоя ПП величиной, которая изменяется в пределах от -30 до -50 мВ. При действии вкусового стимула на клетку, наблюдается медленная деполяризация клеточных мембран, то есть, формируется генераторный потенциал ГП. В зависимости от интенсивности стимула, его величина обычно меняется в пределах от 15 до 45 мВ.

Механизм передачи возбуждения от вкусовой клетки к нервному волокну окончательно не выяснен. Однако, известно, что передача в синапсе осуществляется при участии ацетилхолина.

Оказалось, что одна и та же клетка может реагировать на сладкие, соленые и кислые стимулы тогда, как другие клетки обладают повышенной чувствительностью только к одному или двум стимулам. В отличие от вкусовых клеток, вкусовые сосочки строго специфичны, при этом, электрическое раздражение отдельных сосочков вызывает, как правило, одно из четырех вкусовых ощущений. Химическая стимуляция этих же сосочков у человека вызывает аналогичное ощущение. На основе подобных опытов, Бекеши в 1966 г. пришел к заключению, что существует полное совпадение вкусовых качеств для каждого отдельного сосочка, стимулируемого как электрическим, так и химическим путем. Сосочки отличаются строгой локализацией на поверхности языка, и делятся на соленые, кислые, сладкие и горькие. Возможно, что строгая специфичность сосочков обусловлена ионно-обменными свойствами субстрации, которая заполняет пространство между микровиллами. При этом, субстрация обусловливает избирательную проницаемость вкусовых веществ.

В опытах с отведением потенциалов от афферентных нервов, было обнаружено, что небольшое количество нервных волокон обладает узкой вкусовой специфичностью, а большая часть волокон обладает или относительной специфичностью или вообще, не обладает специфичностью. Необходимо отметить, что наличие специфичности в периферическом отделе вкусового анализатора, обусловливает формирование дифференцированных вкусовых ощущений в центральном отделе головного мозга. Натуральные пищевые раздражение одновременно возбуждает несколько или все вкусо-воспринимающие элементы. В результате чего возникает сложное вкусовое ощущение.

72. Химические свойства вкусовых веществ и теория вкуса

Все вкусовые вещества условно можно разделить на три группы:

Вещества, близкие по своей химической структуре и вызывающие примерно одинаковые вкусовые ощущения.

Вещества, близкие по химическим свойствам, но обладающие разным вкусом.

Вещества разной структуры, но сходного вкуса.

К первой группе относятся сахара: глюкоза, сахароза, галактоза, лактоза. Все они обладают сладким вкусом. Кислым вкусом обладают диссоциированные неорганические и органические кислоты.

Ко второй группе относится ряд изомеров, например, -валин, имеющий горьковато-сладкий вкус; 1-валин, имеющий сладкий вкус; d-лейцин, имеющий сладкий вкус; 1-лейцин, имеющий горький вкус.

К третьей группе можно отнести, например, полисахариды: глицерин, гликокол, сахарин, нитробензол, хлористый метил, хлороформ, - имеющий сладкий вкус, а так же, хинин, нитропроизводные бензола и многие неорганические соли и кислоты, имеющий горький вкус. Аналогичность вкуса при таком несходстве химической структуры вещества, главным образом, относится к горькому и сладкому вкусам.

Соленый вкус NaCl присущ и другим хлоридам (K, , Ca и т.д.). Можно было бы предположить, что свободный анион , а не катионы , , , , ответственен за соленый вкус, однако, значение катионов также нельзя исключить. Так, например, в слабой концентрации NaCl обладает соленым вкусом, NaBr - горьковато-соленым, NaI - солоновато-горьким. Из этого можно заключить, что ион придает растворам всех этих солей присущий им солоноватый вкус. В настоящее время считают, что в основе соленого стимула лежит действие низкомолекулярных анионов и катионов. При этом, принимают, что интенсивность вкуса низкомолекулярных солей зависит от катионов (, , , и т.д.), а характер вкуса от анионов (, и т.д.).

Кислым вкусом обладает большинство органических и неорганических кислот. Как известно, общей чертой всех кислот является их способность к диссоциации в водных растворах на анионы и катионы . Кислый стимул связывают с воздействием на вкусовые клетки ионов . В этом убедились при помощи опытов. Так, например, HCl ощущается кислотой при разбавлении в пропорции 1:800, в то время, как при этой же концентрации, весь диссоциированный NaCl безвкусен. Воздействие ионов пропорционально его концентрации, однако, более сильные кислоты в одинаковой концентрации со слабыми, не всегда вызывают более сильное вкусовое ощущение. Это объясняется тем, что для ионов проницаемость субстанции окружающей микровиллы вкусовых клеток имеет низкое значение. Слабые же кислоты в виде недиссоциированных молекул, достигают микровилл вкусовых клеток, и только затем диссоциируют. При этом, образовавшиеся ионы взаимодействуют с активными центрами микровилл.

Сладкий вкус вызывается большим числом органических веществ, которые, как правило, не диссоциируют. В настоящее время окончательно не выяснено, какие свойства молекул вызывают сладкий вкус. Многие сладкие вещества являются многоатомными спиртами с повторяющейся группой (сахара, глицерин). Сахарин, который обладает сладким вкусом, имеет совершенно другую структуру. По мнению Акри, сладкий стимул молекул связан с их возможностью образовывать слабые водородные связи, с активным центром рецепторной молекулы, которая локализована во вкусовой клетке. Во всех случаях, структура молекулы должна соответствовать стерическому положению, и возможностям водородных связей рецепторной молекулы.

Менее всего изучена природа горького стимула вкусовых веществ. Было отмечено, что соли, по мере увеличения молекулярного веса, становятся все более горькими. Так, например, раствор NaCl имеет соленый вкус, цезий-хлор - горький, KI - горький. Имеются данные, что горький стимул связан с возможностью образования слабых дисперсионных связей типа водородных.

Существует несколько теорий, которые пытаются объяснить конкретные процессы взаимодействия молекул вкусовых веществ с рецепторными клетками. Так, Лазарев еще в 1920 г., исходя из роли ионов в процессе возбуждения, допускал, что вкусовые луковицы каждого сосочка содержат высокочувствительные вещества белковой природы, которые разлагаются под влиянием адекватного стимула. При этом ионизируемые продукты распада возбуждают соответствующие нервные окончания.

В настоящее время наиболее разработанной является теория Бейдлера. Он предположил, что вкусовые стимулы (молекулы или ионы) взаимодействуют с определенными участками плазматической мембраны вкусовой клетки, которые он выделяет в качестве активных центров. Активные центры представляют собой полиэлектролиты белковой природы, содержащие большое количество заряженных боковых цепей. Взаимодействие вкусовых стимулов с активными центрами протекает по типу мономолекулярной реакции, которая имеет вид:

С+(N-Z) (1)

С - концентрация стимулирующего вкусового вещества;

N - общее число активных центров рецепторов;

Z - число связанных активных центров, при концентрации вкусового вещества, равного С.

Согласно закона действующих масс, постоянная равновесия данной реакции:

K= (2)

Величина ответа рецепторной клетки прямо пропорциональна числу активных связанных центров R=Z, а максимальный отклик имеет место в том случае, когда все центры заняты. Тогда уравнение (2) можно записать в виде:

(3)

Уравнение (3) представляет собой основное уравнение вкусовой рецепции. Величина C/R выражает суммарную реакцию вкусовых рецепторов. Согласно данному уравнению, между C/R и С существует линейная зависимость. Данное положение получило экспериментальное подтверждение.

Бейдлер предполагал, что взаимодействие частиц вкусового вещества с активными центрами рецептора, представляет собой физический процесс адсорбции, в основе которого лежит слабое дисперсионное взаимодействие. Это предположение согласуется с предсказанием Акри об образовании водородных связей между молекулами сладкого стимула и рецептора. На основании экспериментальных данных и уравнения вкусовой рецепции (3), можно найти величину (константы) равновесия конкретной реакции. Она изменяется от 7,7 для бутирата натрия до 9,8 для NaCl. Эти величины - константы равновесия, очень близки к коэффициенту для адсорбции солей на белках. Это, в свою очередь, соответствует исходному допущению Бейдлера об адсорбции вкусового вещества на поверхности рецептора.

О физической природе процесса свидетельствует также и то, что реакция вкусовых рецепторов на соленый стимул не изменяется при повышении температуры от 20 до С. Кроме того, величина реакции заметно не изменяется при сдвиге pH от 3 до 11, что исключает возможность сильного электростатического взаимодействия с иногенными группами белковых молекул. Термодинамические расчеты показывают, что процесс адсорбции частиц приводит либо к уменьшению количества гидратационной воды на поверхности рецептора, либо к небольшому изменению конформации молекул рецептора. Возможно, что изменение конформаций рецепторных молекул лежит в основе дальнейшего процесса, приводящего в конечном счете к возбуждению вкусовой клетки.

Дальнейшее развитие теории вкусового восприятия было связано с открытием Дастоли сладкочувствительных и горькочувствительных белков во вкусовых луковицах млекопитающих. Дастоли удалось выделить из специфических сладкочувствительных и горькочувствительных сосочков белки, которые избирательно взаимодействуют со сладкими или горькими веществами. Термодинамическая и кинетическая особенности взаимодействия сладких и горьких веществ с молекулами выделенных белков, совпадают с особенностями мономолекулярных реакций, описанных Бейдлером. В этой связи в настоящее время считают, что именно этими белками представлены активные центры вкусовых клеток, однако, локализация этих белков во вкусовых клетках еще не установлена.

73. Биофизические основы восприятия запаха

В основе обоняния лежит взаимодействие молекул пахучих веществ с обонятельными клетками. Молекулы пахучих веществ, отделяясь от своей основной массы и передвигаясь потоками воздуха, могут действовать на расстоянии.

Обонятельные рецепторы входят в состав обонятельного эпителия, расположенного в задней части носовой перегородки и в верхнем носовом ходе. Рецепторные клетки представляют собой биполярные нейроны d примерно 5-10 мкм, расположенные вокруг цилиндрических опорных клеток. У человека количество обонятельных рецепторов (ОР) достигает примерно, а площадь обонятельного эпителия (ОЭ) составляет примерно 5. Поверхность ОЭ покрыта водянистой средой. Периферические отростки обонятельных клеток заканчиваются на своей вершине утолщение грушевидной формы, которое называют обонятельной булавой. Как показали электронно-микроскопические исследования, на поверхности каждой обонятельной булавы (ОБ) расположено от 9 до 16 очень тонких ресничек. Центральные отростки отходят от противоположного конца обонятельных клеток и образуют тонкие нервные нити, которые вступают в полость черепа. На нижней поверхности лобной доли нервные нити сходятся, образуя обонятельную луковицу, в клубочках которой и заканчивается первый нейрон обонятельного афферентного пути.

При действии обонятельных стимулов на обонятельные рецепторы, происходит формирование генераторных потенциалов, которые вызывают в центральных отростках рецепторов нервные импульсы. Суммарный генераторный потенциал ОР, то есть, электроольфактограмму, можно зарегистрировать с помощью электрода, приложенного к поверхности ОЭ. Вопрос ОБ избирательности ОР к молекулам пахучих веществ окончательно не выяснен. До настоящего времени не было обнаружено строгой избирательности рецепторов. Так, например, некоторыми учеными с помощью микроэлектродов регистрировались потенциалы одиночных волокон обонятельного нерва лягушки, при действии различных пахучих веществ. Все исследуемые рецепторные нейроны обнаружили грубую избирательную чувствительность запаха. При этом, каждый из них, отвечал на одни запахи, не отвечал на другие. Большинство из них дает особо сильный ответ, по крайней мере, на 1 из 25 использованных запахов, и более слабо отвечает на остальные.

74. Теория обоняния

В основе возникновения обонятельного ощущения лежит взаимодействие молекул или частиц пахучего вещества с ОР, однако, до настоящего времени неясно, какие свойства молекул обусловливают это взаимодействие. Не ясно также, с молекулами каких веществ, локализованных в рецепторных клетках, происходит взаимодействие. Попытки объяснить пахучие свойства молекул их химическими свойствами и структурой, не увенчались успехом. Вещества со сходными свойствами и структурой, могут обладать разными запахами и наоборот. В настоящее время, из всех теорий восприятия запаха, наибольшее внимание заслуживают две:

квантовая;

стереохимическая.

Согласно квантовой теории запаха, молекулам пахучего вещества свойственны внутримолекулярного колебания, в результате которых они испускают электромагнитное излучение в инфракрасной области спектра (ИК). Это излучение взаимодействует с молекулами обонятельного рецептора пигмента, типа каротиноидов, находящихся в мембране рецепторов. По мнению авторов данной теории, молекулы веществ с похожими запахами, должны характеризоваться сходными НЧ колебаниями. В качестве подтверждения, Райд приводит вещества, обладающие миндальным запахом и близкой частотой колебаний: нитробензол, бензонитрил, бутиронитрил и т.д. из обонятельных клеток удалось выделить ряд каротиноидов и витамин А, которые, по мнению Райда, поглощают электромагнитные излучения молекул пахучих веществ.

Однако, несмотря на известные успехи, данная теория встречает ряд очень серьезных возражений. Так, многие вещества со сходными запахами имеют разные частоты колебаний и разные спектры поглощения в ИК области (например, многие спирты). Молекулы, в которых атом водорода замещен изотопом дейтерия, обладают сходными запахами. Хотя, при этом значительно меняются частоты основных колебаний, с другой стороны молекулы с почти одинаковыми частотами колебаний и спектрами ИК поглощения, обладают несходными запахами, кроме того, не установлена локализация пигментов в обонятельных клетках и не доказано их участие в первичном процессе взаимодействия с пахучими молекулами.

Более обоснованной является стереохимическая теория восприятия запаха, выдвинутая Монкрифом и подробно разработанная Эймуром. Согласно этой теории, запах вещества обусловлен не химическим составом молекулы, а их формой и размерами. Обонятельная система состоит из рецепторов разных типов, каждый из которых соответствует отдельному первичному запаху. Поверхности рецепторных клеток имеют углубления (лунки) определенной формы. Молекулы пахучих веществ вызывают ощущение запаха только в том случае, если их форма соответствует форме лунок рецепторов, в которые они плотно входят. Этот принцип аналогичен принципу "замка и ключа", при взаимодействии фермента и субстрата. Согласно представлениям Эймура, вещества, имеющие сходный запах, должны обладать сходной формой своих молекул. Эймур, сопоставив большое количество данных о форме молекул с ощущениями, которые они вызывают, пришел к выводу о наличии 7 первичных простых запахов:

камфорноподобного;

мускусного;

цветочного;

мятного;

эфирного;

острого;

гнилостного.

В этом смысле, первичные запахи аналогичны трем основным цветам зрительного и четырем вкусам вкусовых анализаторов. Каждому первичному запаху соответствует определенная форма молекулы и лунки на поверхности рецептора. Так, эфирная молекула отличается палочковой формой, при этом, она должна иметь вытянутую лунку с размерами: длина = 1,8 нм, ширина = 0,5 нм, глубина = 0,4 нм. Камфорная молекула имеет сферическую форму, диаметром 0,7 нм, а ее лунка имеет форму эллиптической чаши, глубиной 0,4 нм, длиной = 0,2 нм, шириной = 0,75 нм. Молекулы, вызывающие другие ощущения, имеют более сложную форму. Если сложная молекула внедряется сразу в две лунки, то возникает сложный запах.

Теория Эймура нашла свое подтверждение, что, в некоторых случаях, оказывалось возможным предсказывать запах веществ, исходя из формы их молекул. Так было синтезировано несколько органических веществ, была рассчитана их вероятная форма и предсказан их запах. Однако есть недостатки: острые и гнилостные запахи не вмещаются в стереохимическую схему. Для молекул, вызывающих острые и гнилостные запахи, форма и размер не имеют значения. Решающую роль играет электрический заряд. Острые едкие запахи свойственны тем соединениям молекулы, которые из-за нехватки электронов, имеют "+" заряд и сильное сродство к электронам. Гнилостные запахи, наоборот, вызываются молекулами, обладающими избытком электронов.

Необходимо заметить, что данная теория обходит молчанием вопрос о том, что происходит после попадания молекулы в соответствующую лунку на поверхности рецептора? С чем она взаимодействует в ней при этом? Теория не объясняет, как возникают потенциалы в ответ на заполнение лунок?

75. Электрические и магнитные свойства тканей организма

Современные преставления о магнитных свойствах живых тканей основаны на фактах о молекулярной организации БМ и, в значительно меньшей степени, на сведениях о кванотовомеханических свойствах физиологически активных молекул. Характеризуя электрические свойства живых тканей, следует учитывать, что они являются композиционными средами, поскольку одни структурные элементы обладают свойствами проводников, а другие - диэлектриков. Предполагают, что ряд биологически важных макромолекул проявляет полупроводниковые свойства.

76. Электропроводность живых тканей

Электропроводность органов и тканей связана с присутствием в них ионов, которые являются свободными зарядами, создающими в организме ток проводимости под действием ЭМП, излучаемыми как внешними источниками, так и генерируемых живыми клетками. Электропроводность живых тканей определяется прежде всего электрическими свойствами крови, лимфы, межклеточной жидкости и цитозоля. Удельная электропроводность () этих электролитов составляет 0,1-1 . Подвижность ионов в биологических жидкостях примерно такая же, как в растворах соответствующих солей, приготовленных на дистиллированной воде.

Однако целых органов на 4-6 ниже жидкостей, выделенных из них. Причиной не совпадений результатов измерений являются малые объемы, занимаемые свободными электролитами в органах и тканях животных. В клетке электролиты заключены в мельчайшие отсеки (компартаменты), образованные БМ, составляющие более 50% массы клетки. По существу каждая клеточная органелла представляет собой компартамент. Ее содержимое и окружающий цитозоль обладают относительно высокой электропроводностью, тогда как разделяющая их мембрана является типичным диэлектриком.

Удельное сопротивление плазматических мембран измерить достаточно трудно, так как невозможно измерить толщину мембраны. В этой связи удается измерить только удельное поверхностное сопротивление. У различных клеток удельное поверхностное сопротивление изменяется в пределах от 0,4 до 30 .

Живым тканям свойственна зависимость электропроводности от частоты воздействующего ЭМП. Это явление получило название дисперсии электропроводности. С повышением частоты электропроводность тканей увеличивается. Дисперсия электропроводности присуща всем средам, а не только биологическим. Она наблюдается в том диапазоне частот ЭМП, которые соответствуют характеристическим частотам () заряженных частиц, входящих в состав той или иной среды. Поскольку однородные среды образованы частицами с близкими значениями , то дисперсия электропроводности в них выражена слабо. В этой связи сопротивление резисторов в цепях переменного тока называют активным, в отличие от реактивных сопротивлений емкости и индуктивности ( и ), которые гораздо сильнее зависят от частоты, чем R. По той же причине редко утверждается, будто дисперсия электропроводности - специфическое свойство биологических систем. На самом же деле у них зависимость гораздо отчетливее, чем у сред с менее сложной организацией, и обнаруживается в широком частотном диапазоне. Это обусловлено сложной мембранной структурой тканей и большим разнообразием релаксационных способностей их заряженных частиц, причем такое разнообразие связано, как с различием в размерах, так и с влияние на их подвижность БМ. Повреждение клеточных мембран стирает в значительной мере грань между тканями и органическими электролитами в дисперсии на низких частотах.

77. Диэлектрические свойства живых тканей

Диэлектрические свойства биологических тканей определяются присутствием в них воды, растворенных в ней макромолекул, а также компартамезацией клеточных структур. Компартамезация, обеспечивая оптимальные условия для внутриклеточных биохимических процессов, вместе с тем придает живым тканям сегнетоэлектрические свойства. Показано, что физические среды, в которых чередуются слои очень низкой и высокой , обладают сегнетоэлектрическими свойствами, если по обе стороны каждого слоя с низкой присутствуют разные электрические заряды. Такие структуры подобны доменам с одинаковой ориентацией дипольных моментов. Цитозоль и содержимое многих органелл обладают относительно высокой , а БМ - крайне низкой (порядка ). Поэтому каждая органелла на БМ которой поддерживается разность потенциалов между цитозолем и ее содержимым, имеет значительный дипольный момент подобно домену в сегнетоэлектрике. За счет таких заряженных компартаментов живые ткани обладают высокой . В постоянном электрическом поле оно достигает десятка тысяч.

Как и всякому домену, каждому внутриклеточному компартаменту присуща не высокая характеристическая частота релаксации. Применительно к диполям соответствует максимальной частоте ЭМП, которую они способны воспроизвести своими поворотами в нем, за счет чего достигается максимально возможная компенсация внешнего поля собственным ЭП диэлектрика. Диапазон разных внутриклеточных компартаментов находиться в пределах от Гц до 1 кГц. Поэтому компартаменты вносят основной вклад в диэлектрические свойства биологических тканей именно на низких частотах.

На более высоких частотах диэлектрические свойства определяются полярными макромолекулами, сосредоточенными как в цитоплазме, так и в клеточных мембранах. В СВЧ полях основной вклад в эти свойства вносит вода.

У разных белковых молекул охватывает диапазон от 10 кГц до 100 мГц и зависит от их размеров, а также от вязкости окружающей среды. Эту зависимость выражает формула:

,

где K - постоянная Больцмана; T - температура среды, в которой вращаются молекулы, под действием ЭМП; - вязкость этой среды; -радиус полярной молекулы.

Важно отметить, что молекулы одинаковых размеров, пребывая в средах с разной вязкостью (например в цитозоле и БМ) обладают не одинаковой .

Характеристическая частота релаксации внутриклеточный воды такая же, как и дистиллированной (). Дипольные моменты у них также одинаковы (~1,84 дебая). Именно в воде, входящей в состав живых тканей, происходят основные диэлектрические потери при действии на организм СВЧ излучений поскольку совпадает частота сантиметровых радиоволн.

Неодинаковые величины разных тканевых компартаментов, способных поляризоваться в ЭМП, обуславливают неравномерный ход кривой , отображающей зависимость ткани от ЭМ колебаний, воздействующих на нее. На зависимости можно выделить три участка, где кривая идет круче, чем в промежутках. Эти участки называют зонами дисперсии (релаксации) и их обозначают греческими буквами .

Первый участок (- дисперсия) соответствует низкочастотному диапазону до 1 кГц. Он обусловлен поляризацией внутриклеточных компартаментов, с которыми связаны сегнетоэлектрические свойства живых тканей. В силу значительной инерционности релаксационных процессов в доменах - компартаментах вращение этих гигантских диполей запаздывает относительно направления внешнего ЭМП даже на низких частотах, что проявляется в уменьшении по мере увеличения . Некоторый вклад в - дисперсию вносит релаксация зарядов на фасциях, внутриорганных соединительно тканных прослойках, клеточных поверхностях.

Второй участок (- дисперсия) отображает изменение поляризации макромолекул по мере повышения частоты внешнего ЭМП. В скелетной мышце -дисперсия наблюдается в диапазоне частот от до Гц. Снижение по мере повышения в этом диапазоне зависит от того, что все менее крупные макромолекулы не успевают поворачиваться в соответствии с частотой внешнего ЭМП, когда она не успевает превосходить той или иной полярной молекулы. Очевидно, что Гц является частотой соответствующей наименее инерционных пептидных молекул.

Третий участок (- дисперсия) приходиться на частоты выше Гц, чему соответствует . Поскольку воде свойственно несколько значений лежащих около 20 ГГц (явление многоструктурной воды), то изменение уменьшиться потому, что даже такие мелкие молекулы, как , не успевают совершать повороты с частотой, соответствующей частотному диапазону -дисперсии.

На более высоких частотах (до Гц) может проявляться электронная поляризация, характерная для атомов, и обусловленная смещением оболочек у атомов.

В живых тканях, ввиду того, что им наряду с электропроводностью присущи другие свойства, под действием внешнего ЭМП возникают и токи проводимости, и токи смещения. По мере повышения частоты ЭМП роль тока смещения в биологическом эффектах электромагнитного излучения возрастает и становиться ведущей на частоте выше Гц. Сказанное выше хорошо характеризует различные виды высокочастотной электротерапии: если при диатермин (МГц) тепловой эффект связан прежде всего с током смещения.

Клеточные мембраны принято рассматривать по аналогии с диэлектриком в виде плоских конденсаторов. В этой связи поведение мембран при воздействии ЭМП характеризует электрическая емкость, приведенная к 1 мембранной поверхности. Эта величина () называется удельной емкостью БМ и имеет размерность . Очень велика плазмолемы гладкомышечного волокна млекопитающих - около 30 . Нервные волокна многих животных имеют плазматические мембраны, … которых находиться в пределах единиц .

Чтобы учесть зависимость энергетических преобразований на емкости от частоты внешнего ЭМП, используется понятие емкостного сопротивления:

Эта величина служит коэффициентом преобразования энергии внешнего ЭМП в электрическую энергию, накапливаемую конденсатором в течение половины периода воздействующих ЭМ колебаний. 4 см больше … БМ, тем меньший электрический заряд она способна удержать на себе и тем меньшая доля энергии внешнего ЭМП превратиться в электрическую энергию.

78. Магнитные свойства живых тканей

Любая среда является одновременно электриком (проводником или диэлектриком) и магнитиком. Магнитные свойства биологических тканей характеризуются довольно низкой величиной магнитной проницаемости () близкой к 1, поскольку основные химические компоненты биосред (белки, углеводы, липиды, вода) относятся к диамагнетикам. Их почти нулевая магнитная восприимчивость () служит одной из причин недостаточного внимания к изучению магнитных процессов в организме. У человека обнаружены ферритинсодержащие включения (в надпочечниках). Их функции остаются не выясненными. Предполагают, что подобные ферромагнитные включения присутствуют в тканях пчел, бабочек, дельфинов, обеспечивая их пространственную ориентацию. Вопрос о ферромагнитных свойствах биологических систем далеко от его разрешения.

Вместе с тем в исследованиях биомагнетизма недостаточно учитывается важное положение электродинамики, согласно которому коэффициентом преобразования энергии ЭМП в магнитную энергию среды, подвергнутой его воздействию, является не сама по себе, а индуктивность, отображающая как собственно магнитные свойства, так и ее геометрические особенности. Даже диамагнетики способны осуществлять подобное преобразование довольно эффективно, если образуют структуры в форме катушек, по которым течет электрический ток, наведенный внешним полем. (Аналог магнитные поля катушек из медного провода) Для учета зависимости энергетических преобразований на индуктивности на частоте внешнего ЭМП введено понятие индуктивного сопротивления:

где - длина катушки, по которой течет ток; S - площадь каждого витка; n - число витков в катушке.

Оказалось, что 1 мембраны аксона кальмара толщиной примерно 10 нм имеет Гн. Такая индуктивность присуща медному проводу длиной в 1 милю (1600м), намотанный на железный сердечник массой в 1 фунт (~450гр). Это очень высокая индуктивность.

И все же биофизические основы биомагнитных явлений еще не изучены, хотя с давних пор люди верили в действие магнитных полей на биологические системы. О лечебных свойствах магнита писал Аристотель (IV в до н.э.) Гален (III в до н.э.) применял магнит как средство от запоров. Авиценна (XI в) воздействовал на патологические процессы в селезенке Парацельс (XIV в) применял магнит при многих болезнях, будучи уверенным в том, что "… магнит оттягивает грыжу и исцеляет перелом, вытягивает желтуху и оттягивает водянку".

С.П. Боткин в 70 годах прошлого века утверждал, что магнит может создавать ощущение зуда, покалывания или боли, восстанавливать нарушенную чувствительность кожи, купировать судороги, вызывать общую слабость и сонливость. В зависимости от исходного состояния пациента магнит зачастую приводил к эффектам, противоположным тем, на которые рассчитывал врач, например вместо ослабления боли усиливал ее.

Современная медицинская литература богата сообщениями о лечебном действии магнитного поля при атеросклерозе и гипертонической болезни, бронхиальной астме, неврозе и многих других патологических состояниях. Однако нельзя быть уверенным в том, что в благоприятном действии магнита нет больше доли психотерапевтического воздействия на больного самой процедурой магнитотерапии. До сих пор в биофизике нет достаточно обоснованной рабочей гипотезы, которую можно положить в основу научного изучения биомагнетизма.

79. Дисперсия импеданса живых тканей

Отражением современного состояния магнитобиологии является общепринятое мнение, будто электрический импеданс (полное сопротивление переменому току) живых тканей имеет только две состаляющие - резистивное и емкостное сопротивление:

Индуктивное сопротивление не учитывается.

Как и в электрических цепях, импеданс биологических систем зависит от частоты переменного тока. Для живых тканей характерно уменьшение импеданса по мере увеличения этой частоты. Зависимость Z от получила название дисперсии импеданса. Между дисперсиями электропроводности, диэлектрической проницаемости, о которых идет речь шла выше, и дисперсией импеданса существует связь, но это не идентичные процессы. Например, крутые и пологий участки дисперсий и Z в одной и той же ткани обычно не совпадают. Дисперсия импеданса отображает, очевидно, более широкий круг электромагнитных процессов в биологических системах (возможно и индуктивные свойства). Во всяком случае, она сильнее зависит от разнообразных нарушений жизнедеятельности тканей.

По кривой дисперсии импеданса возможно судить об уровне обмена веществ и его отклонениях от нормы. В медико-биологических экспериментах и клинике все шире применяется метод изучения дисперсии Z для оценки жизнеспособности органов и тканей. Обычно измеряют всего два значения Z: на низкой (Гц) и высокой (Гц) частотах, соответствующим тем частотным диапазонам, где кривая дисперсии импеданса идет более полого, чем на среднечастотном участке крутого спада. Отношение этих величин называют коэффициентом поляризации ():

где - импеданс на низкой частоте; - на высокой частоте.

Жизнеспособная ткань имеет , причем тем больше, чем выше уровень обмена веществ в данной ткани и чем лучше сохраняется ее структурная целостность. При отмирании ткани ее стремиться к 1.

Кроме используют, так называемый коэффициент частотной дисперсии ():

Метод исследования дисперсии импеданса применяют для оценки жизнеспособности тканевых трансплантантов при пересадке органов. Изучают возможности использования его для определения зон раневого процесса в ходе хирургической обработки раны, для характеристики ишемии, отека и т.д.

Широкое распространение в медицинской практике нашла методика реоплетизмографии. Посредством ее изучают активную составляющую импеданса (R), которая зависит прежде всего от кровенаполнения исследуемого органа. Чем больше крови содержится в органе, тем ниже (при прочих равных условиях) его электрическое сопротивление. Это позволяет оценивать органное кровообращение путем измерения R органа переменному току.

По динамике электрического сопротивления кожи судят о так называемых кожно-гальванических реакциях (КГР), в которых отображаются эмоции, утомление и другие состояния организма. Наконец специалисты в области рефлексотерапии измеряют электрическое сопротивление кожи для нахождения "активных точек", воздействие на которые оказывают разнообразные лечебные эффекты. Есть и другие применения в медицинской практике тех или иных способов измерения электрического импеданса, его составляющих и арсенал различных методов исследования электрических свойств биологических систем неуклонно нарастает.

Размещено на Allbest.ru


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.