Определение жизни

История развития представлений о живом в биологии, особенности каждого этапа и выдающиеся представители науки. Определение жизни с точки зрения теории информации. Специфика физического и химического обоснования жизни как особой изолированной системы.

Рубрика Биология и естествознание
Вид реферат
Язык русский
Дата добавления 10.08.2015
Размер файла 26,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Размещено на http://www.allbest.ru/

Введение

Заметим, что вопрос об определении жизни является далеко не простым. Многие авторы, например, определяют живое вещество как сложные молекулярные агрегаты - белковые тела, обладающие упорядоченным обменом веществ. В частности, такой точки зрения придерживается академик А.И. Опарин, много занимавшийся проблемой происхождения жизни на Земле.

Конечно, обмен веществ есть существеннейший атрибут жизни. однако вопрос о том, можно ли сводить сущность жизни прежде всего к обмену веществ, является спорным. Ведь и в мире неживого, например у некоторых растворов, наблюдается обмен веществ в его простейших формах.

Последние 20 лет ознаменовались замечательными успехами генетики. В значительной степени понятным стал удивительный механизм наследственности. Выявлена решающая роль нуклеиновых кислот, в особенности дезоксирибонуклеиновой кислоты (ДНК), в передаче («кода» наследственных признаков от «родителей)» к «детям». Механизм передачи наследственных признаков оказался одинаковым как для самых низших форм живых существ, так и для высших. Весьма примечательным исключением пока является известный факт наличия у вируса мозаики табака и у некоторых других вирусов не двух, а только одной, более простой нуклеиновой кислоты - рибонуклеиновой кислоты (РНК). У этих вирусов РНК выполняет функции и ДНК, и РНК. Поразительное свойство тождественного воспроизводства» при помощи такого управляющего кибернетического устройства, как ДНК, - несомненно существенный атрибут жизни.

Вопрос об определении понятия «жизнь» стоит очень остро, когда мы обсуждаем возможность жизни на других планетных системах, что является главным предметом нашей книги. На это обстоятельство особенное внимание обращал академик А.Н. Колмогоров - выдающийся математик и крупнейший специалист по кибернетике. Он подчеркивал, что биологические науки до последнего времени занимались исследованием живых существ, населяющих Землю и имеющих общую историю возникновения и развития. Естественно, что понятие «жизнь» отождествлялось при этом с конкретным ее воплощением в конкретных условиях нашей планеты. Но в наш век астронавтики открывается принципиальная возможность обнаружить в Космосе такие формы движения материи, которые обладают практически всеми атрибутами живых, а может быть, даже мыслящих существ. Однако мы ничего не можем заранее сказать о конкретных проявлениях этих форм движения материи. Поэтому сейчас возникает настоятельная потребность дать такое определение понятия жизнь» которое не было бы связано с гипотезами о конкретных физических процессах, лежащих в ее основе. Следовательно, возникает потребность в чисто функциональном определении понятия «жизнь».

Эта задача далеко не простая, и вполне удовлетворительного функционального определения основного понятия жизни пока не существует. Однако первые, и притом, как нам представляется, достаточно успешные, шаги в этом направлении уже сделаны.

1. История развития представлений о живом в биологии

В XVII-XVIII вв. широкое распространение получил витализм (от лат. vitalis - жизненный), основоположником которого считают древнегреческого философа Аристотеля. Сторонники этого направления предполагали, что организмам присуща особая «жизненная сила», которая управляет всеми жизненными процессами. Как только она покидает тело, организм начинает разрушаться. Виталисты считали, что живые организмы состоят из органических веществ, которые невозможно получить искусственным путем, что к живым организмам неприменим закон сохранения энергии.

Однако эти утверждения были опровергнуты немецким химиком Ф. Велером, который в 1829 г. впервые синтезировал в лабораторных условиях органическое вещество - мочевину. В настоящее время искусственным путем получено свыше 100 000 органических веществ. К.А. Тимирязев (1863-1920), исследуя процесс фотосинтеза, доказал применимость закона сохранения энергии к живым организмам.

В XVIII в. был распространен механистический взгляд на природу, в соответствии с которым живые организмы рассматривались как особые механизмы, отличающиеся от созданных человеком только сложностью строения.

Ф. Энгельс рассматривал жизнь как особую форму движения материи. Единство живой и неживой природы обусловлено прежде всего тем, что в состав тел живой и неживой природы входят одни и те же химические элементы. Организмы существуют в единстве с окружающей средой, так как получают из нее все необходимые элементы и энергию в процессе обмена веществ.

Своеобразие живых организмов Энгельс видел именно в наличии в их составе белков и в обмене веществ с окружающей средой. Эти признаки живых организмов отражены в определении жизни, сформулированном Энгельсом: «Жизнь есть способ существования белковых тел, существенным моментом которого является постоянный обмен веществ с окружающей их внешней природой, причем с прекращением этого обмена веществ прекращается и жизнь, что приводит к разложению белка».

С развитием науки определение живого уточнялось. Так, отечественный ученый М.В. Волькенштейн предложил следующее определение: «Живые тела, существующие на Земле, представляют собой открытые, саморегулирующиеся и самовоспроизводящиеся системы, построенные из биополимеров - белков и нуклеиновых кислот».

Было установлено, что нуклеиновые кислоты, открытые позже белков, также входят в состав всех организмов и являются необходимым компонентом живого. Любой живой организм - открытая система, так как нуждается в поступлении пищи и энергии из окружающей среды и выделении продуктов жизнедеятельности. Живые организмы обладают саморегуляцией, то есть поддерживают постоянство своего химического состава, структуры, свойств. Все организмы размножаются, воспроизводят себе подобных, обладают раздражимостью.

2. Определение жизни с точки зрения теории информации

При изучении процессов, лежащих в основе жизнедеятельности всех организмов, от простейших до самых сложных, А.А. Ляпунов исходит из представлений кибернетики. Внимательный анализ показывает, что любое проявление жизни можно перевести на язык науки об управляющих процессах. Характерной особенностью управляющих процессов является то, что передача по определенным каналам небольших количеств энергии или вещества влечет за собой действия, заключающиеся в преобразовании значительно больших количеств энергии или вещества. Но кибернетика как раз и занимается изучением процессов управления и строением управляющих систем. Поэтому вполне естественно и даже необходимо при анализе процессов жизнедеятельности исходить из представления кибернетики.

Заметим еще, что такие биологические понятия, как наследственность, раздражимость и т.д., представляют собой не что иное, как конкретизацию таких общих кибернетических понятий, как накопление и хранение информации, управляющая система, обратная связь, канал связи и др.

А.А. Ляпунов считает, что управление, понимаемое в широком, кибернетическом смысле, является самым характерным свойством жизни безотносительно к ее конкретным формам. Тем самым он де лает попытку дать функциональное определение понятия «жизнь».

Согласно этой концепции, «живое вещество определяется следующим образом. Состояние всякого вещества описывается набором целого ряда физико-химических характеристик: массой, химическим составом, энергией, электрическими и магнитными свойства ми и др. Вообще говоря, эти характеристики будут с течением времени меняться. Вещества, у которых усредненные за подходящий интервал времени значения характеристик меняются мало по сравнению с другими веществами, обладающими примерно такими же значениями характеристик, Ляпунов называет «относительно устойчивым». Причиной устойчивости могут быть либо особенно благоприятные внешние условия (например, постоянная температура внешней среды), либо внутренние реакции вещества на внешние воздействия, направленные на сохранение его состояния. Реакции такого типа Ляпунов называет «сохраняющими». Именно последний тип устойчивости и лежит в основе жизнедеятельности всех организмов. В самом деле, для жизни характерна огромная «приспособляемость», «адаптация» к внешним условиям и их изменениям. В ряде случаев живые организмы активно преобразуют окружающую их среду, создавая подходящие условия для своей жизнедеятельности. Так, например, отдельные виды микроорганизмов могут «локально» повышать температуру окружающей их среды. Вся эта «адаптация» жизни достигается живой материей путем огромного количества сохраняющих реакций.

На языке кибернетики сохраняющие реакции можно описать так: вещество воспринимает информацию о внешних воздействиях в виде некоторых кодированных сигналов, перерабатывает ее и по определенным каналам связи посылает также в виде «сигналов» новую информацию. Последняя вызывает такую внутреннюю перестройку самого вещества, которая способствует сохранению его характеристик.

Сигналы должны носить «дискретный» характер, т.е. каждый из них может иметь конечное число возможных значений, причем число сигналов конечно. «Материальным воплощением» такого сиг нала может быть, например, некоторый физический процесс. При переработке информации происходит изменение «материального воплощения» сигналов.

Устройство, в котором происходит переработка информации, может быть названо «управляющей системой». Эта система имеет дискретную природу и состоит из некоторого, вообще говоря, очень большого количества «входных» и «выходных» элементов, связанных «каналами связи», по которым могут передаваться сигналы. Система, служащая для хранения информации, называется «запоминающим устройством» или «памятью». Такая система может, например, состоять из отдельных элементов, каждый из которых будет находиться в одном из нескольких устойчивых состояний, причем состояния элементов меняются под действием поступающих сигналов. Когда некоторое количество таких элементов находится в каких-то определенных состояниях, можно говорить, что «информация записана в памяти». дело обстоит так, как будто бы информация записана в виде текста конечной длины при помощи алфавита с конечным числом знаков.

При выработке «ответов», обеспечивающих сохраняющие реакции тела на внешние воздействия, управляющая система воспринимает информацию об этих воздействиях, «расчленяет» ее на более мелкие части и «сопоставляет» с информацией, которая в ней уже «записана». В результате и в зависимости от такого сопоставления формируется «ответная Информация». Отсюда следует, что управляющая система будет тем более «гибкой», чем больше информации в ней записано, т.е. чем больше объем ее «памяти».

Важным свойством сохраняющих реакций является их быстрота. Последняя должна быть хорошо согласована со скоростью внешних воздействий на тело, которые, вообще говоря, могут меняться в довольно широких пределах. Это требует достаточно большого объема памяти в управляющей системе.

Ряд соображений, на которых мы здесь останавливаться не будем, приводит к требованию, чтобы размеры материальных носите лей информации были очень маленькими. С другой стороны, необходимо, чтобы хранение информации в памяти управляющей системы было надежным (иначе не будет обеспечена устойчивость тела). Эта означает требование высокой стабильности состояний элементов, из которых складывается память. Отсюда Ляпунов делает, на наш взгляд, совершенно правильный вывод, что устойчивыми материальными носителями информации могут быть отдельные молекулы, состоящие из достаточно большого количества атомов. Такие молекулы представляют собой квантованные системы. для изменения состояния подобной молекулы требуется, чтобы она поглотила достаточно большую порцию энергии (например, больше 0,1 эв). Поэтому, например, беспорядочные тепловые движения, энергия которых значительно меньше, не могут изменить состояния такой молекулы.

Ляпунов характеризует жизнь как «высокоустойчивое состояние вещества, использующее для выработки сохраняющях реакции информацию, кодируемую состояниями отдельных молекул».

Чтобы сохраняющие реакции были возможны, необходимо, очевидно, чтобы организм обладал некоторым запасом энергии, при чем этот запас должен устойчиво сохраняться. С другой стороны, благодаря действию законов термодинамики во всякой замкнутой системе энергетические уровни (определяемые, например, темпер а турой) должны выравниваться. Следовательно, организм должен противодействовать термодинамическим процессам, что требует непрерывной затраты энергии. Таким образом, для устойчивого поддержания своего состояния всякий организм должен получать энергию извне.

Важной термодинамической характеристикой всякого тела является его энтропия. Если бы живое вещество представляло собой замкнутую (т.е. термодинамически изолированную) систему, в нем непрерывно увеличивалось бы содержание энтропии. Это повлекло бы за собой такое изменение его физических и химических характеристик, которое в конце концов прекратило бы всякую жизнедеятельность. Следовательно, живой организм должен систематически удалять накапливающуюся энтропию. Поэтому живое вещество должно непрерывно обмениваться с окружающей средой энергией и энтропией, что достигается при помощи обмена веществ. Сам обмен веществ регулируется управляющими системами специального назначения, использующими для этого запасы информации.

При таком понимании обмена веществ как способа поддержания жизнедеятельности организма становится довольно ясной несостоятельность старых представлений, фактически отождествляющих жизнь с обменом веществ. Такое отождествление, на наш взгляд, решительно ничего не дает для понимания сущности жизни.

Характернейшей особенностью живого вещества является то, что оно состоит из отдельных структурных единиц-организмов. Каждый такой организм как в информационном, так и в энергетическом смысле представляет собой в значительной степени обособленную единицу и вместе с тем имеет свою собственную структуру. Ляпунов связывает это с дискретной структурированностью управления. Под этим он понимает иерархическую систему подчинения управляющих систем. Функционирование систем более «высокого» уровня изменяет состояние или настраивает системы более «низкого уровня».

Расчленение живой материи на клетки, органы, организмы, популяции, виды и т.д. соответствует иерархии управляющих систем. Каждая из этих структурных единиц живой материи управляется своей «автономной» системой, «энергично воздействующей на все, что подчинено, и в свою очередь подчиняющейся медленно действующей управляющей системе высшей иерархической единицы».

Следует различать системы управления в отдельных организмах и в совокупности организмов (популяции, виды). В первом случае сложная управляющая система состоит из частей, в свою очередь являющихся управляющими системами «низшего яруса». Во втором случае мы имеем очень большое количество более или менее независимых, статистически равноправных систем, взаимодействующих при случайных встречах и коллективных действиях. Такой способ управления, называемый Ляпуновым статистическим», не является быстродействующим, в отличие от первого, «структурного» способа управления отдельными организмами. Как следствие развитых представлений получается, что «надорганизменные» образования (например, виды) значительно более устойчивы, чем отдельные организмы (которые более или менее быстро погибают). Но высокая устойчивость надорганизменных образований возможна лишь при условии появления новых организмов, приходящих на смену ста рым, т.е. при условии размножения.

Чтобы каждый возникший таким образом организм был устойчив, он должен иметь запас информации, для обеспечения сохраняющих реакций. Совершенно невероятно, чтобы этот запас информации возник в организме самопроизвольно. Новый организм должен получать необходимый для его жизнедеятельности запас информации, а также первоначальную управляющую систему, так сказать, в «готовом виде». Откуда? Только от других подобных организмов, являющихся его «родителями». Отсюда следует важнейший вывод: размножение живых организмов сопровождается «самовоспроизведением информации, передачей от «родителей» к «потомству».

В этом пункте кибернетический подход к проблеме жизни, развиваемый Ляпуновым, непосредственно смыкается с достижениями молекулярной генетики, выявившими определяющую роль ДНК в передаче наследственных признаков. Огромное многообразие комбинаций четырех оснований молекулы ДНИ и представляет собой тот запас информации, который передается от «родителей» к «потомкам».

Из кибернетики (и не только кибернетики) хорошо известно, что всякая передача информации происходит на фоне помех, частично ее искажающих. Не составляет исключения и передача наследственной информации. В этом случае искажения в передаче информации носят название «мутаций». Под влиянием таких «искажений при передаче» действие управляющей системы может измениться. Это повлечет за собой изменение сохраняющих реакций, что в свою очередь приведет к изменению характера взаимодействия организма с окружающей средой. Такие изменения могут радикально изменить как в ту, так и в другую сторону вероятность сохранения данного индивидуума в борьбе за существование. Последнее обстоятельство является движущей силой естественного отбора. Таким об разом, с точки зрения кибернетики можно самым общим образом и с единой точки зрения понять основные биологические категории наследственности, наследственной изменчивости и естественного отбора. В перспективе вырисовываются контуры стройной математической теории дарвиновской эволюции. Идеи Ляпунова, во нашему мнению, следует рассматривать как первый, многообещающий набросок этой теории.

Имеются все основания полагать, что в будущем синтез развитых кибернетических и био-физико-химических представлений при ведет к полному пониманию сущности жизни. Пока же мы от этого еще далеки, как это хорошо понимал и сам Ляпунов. Тем не менее для анализа проблемы происхождения жизни на Земле и вероятного многообразия проявлений ЖИЗНИ (в том числе и разумной) во Вселенной уже сейчас идеи Ляпунова, а также примыкающие к ним идеи Колмогорова (к обсуждению которых мы вернемся в конце этой книги) имеют большое значение.

3. Физическое определение жизни

Выделим среди множества возможных физических определений жизни подмножество экзотических определений жизни и дополнение к этому подмножеству которое назовем подмножеством нормальных определений жизни. По определению, физическое определение жизни является экзотическим, если при некотором каноническом преобразовании живое может стать мертвым или мертвое - живым. Подмножество нормальных определений живого не пусто. Например, если различение живого и мертвого производится по величине формальной (точной) энтропии S: S (P(t))=-SpP(t) lnP(t), то величина S не будет изменяться при унитарных преобразованиях матрицы плотности: S(P)=S(P'), изменение же этой величины со временем может быть индикатором изменения жизни.

Описание с помощью матрицы плотности возможно как для изолированных, так и для неизолированных систем - множество физических определений жизни, как экзотических так и нормальных, может вводиться во всех этих случаях. Однако, в изолированной системе изменение со временем матрицы плотности весьма не произвольно - это изменение по определению подчиняется уравнению idtP(t)=[P(t), H(t)]. (1).

Легко обосновать следующий тезис: При любых нормальных автономных определениях живого в изолированных системах живое не может стать со временем неживым, неживое - живым. В самом деле, если бы переход из неживого состояния в живое, или обратный переход, был бы обнаружим в указанном выше смысле, то, по свойству всех нормальных определений жизни, этот переход был бы обнаружим и при подстановке в эти определения преобразованной посредством любых унитарных преобразований полной матрицы плотности. Однако среди канонических преобразований существует преобразование, переводящее матрицу плотности в данный момент времени в матрицу плотности соответствующую начальному моменту времени. Тем самым все функции Bn(P) будут равны своим значениям в нулевой момент времени, и никогда не покажут наличие изменений - эти функции будут интегралами движения уравнения (1). Наличие множества интегралов движения у (1) было очевидно уже авторам этого уравнения, в 1929 году. Более того, аналоги указанных интегралов движения имелись и в доквантовой физике - в классической механике, в силу уравнения Лиувилля, сохраняются интегралы по фазовому пространству от любых функций, зависящих только от вероятности состояний системы. Именно эти дополнительные интегралы движения, а не сложность решения (1), препятствуют сведению биологии к фундаментальной физике, по крайней мере для некоторых определений живого.

Имеется еще ряд «парадоксальных» тезисов, родственных уже высказанному. Например, представим себе изолированную систему, в которой выделена некоторая подсистема. Для подсистемы имеется множество нормальных определений живого по матрице плотности p подсистемы {bn(p)}. Поскольку матрица плотности подсистемы является функцией матрицы плотности всей системы P, указанное множество принадлежит множеству всех определений живого для изолированной системы, и можно ставить вопрос, в какое из подмножеств определений живого для всей системы попадает множество {bn(p)}. Поскольку подсистема может быть неизолирована от остальных частей системы, уравнение (1) к описанию этой подсистемы может быть неприложимо, а потому при некоторых нормальных определениях живого bn переходы между живым и неживым будут возможны. Однако, очевидно, каждое такое нормальное определение будет для системы в целом экзотическим, для всех таких bn будет bn=Be. Попадание в класс экзотических определений на уровне всей системы следует уже из того, что переходы между живым и неживым для изолированной системы возможны, как было показано, только при экзотических определениях живого. Сама возможность такого непрямого соответствия классификаций на уровне подсистемы и системы в целом обусловлена тем, что при унитарных преобразованиях разбиение на подсистемы, вообще говоря, не сохраняется - несоответствие классов может иметь место и в случае когда система в целом не является изолированной.

Если имеется некоторая процедура сведения биологии к химии, а уже химии - к фундаментальной физике, и в итоге такого сведения переходы между живым и неживым оказываются возможными, то соответствующие данной процедуре поэтапного сведения определения жизни являются экзотическими: проводимый анализ сохраняется и в случае если мы ставим условие сводимости биологии к химии, если только не предполагать несводимости химии к фундаментальной физике.

Наряду с обсуждавшимися выше автономными, не зависящими явно от времени, могут рассматриваться и неавтономные, явно зависящие от времени, физические определения живого. Среди соответствующих функций матрицы плотности и времени вновь можно выделить подмножества соответствующие нормальным и экзотическим определениям живого. Примером нормального неавтономного определения живого может быть определение посредством функции от времени и энтропии: Bn=f (t, S). Для неавтономных нормальных определений живого утверждение о невозможности перехода между живым и неживым состояниями систем уже не имеет места. Однако, поскольку в силу (1) изменение матрицы плотности во времени само является каноническим преобразованием начальной матрицы плотности, и может быть устранено заведомо существующим для унитарных преобразований обратным каноническим преобразованием, в рамках указанного класса неавтономных нормальных определений живого для всякой изолированной системы будет иметь место соотношение Bn (t, P(t))=Bn (t, P(0)). То есть, будет возможно регистрировать, за счет подбора надлежащим образом изменяющегося со временем определения живого, динамику переходов между живым и неживым состоянием системы, а также регистрировать корреляцию указанных переходов с начальным квантовым состоянием системы, но говорить о сводимости динамики живого к уравнению (1) не будет оснований поскольку никакие изменения (1), допустимые в фундаментальной физике изолированных систем, в частности обращение правой части (1) в ноль, нисколько не изменят динамики живого при любых фиксированных неавтономных, но нормальных, определениях живого для изолированных систем. Независимость динамики живого от конкретного вида правой части уравнения (1) прямо проявляется для автономных определений живого - в форме невозможности переходов между живым и неживым состоянием изолированной системы при нормальных определениях живого, но имеет место и для любых неавтономных нормальных определений.

биология физический химический

Заключение

В полной мере определить понятие «жизнь» не только не просто, а практически невозможно.

Сейчас распространенным определением для понятия «жизнь» является химическая система, подчиняющаяся дарвиновским законам эволюции. Это достаточно точно, если считать, что теория эволюции Дарвина является основой всей жизни на Земле. Но при более тщательном рассмотрении даже это определение не всегда верно.

В недавно опубликованной работе «Происхождение жизни и эволюция биосферы» (Origins of Life and Evolution of the Biosphere) исследователи Кэрол Клеланд и Крис Чайба отмечают, что «мулы не способны размножаться и, следовательно, не подчиняются законам эволюции Дарвина». А физик Фримэн Дайсон утверждает, что на ранних этапах жизнь на Земле не развивалась путем точного воспроизведения. Другими словами, могли существовать организмы, у которых не происходила наследственная передача изменений, вызванная генетическими мутациями, и, следовательно, закон Дарвина для них не выполнялся. Но такие существа, если они когда-либо были, несомненно, являлись живыми.

Клеланд и Чайба полагают, что проблема определения жизни лежит в фундаментальных понятиях, характеризующих ее. Список свойств не подходит для существа, созданного природой. Как, например, можно описать воду: «влажная», «бесформенная», «безвкусная», «утоляющая жажду». Однако эти характеристики могут подойти не только для воды. Но ситуация радикально меняется, когда мы оперируем химическими терминами. В этом случае вода однозначно определяется формулой H2O. Похожая проблема возникает и с термином «жизнь». Возможно, на метауровне существует более глубокое понятие, которое мы пока не знаем, но когда-нибудь обязательно откроем.

Физик Пол Дейвис в своей книге «Пятое чудо» (Fifth Miracle) предположил, что ключ к пониманию жизни может лежать в совокупности ее информационного содержания (например, в гигабайтах кода расшифрованного ДНК). Как же химические и физические процессы создают эту информацию? Очень просто: дарвиновская эволюция создает новую информацию в наборе свойств клетки. Но как тогда возник первичный набор информации, необходимый для развития жизни? Ответа на этот и другие вопросы пока нет, и неизвестно, появятся ли они. Ясно лишь, что для исследования внеземных миров необходим более четкий базис для определения биологической жизни.

Литература

1. Карпенков С.Х. Концепции современного естествознания - М., 2000

2. Концепции современного естествознания / Под ред. С.М. Самыгина - М., 1999

3. ЛяпуновА.А. Об управляющих системах живой природы и общем понимании жизненных процессов М., 1962.

4. Найдыш В.М. Концепции современного естествознания - М., 2003

5. Шноль С.Э., Четверикова Е.П., Рыбина В.В. Молекулярная и клеточная биофизика, М., Наука, 1977

6. Шноль С.Э.и др. Биофизика М., 1992

Размещено на Allbest.ru


Подобные документы

  • Подходы к решению вопроса о сущности жизни: механицизм и витализм. Единство химического состава и различие в соотношении элементов в живом и неживом. Обмен веществ как признак живого организма. Концепции происхождения жизни и развития биосферы Земли.

    реферат [27,3 K], добавлен 14.01.2010

  • Определение родства организмов в биологии посредством их сравнения во взрослом состоянии, эмбрионального развития и поиска переходных ископаемых форм. Систематика органического мира и бинарная классификация Линнея. Теории происхождения жизни на Земле.

    реферат [717,6 K], добавлен 20.12.2010

  • История представлений о возникновении жизни на Земле. Гипотезы возникновения жизни на Земле. Образование первичных органических соединений. Что считать жизнью? Эволюция жизни на Земле. Появление высокоорганизованных форм жизни.

    реферат [1,1 M], добавлен 17.05.2003

  • Две точки зрения на проблему происхождения жизни. Идея о вечности жизни, инициированная результатами опытов Ф. Реди (XVII в.), провозгласившим принцип: все живое из живого. Формирование Солнечной системы. Механизм, инициирующий звездообразование.

    реферат [674,2 K], добавлен 25.03.2016

  • Предмет, задачи и методы биологии, история зарождения и современные достижения в данной области знания. Человек как объект биологии, характеристика и обоснование его биосоциальной природы. Теории происхождения жизни, иерархические уровни ее организации.

    презентация [3,7 M], добавлен 25.12.2014

  • Характеристика натуралистической, физико-химической, эволюционной биологии как элементов науки естествознания. Изучение постулатов теории Дарвина: изменчивость, наследственность, естественный отбор. Анализ структурных уровней организации жизни.

    реферат [21,6 K], добавлен 20.02.2010

  • Содержание и отличительные признаки теорий возникновения и развития жизни на Земле: самозарождения, биохимической эволюции, панспермии, стационарного состояния жизни, креационизма. Преимущества и недостатки каждой теории, история их становления.

    презентация [224,2 K], добавлен 17.12.2013

  • Краткий очерк жизни и личностного становления выдающегося английского этолога, эволюциониста и популяризатора науки Клинтона Ричарда Докинза. Сущность теории возникновения и развития жизни на Земле, ее оценка критиками и обществом на современном этапе.

    доклад [26,1 K], добавлен 25.11.2009

  • Библейские представления и развитие естествознания. Взаимоотношение времени и вечности в теории сотворения. Концепции возникновения жизни, их разновидности и особенности. Основные положения естественнонаучной теории, этапы зарождения жизни на Земле.

    курсовая работа [48,9 K], добавлен 11.11.2010

  • Докембрийский этап развития Земли. Условия, необходимые для возникновения и начала развития жизни на Земле. Возникновение жизни согласно гипотезе академика А.И. Опарина. Первые формы жизни на планете. Основные теории появления и развития эукариот.

    реферат [231,5 K], добавлен 25.07.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.