Физиология растений

Процессы превращения веществ и энергии внутри растительного организма как основные физиологические функции растения. Химический состав клетки. Строение, классификация и функции углеводов, липидов и аминокислот. Кинетика ферментативного катализа.

Рубрика Биология и естествознание
Вид курс лекций
Язык русский
Дата добавления 15.06.2010
Размер файла 188,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Вторым существенным показателем для характеристики влажности почвы является коэффициент завядания. Коэффициент завядания для данной почвы - это такая величина влажности почвы при которой в специально поставленных опытах наступает длительное завядание растения. Этот показатель зависит только от типа почвы. Чем легче почва (песчаные, супесчаные), тем полнее используется растениями имеющаяся в ней вода, собственная влагоемкость почвы при этом меньше, т.е. меньше воды находится в виде мертвого запаса, недоступного растениям. Наоборот, влагоемкость тяжелых глинистых почв выше, значит и мертвый запас воды в ней больше.

Поступление воды в растение. Двигатели водяного потока.

Корневая система распространяется в почве в вертикальном и горизонтальном направлениях. Особенности распространения зависят от видовых особенностей растения. Так, у пустынных растений корневая система распространяются вглубь на десять (а отдельные виды и на большее количество) метров, а у теневыносливых растений, растущих в нижнем ярусе леса, корневая система в основном располагается в ярусе до 0.5 метра, но вширь может занимать несколько квадратных метров.

Поступление воды в корневую систему растения и перемещение ее по тканям корня осуществляется путем пассивной диффузии. Поступление идет по градиенту концентрации, поэтому если в почве концентрация почвенного раствора выше, чем концентрация клеточного сока, то вода будет диффундировать не в растение, а из него, и наступит гибель растения. Такая ситуация может сложиться в результате передозировки минеральных удобрений, небрежного внесения минеральных удобрений, когда они рассыпаются неравномерно.

Корневая система имеет поглощающую или всасывающую зону - это зона корневых волосков. Поступив в клетку корневого волоска вода становится частью живой системы - клетки растения - и подчиняется закономерностям, действующим в живой клетке. Передвижение по растению определяется двумя основными двигателями водного потока в растении:

нижним двигателем водного потока или корневым давлением,

верхним двигателем водного потока или присасывающим действием атмосферы.

Корневое давление создается при переходе воды из коры корня в сосудистую систему корня при прохождении воды через пропускные клетки перицикла, из которых вода под давлением как бы впрыскивается в сосуды ксилемы. Доказательством этого служат явления гуттации и "плача растений".

Гуттация - это выделение капельно-жидкой влаги листьями через гидатоды в условиях затрудненного испарения.

Плач растения - это вытекание пасоки (воды с растворенными в ней минеральными веществами, находящейся в ксилеме) из стеблей растений со срезанными побегами. Механизм образования корневого давления по-видимому состоит из двух аспектов:

переноса воды по законам осмоса,

дополнительной сократительной деятельности актомиозиновых белков, находящихся в перицикле и паренхимных клетках корня.

Присасывающее действие атмосферы определяется концентрацией водяных паров в атмосфере. Этот показатель в атмосфере почти всегда меньше, чем в листе растения, за исключением условий повышенной влажности воздуха, например, во время дождя, тумана.

Определяющую роль в формировании верхнего двигателя водяного потока в растении играет водный потенциал Ґ (фэта).

Водный потенциалвыражает способность воды в данной системе, в том числе в почвенном растворе, или в клетке растения, или в атмосфере, совершить работу по сравнению с той работой, которую при тех же условиях совершила бы чистая вода.

Водный потенциал, являясь фактически мерой активности воды, определяет термодинамически возможное направление ее транспорта. Молекулы воды всегда перемещаются от более высокого водного потенциала к более низкому, подобно тому, как вода течет вниз. Водный потенциал имеет размерность энергии, деленной на объем, поэтому его выражают в барах или паскалях (1 атмосфера = 1,013 бар = 105 Па.106Па равны 1 мегаПа)

Химический потенциал воды - µw - это величина, производная от активности воды. Она выражает максимальное количество внутренней энергии молекул воды, которое может быть превращено в работу, измеряется в ДЖ. моль-1 и рассчитывается по уравнению:

µw = µw 0 + RT ln aw, где

µw 0 - химический потенциал чистой воды (принят равным нулю), R - газовая постоянная, T - абсолютная температура, aw - активность воды в системе.

В системе "почвенный раствор - растение - атмосфера" водный потенциал изменяется от самого высокого значения в почвенном растворе до самого низкого в воздухе. Вода переходит из растения в окружающий воздух в парообразном состоянии. В мезофилле листа имеются обширные межклеточные пространства и каждая клетка мезофилла хотя бы одной стороной граничит с таким межклетником. Вследствие испарения воды с влажных клеточных стенок воздух в межклетниках насыщен водяными парами, часть которых через устьица выходит наружу.

Передвижение воды по тканям корня.

Вода поглощается корневым волоском как пассивно (по законам осмоса), так и активно. Проникнув в корневой волосок, далее вода поступает в эндодерму. Переход воды по клеткам паренхимы корня до эндодермы осуществляется также по законам осмоса.

По Д.П. Сабинину переход воды внутри клетки и из клетки в клетку обуславливается разностью осмотического давления. В клетке всегда поддерживается такое состояние, когда в одной части протопласта А непрерывно проходят реакции синтеза, образования веществ, вследствие чего увеличивается концентрация веществ, а, следовательно, и осмотическое давление, в другой же части протопласта В происходит постоянное превращение осмотически активных веществ в осмотически неактивные (например глюкозы в крахмал), вследствие чего осмотическое давление в этой части клетки уменьшается. Возникающий ток воды и обуславливает возникновение гидростатической силы и передачу воды внутри клетки и от клетки к клетке.

Большая часть биоколлоидов клетки принадлежит к гидрофильным соединениям, способным к обратимым изменениям степени своей оводненности. Поглощая воду, коллоидная мицелла набухает, при отдаче же ею воды происходит отбухание. При этом в клетке развиваются весьма значительные силы, достигающие иногда сотен атмосфер.

Сила, которую нужно приложить к коллоидной системе, чтобы предотвратить поглощение ею воды, называется давлением набухания. Этому свойству биоколлоидов принадлежит важная роль в процессах поглощения протоплазмой воды, в передаче воды в вакуоль и в выделении воды клеткой.

При прорастании семян, например, обусловленном только явлением набухания, поглощение воды идет с силой до 105 килопаскаль.

Эндодерма - самый внутренний слой первичной коры, облекающий центральный цилиндр, часть эндодермы представлена тонкостенными клетками, называющимися пропускными. Именно через эти клетки вода под давлением проникает из клеток коры корня в центральный сосудистый цилиндр (ксилему).

Корневое давление зависит:

от условий влажности почвы (чем больше гидромодуль почвы, т.е. количество воды на единицу площади, тем интенсивнее идет поглощение воды растением),

от температуры почвы (ниже 12оС и выше 30оС поглощение воды замедляется),

от аэрации почвы (так как при нарушении аэрации ухудшается процесс дыхания, т.е. получения энергии клеткой, а, значит, и поглощения и передачи воды).

4. Передвижение воды по растению.

При передвижении по клеткам паренхимы корня вода обогащается минеральными веществами и в таком составе попадает в клетки ксилемы, скелетной основой которой являются сосуды и трахеиды. Сосуды, у которых нет протоплазмы, обладают высокой сосущей силой, пропорциональной осмотическому давлению содержащегося в них раствора.

Находящаяся в сосудах и трахеидах вода имеет форму тончайших нитей, которые своими верхними концами как бы подвешены к испаряющим клеткам листьев, а нижними концами упираются в паренхимные клетки корня. Для того, чтобы вода передвигалась вверх, необходимо, чтобы испаряющие клетки обладали достаточной величиной сосущей силы. В отсутствие этого условия возникает ток воды в сосудах в обратном направлении.

За счет того, что в атмосфере почти всегда содержится воды меньше, чем в растении, определяется явление отрицательного водного потенциала и, следовательно, сосущей силы атмосферы. Сосущая сила в испаряющих клетках достигает 2-4 тысяч килопаскаль.

Удерживание воды в сосудах ксилемы в виде нитей обуславливается силами когезии и адгезии.

Когезия - это прочное сцепление молекул воды между собой.

Адгезия - это прилипание молекул воды к гидрофильным стенкам клеток ксилемы.

При передвижении воды в клетках ксилемы возникает электрический заряд вдоль поверхностей раздела клеток (по мембранам). Электроосмос определяется наличием проницаемых мембран с системой пор разной величины и постоянной диффузии электролитов, которыми и является передвигаемая по ксилеме пасока (вода и растворенные в ней минеральные вещества).

Состав пасоки сильно варьирует в зависимости от вида растения и фазы его вегетации и фазы органогенеза. Пасока однолетнего травянистого растения и многолетнего древесного растения безусловно сильно отличаются друг от друга, так же как и пасока у одного и того же растения весной, летом и осенью. У ряда древесных растений человек использует весеннюю пасоку в своем питании (березовый сок, кленовый сок). Пасока, выделяющаяся при гуттации, имеет в своем составе очень мало минеральных веществ и сахаров, поскольку происходит их естественная фильтрация при прохождении пасоки через эпитему (ткань, выстилающую воздушную полость гидатоды).

Транспирация.

Завершающей частью водного обмена растений является транспирация, или испарение воды листьями, то есть верхний двигатель тока воды в растении. Это явление с физической стороны представляет собой процесс перехода воды в парообразное состояние и диффузию образовавшегося пара в окружающее пространство.

Транспирация выполняет в растении следующие основные функции:

это верхний двигатель тока воды,

это защита от перегрева,

это нормализация функционирования коллоидных систем клеток листа.

Транспирация характеризуется следующими показателями: интенсивностью, продуктивностью и коэффициентом.

Интенсивность транспирации - это количество воды, испаряемой растением с единицы листовой поверхности в единицу времени. Выражается формулой:

Тр= С г Н2О _

r м2.1час,

где Тр - интенсивность транспирации, С - градиент концентрации водяного пара между транспирирующей поверхностью и окружающим воздухом, r - сумма диффузионных сопротивлений листа (устьичного, кутикулярного и сопротивления пограничного слоя).

Сопротивление пограничного слоя зависит от ветра, при отсутствии ветра оно максимально, чем больше ветер, тем оно меньше.

Устьичное диффузионное сопротивление зависит от степени открытия устьиц.

Кутикулярное диффузионное сопротивление зависит от толщины кутикулярного слоя, чем она больше, тем больше сопротивление.

Продуктивность транспирации - это количество созданного сухого вещества на 1 кг транспирированной воды. В среднем эта величина равна 3 г/1 кг воды.

Транспирационный коэффициент показывает сколько воды растение затрачивает на построение единицы сухого вещества, т.е. этот показатель является величиной, обратной продуктивности транспирации и в среднем равен 300, т.е. на производство 1 тонны урожая затрачивается 300 тонн воды.

Очень важным моментом в процессе транспирации является действие абиотических факторов окружающей среды: влажности атмосферного воздуха и температуры воздуха.

Чем менее влажен атмосферный воздух, т.е. чем меньше его водный потенциал, тем интенсивнее будет идти транспирация. При 100% влажности воздуха его водный потенциал равен нулю. Уже при снижении влажности воздуха на 1-2% его водный потенциал становится отрицательной величиной, а при снижении влажности воздуха до 50% показатель водного потенциала выражается отрицательной величиной порядка 2-3 сотен бар в зависимости от температуры воздуха. При этом в клетках листьев показатель водного потенциала, как правило, выше нуля, поэтому диффундирование воды из межклетников в атмосферу наблюдается почти всегда.

Чем выше температура воздуха, тем выше будет и температура листа, при этом температура внутри клеток листа может быть на 10оС выше, чем в атмосфере. Происходит нагрев воды, находящейся в листе, что также способствует процессу испарения.

Регулировка транспирация происходит в растении по двум механизмам:

устьичная регуляция,

внеустьичная регуляция.

Наиболее существенной является устьичная регуляция, которая определяется как некоторыми физическими закономерностями, так и влиянием ряда факторов внешней среды и внутренней биохимией клеток листа.

С физической точки зрения основой испарения из устьица является физический механизм испарения с ограниченных поверхностей очень маленькой площади. При этом имеет значение величина снижения упругости водяного пара (F-f) и расстояние (l), на протяжении которого поддерживается эта разница, которая определяет градиент дефицита насыщения.

F-f

D = - --------

l

При этом скорость испарения V будет пропорциональна градиенту насыщения, а А - постоянная, определяемая прочими условиями, влияющими на скорость испарения:

F-f

V = А - --------

l

Поскольку речь идет об ограниченных поверхностях (устьице), то краевое испарение за счет меньшей величины l2 будет выше, чем в центре, т.е.:

F-f F-f

--- - - -----

l2 l1

Применительно к испарению с площади круга формула скорости испарения принимает вид

V = k R2,

где k - значение всех прочих факторов, определяющих скорость испарения, а R - радиус круга.

При испарении с малых поверхностей, когда доля участия краевого испарения значительна, формула видоизменяется в

V = k Rn,

где n - положительное число между 1 и 2, т.е.2 n1. В случае малых площадей, таких как отверстие устьичной щели, n становится равным 1. Таким образом определяющим становится фактор k, т.е. суммарное значение факторов окружающей среды и суммарное количество устьиц на листе.

В устьичной транспирации ведущими факторами являются:

количество устьиц на единицу листовой поверхности,

форма листа (чем более причудлива форма листа, тем больше его площадь, а, значит, и количество устьиц),

наличие ионов К+ (чем выше концентрация, тем больший приток воды в замыкающие клетки устьица и тем шире устьичная щель),

наличие абсцизовой кислоты (чем выше концентрация этого гормона старения, тем меньше раскрытие устьица) (пример - мутант томата wilty),

концентрация углекислого газа в подустьичной полости (чем ниже концентрация, т.е. меньше 0,03%, находящихся в воздухе, тем больший приток воды в замыкающие клетки устьица и тем шире устьичная щель),

наличие солнечного света (на свету крахмал превращается в простые сахара, т.е. концентрация клеточного сока выше, поэтому наблюдается больший приток воды в замыкающие клетки устьица и раскрытие устьичной щели),

наличие и скорость ветра (непосредственно к испаряющей поверхности прилегает слой воздуха, в котором водяной пар постепенно испаряется далее в атмосферу, при этом в безветренную погоду скорость испарения выражается линейной зависимостью между дефицитом насыщения воздуха и расстоянием от испаряющей поверхности. Однако, при наличии ветра, который "сдувает" испаряющиеся молекулы воды, происходит увеличение дефицита насыщения воздуха. Возле поверхности листа сохраняется лишь небольшой ламинарный слой (dS), сохраняющийся и при сильном ветре, где можно наблюдать линейную зависимость дефицита насыщения от расстояния).

Внеустьичная транспирация определяется количеством и размерами межклеточных пор в кутикуле листа. Радиус клеточных пор очень мал, составляет около 100-200 Ао, т.е. около 0,00001мм, однако в листе имеющем много кутикулярных пор скорость испарения снижается достаточно значительно, иногда почти в два раза.

Различают три вида движения устьиц (закрытие и открытие устьиц):

фотоактивные (под действием солнечного света),

гидроактивные (при потере воды),

гидропассивные (при дожде из-за набухания клеток эпидермиса и сдавливания устьичных клеток).

Суточный ход транспирации у всех растений определяется максимальной транспирацией в утренние часы и минимальной - в полуденные. При этом весьма существенное значение имеют и такие факторы, как температура почвы и воздуха, влажность почвы и воздуха, интенсивность солнечного излучения, наличие ветра.

Сезонный ход транспирации у многолетних растений определяется фазами развития растения.

Водный баланс в растении.

Водный баланс в растении поддерживается тогда, когда скорость поглощения воды равна скорости ее испарения. Обычно водный баланс в растении меняется в течение суток, при этом он зависит от уровня агротехники при выращивании растений, т.е. от уровня орошения и удобрения. Несбалансированность поступления и испарения воды проявляется в наличии водного дефицита, который наблюдается, как правило, у растений днем и отсутствует ночью.

В практике сельского хозяйства используются приемы, снижающие водный дефицит у растений: Использование освежительных поливов, Использование антитранспирантов.

Антитранспиранты делятся на две разновидности:

вещества, вызывающие закрытие устьиц (абсцизовая кислота, фенилмеркурацетат),

вещества, образующие пленки на листьях (полиэтилен, латекс).

Лекция 10-12

Тема: Фотосинтез.

Дополнительная литература:

Н.Н. Овчинников, Н.М. Шиханова. Фотосинтез. М., 1972

Пигменты пластид зеленых растений и методика их исследований. Под ред. Сапожникова. Изд-во "Наука", М. - Л., 1964.

И.А. Шульгин. Солнечная радиация и растение. Изд-во "Гидромет", Л., 1967.

Ю.С. Насыров. Фотосинтез и генетика хлоропластов. Изд-во "Наука", М., 1975.

Вопросы к теме:

Общая характеристика фотосинтеза.

Лист как орган фотосинтеза.

Пластиды (хлоропласты, хромопласты), хлорофиллы, каротиноиды.

Световая фаза фотосинтеза.

Фотосистема 1.

Фотосистема П.

Фотолиз воды или реакция Хилла.

Темновая фаза фотосинтеза или цикл Кальвина (С-3 путь фотосинтеза).

С-4 путь фотосинтеза.

САМ-фотосинтез.

Фотодыхание.

Характеристика основных показателей фотосинтеза: интенсивности и продуктивности.

Усвоение растением фотосинтетически активной радиации.

Условия, влияющие на интенсивность и продуктивность фотосинтеза.

Пути повышения продуктивности фотосинтеза.

Суточный ход фотосинтеза у светолюбивых и теневыносливых растений.

Роль зеленых растений в природе.

Общая характеристика фотосинтеза.

Жизнь на нашей планете обеспечивается энергией фотонов, содержащейся в солнечном излучении. Эта энергия (кванты солнечного света - физическая форма энергии) поглощается фотоавтотрофными организмами - в подавляющем большинстве являющимися растениями. Поглощение или абсорбция энергии осуществляется специфическими молекулами - пигментами, которые способны ее превращать в энергию химических связей. В дальнейшем поглощенная и преобразованная энергия тратится автотрофами на присоединение молекулы углекислого газа к органической молекуле, то есть на синтез органического вещества из неорганического. Общеизвестна реакция фотосинтеза:

6СО2 + 6 Н2О = С6 Н 12О6 + 6О2

Фотосинтез состоит из двух сопряженных процессов:

Окисления воды до кислорода

Восстановления углекислого газа водородом воды до полисахаридов.

Многие годы предполагали, что кислород освобождается из молекулы углекислого газа, но изучение процесса фотосинтеза у микроорганизмов и выявление у них способности использовать в качестве доноров электронов не воду, а другие водородсодержащие вещества, позволило установить, что кислород получается в результате разложения воды.

Оказалось, что процесс фотосинтеза состоит из двух фаз:

световой, в которой разлагается вода под действием энергии солнца, абсорбированной пигментами, и происходит запасание энергии в виде химических связей в макроэргических молекулах (АТФ и НАДФ),

темновой, в которой происходит собственно синтез органических веществ (глюкозы, а затем крахмала) из углекислого газа за счет использования энергии, накопившейся в световой фазе.

Лист как орган фотосинтеза.

Лист растения - это основной орган растения, где проходит процесс фотосинтеза. Поскольку в основном лист покрыт малопроницаемой для газов кутикулой, то поступление СО2 в ткани идет через устьица, а в тканях - через сильно разветвленную сеть межклеточных воздухоносных каналов.

К верхней стороне листа прилегает палисадная паренхима, клетки которой расположены перпендикулярно, плотно соприкасаются друг с другом и содержат много хлоропластов. Эта палисадная паренхима и является основной ассимиляционной тканью. К нижнему эпидермису прилегает губчатая паренхима с рыхло расположенными клетками и межклетниками. Кроме того, весь лист пронизан жилками, по которым идет перенос веды, минеральных ионов и ассимилятов.

В палисадной паренхиме нет ни одной клетки, которая отстояла бы от ближайшей к ней жилки дальше, чем на несколько клеточных диаметров.

Пройдя сквозь устьичный барьер, атмосферный СО2 растворяется в воде, гидратируется и превращается в угольную кислоту, а затем диссоциирует до бикарбонат-ионов (НСО3+), запас которых и служит резервом потенциального СО2 для использования в фотосинтезе.

Поскольку основной тканью, поглощающей энергию солнца, является палисадная паренхима, содержащая максимальное количество хлоропластов, то, зная соотношение между площадью листа и площадью поверхности хлоропластов, можно приблизительно определить и поглощающую способность посевов. Так, на 1 га посева в среднем приходится 5 га листовой поверхности, то есть 1000 га поверхности хлоропластов, так как 1 см2 листовой поверхности соответствует 200 см2 поверхности хлоропластов. При этом площадь поверхности межклетников, испаряющих воду составляет 50 га. В этом проявляется общебиологический закон - создание внутренних рабочих поверхностей при сравнительно малых наружных испаряющих площадях за счет затрат небольших количеств материала.

В зависимости от условий обитания растений (засушливый или избыточно влажный климат, тропический климат с чрезмерной интенсивностью солнечного излучения) в строении листьев могут наблюдаться те или иные морфологические или биохимические особенности, однако общие принципы строения листа сохраняются.

Пластиды (хлоропласты, хромопласты), хлорофиллы, каротиноиды.

В растениях встречается три типа пластид, которые делятся в зависимости от типа пигментов, входящих в их состав:

хлоропласты,

хромопласты,

лейкопласты.

Для процесса фотосинтеза важнейшую роль играют хлоропласты, содержащие хлорофиллы. Хромопласты или отдельные группы каротиноидов могут участвовать в процессе фотосинтеза, однако их роль более вспомогательная. Однако, встречаются растения с преобладанием хромопластов (японская слива, декоративные краснолистные формы), которые самостоятельно осуществляют процесс фотосинтеза.

Строение хлоропласта - двойная мембрана, отделяющая хлоропласт от цитоплазмы, фотосинтетические мембраны - тилакоиды стромы и тилакоиды гран, наличие участков ДНК, способность к цитоплазматическому наследованию. Внутренние части полости тилакоидов гран и межгранальные тилакоиды - это единая замкнутая фотосинтетическая внутримембранная полость, объединенная в единую фотоэнергетическую систему хлоропласта.

Грана хлоропласта состоит из 10-30 тилакоидов, а всего в хлоропласте 100-150 гран, таким образом поверхность фотосинтетических мембран тилакоидов в 10 раз превышает поверхность самого хлоропласта.

Особая роль отводится концевым тилакоидам граны, которые, будучи селективным фильтром, предохраняют грану от излишнего облучения или подают сигнал на изменение ориентации оси граны. При оптимальных условиях освещения оси гран обычно направлены радиально к более выпуклой стороне хлоропласта.

Функция хлоропласта - осуществление процесса световой фазы фотосинтеза и накопление энергии в виде макроэргических молекул (АТФ и НАДФ восстановленного).

Свойства хлоропластов - способность к перемещению внутри клетки под воздействием условий освещенности и концентрации углекислого газа. Передвижение хлоропластов по клетке называется фототаксисом или хемотаксисом хлоропластов в зависимости от причины, вызывающей это передвижение. При умеренном освещении хлоропласты выстраиваются таким образом, чтобы на них попадало максимальное количество света, а при избыточном освещении выстраиваются вдоль падающих солнечных лучей. Такое расположение хлоропластов называется парастрофией. Ночью хлоропласты выстраиваются в положении апострофии.

Хромопласты придают желтую, оранжевую, красную окраску лепесткам, плодам, листьям, так как содержат большое количество специфических каротиноидов, обладающих тем или иным оттенком окраски. Хромопласты функционально дополняют деятельность хлоропластов, кроме того выполняют функцию привлечения насекомых-опылителей, животных-распространителей семян.

В состав фотосинтетических мембран (тилакоидов) входят специфические фотосинтетические пигменты - хлорофиллы и каротиноиды - погруженные в эти мембраны.

Хлорофиллы делятся на четыре разновидности: а, b, c, d. Это органические соединения, содержащие 4 пиррольных кольца, связанных атомами магния и имеющими зеленую окраску. Отличаются между собой хлорофиллы по молекулярной массе:

а - имеет молекулярную массу 893 и включает фитоловый и метиловый остаток,

b - имеет молекулярную массу 907 и включает фитоловый и метиловый остаток,

с - включает только метиловый остаток,

d - имеет молекулярную массу 891 и близок к протохлорофиллу.

У высших растений встречаются в основном хлорофиллы а и b, а у водорослей - а и с или а и d.

Хлорофилл впервые был выделен в 1818 году, к 1940 году была расшифрована его структура, а в 1960 году осуществили синтез хлорофилла. Хлорофиллы - это сложные эфиры дикарбоновой хлорофиллиновой кислоты с двумя спиртами (фитолом и метанолом). В карбоксильных группах хлорофиллиновой кислоты водород замещен остатками метилового и фитолового спиртов. Наличие в порфириновом ядре хлорофилла коньюгированной по кругу системы десяти двойных связей и магния обуславливает характерный для хлорофилла зеленый цвет. Хлорофиллу а присущ темно-зеленый цвет, а хлорофиллу b - светло-зеленый цвет. Остаток фитола придает хлорофиллу липоидные свойства, то есть он может растворяться в жировых растворителях.

Хлорофиллам свойственна флуоресценция - т.е. свойство под влиянием падающего света, в свою очередь, излучать свет, при этом длина волны излучаемого света обычно больше длины волны возбуждающего света. В проходящих лучах цвет хлорофилла - изумрудно-зеленый, а в лучах отраженного света хлорофилл приобретает красный цвет, то есть длина волны, отражаемой хлорофиллом, больше, чем длина волны света, возбуждающего излучение хлорофилла.

Хлорофиллы различаются по спектрам поглощения, при этом у хлорофилла b по сравнению с хлорофиллом а полоса поглощения в красной области спектра несколько смещена в сторону коротковолновых лучей, а в сине-фиолетовой области максимум поглощения смещен в сторону длинноволновых (красных) лучей.

В хлоропластах листьев хлорофиллов в три раза больше, чем каротиноидов, а в плодах, лепестках, зернах, корнеплодах - наоборот.

Каротиноиды являются непременными спутниками хлорофиллов. Они подразделяются на бескислородные (каротины и ликопины, имеющие оранжевую и красную окраску - общая формула - С40Н56) и окисленные (ксантофиллы - общая формула - С40Н56О2).

Световая фаза фотосинтеза.

Световая фаза фотосинтеза проходит непосредственно в хлоропластах и состоит из поглощения пигментами хлоропластов фотонов, несущих световую энергию и превращения этой физической энергии солнца в химическую энергию макроэргических молекул. Процесс идет паралелльно по двум механизмам:

циклическому фосфорилированию в фотосистеме 1,нециклическому фосфорилированию в фотосистеме П.

При этом фотосинтетическом фосфорилировании физическая суть процесса состоит в поглощении молекулой пигмента кванта света, переход электрона, возбужденного этим квантом света, на более высокий уровень на период 10-9 -10-8 секунды, после чего электрон возвращается на прежний энергетический уровень, а поглощенная энергия затрачивается на присоединение фосфатной группы к АДФ и образование АТФ, а также на фотолиз воды и образование НАДФ. Н2.

В фотосистемах пигменты образуют реакционные центры, куда входят молекулы хлорофиллов, каротиноидов и ферментов. В каждый реакционный центр входят 2 молекулы хлорофилла, две молекулы феофитина, молекула цитохрома, ферредоксина и НАДФ. Несколько реакционных центров объединяются в фотосинтетическую единицу - комплекс пигментов и других молекул. Одна фотосинтетическая единица включает до 300 молекул хлорофилла и 50 молекул каротиноидов.

Один реакционный центр способен поглотить 50 квантов солнечного света за 1 секунду. Поглощение квантов света происходит последовательно каждой из молекул пигмента (один раз в 0,1 секунды). Синглетное состояние электронов (возбужденное состояние, при котором происходит переход электрона на более высокий энергетический уровень) длится всего около 10-9секунды, если же поступление энергии происходит стабильно, то возникает метастабильное или триплетное состояние электрона, которое длится уже 10-2секунды, которое и играет в световой фазе фотосинтеза определяющую роль.

Фотосистема 1.

Фотосистема 1, где происходит циклическое фосфорилирование, эволюционно более ранняя, процесс идет без выделения кислорода. Основой является комплекс пигментов, воспринимающие длину волны солнечного света 700 нм, при этом происходит возбуждение молекулы и образование молекул АТФ. При возбуждении электрона в фотосистеме 1 происходит его захват на более высоком энергетическом уровне белком ферредоксином, обратный путь электрона проходит с помощью цитохромов и флавопротеидов. Процесс перехода по цепи указанных ферментов определяет высвобождение энергии и передачу ее в процесс фосфорилирования АДФ.

Фотосистема П.

В процессе эволюции у высших растений сформировалась дополнительная фотосистема - фотосистема П - которая стала наиболее существенной в процессе фотосинтеза высших растений. Основой действия фотосистемы П является комплекс пигментов, воспринимающих длину волны солнечного света 680 нм. Эти пигменты образуют реакционный центр, в котором помимо реакции циклического фосфорилирования и образования молекул АТФ происходит и разложение молекулы воды и образование молекул НАДФ восстановленное, то есть нециклическое фосфорилирование. При этом активированные электроны передаются по цепи ферментов, в том числе и ферредоксинов на молекулу НАДФ, превращаясь в НАДФхН2.

В фотосистеме П на уровень переданного электрона поступает электрон от гидроксила (продукта ионизации воды), при этом два иона гидроксила соединяются и образуют перекись, которая затем разлагается, что приводит к выделению молекулярного кислорода. Важными кофакторами процессов фотосинтеза являются ионы Мn и Сl.

Фотолиз воды или реакция Хилла.

Фотолиз воды при фотосинтезе смоделирован Хиллом, поэтому предложенную им реакцию используют в качестве чувствительного фотосинтетического параметра при характеристике световой фазы фотосинтеза. В общем виде реакция выглядит так:

2 Н2О + 2 А = 2АН2 + О2

Суть реакции в том, что к суспензии хлоропластов добавляют донор электронов (например краску - 2,6-дихлорфенолиндофенол) и по изменению окраски суспензии хлоропластов на свету судят об их фотохимической активности, характеризуя таким образом видовые и сортовые особенности растений.

Доказано, что количество АТФ, образовавшейся при фотофосфорилировании, соответствует количеству восстановленного окислителя в реакции Хилла. Этот процесс напрямую связан со свойствами пигментов.

Темновая фаза фотосинтеза или цикл Кальвина (С-3 путь фотосинтеза).

Запасенная в световой фазе фотосинтеза энергия тратится на процесс превращения неорганической формы углерода (углекислого газа или бикарбонат-иона) в органическую, то есть фактически тратится на создание простых сахаров, из которых затем формируются полисахариды. Практически у всех растений происходит процесс, называемый циклом Кальвина, в котором идет преобразование неорганического углерода в органический. Процесс разделяется на три этапа:

карбоксилирование, когда СО2 соединяется с рибулезо-1-5-дифосфатом, образует нестойкое шестиуглеродное соединение, которое распадается на две молекулы фосфоглицериновой кислоты - 3-углеродные молекулы,

фазу восстановления, когда образовавшаяся фосфоглицериновая кислота восстанавливается в фосфоглицериновый альдегид - это центральное звено цикла, так как ФГА по уровню восстановленности углерода соответствует углеводу с общей формулой (СН2О) 3,фазу регенерации, когда вновь образуется первичный акцептор СО2 - рибулезодифосфат - и, одновременно, происходит синтез конечных продуктов фотосинтеза - глюкозы и крахмала.

Поскольку в цикле Кальвина первичными продуктами включения неорганического углерода в органический являются трехуглеродные соединения, этот процесс носит название С-3 путь фотосинтеза.

Для синтеза одной молекулы глюкозы должно произойти шесть оборотов цикла Кальвина. В каждом обороте используются три молекулы АТФ (две для активирования двух молекул фосфоглицериновой кислоты и одна при регенерации рибулезодифосфата) и две молекулы НАДФ. Н2 для восстановления кислоты в альдегид. Таким образом для синтеза одной молекулы глюкозы необходимо потратить 12 молекул НАДФ. Н2 и 18 молекул АТФ.

Важно отметить, что физиологическое значение цикла Кальвина состоит не только в акцепции углекислого газа, но и в создании массы углеводных соединений, которые идут как на синтез запасных веществ, так и на создание компонентов хлоропласта и текущий метаболизм клетки. .

С-4 путь фотосинтеза.

Большинство растений усваивает неорганический углерод именно по пути цикла Кальвина. Однако довольно большая группа растений (около 500 видов) тропического происхождения выработала в процессе эволюции некоторую модификацию процесса, усваивая неорганический углерод путем образования в результате его акцепции четырехуглеродных соединений. Это растения, приспособившиеся к фотосинтезу в условиях повышенной температуры воздуха и избыточной освещенности, а также пониженной влажности почвы (засухи). Из культурных растений обладают таким метаболитическим процессом кукуруза, просо, сорго, сахарный тростник. У ряда сорных растений также наблюдается именно эта особенность метаболизма (свинорой, просо куриное, щирица) и т.д.

Особенностью анатомического строения таких растений является наличие фотосинтезирующих клеток двух типов, которые располагаются в виде концентрических кругов - радиально расположенные вокруг проводящих пучков клетки обкладочной паренхимы и мезофилла. Этот тип анатомического строения называется кранц-типом (от немецкого Кranz -венок).

Этот тип метаболизма был изучен в 60-е годы прошлого века, большую роль сыграли при этом исследования советских ученых Карпилова, Незговоровой, Тарчевского, а также австралийских ученых Хэтча и Слэка. Именно они предложили законченную схему цикла, поэтому принято этот процесс называть также циклом Хэтча-Слэка-Карпилова.

Процесс происходит в два этапа: поступающий в мезофилл СО2 вступает в соединение с трехуглеродным соединением (ФЕП) - фосфоенолпировиноградной кислотой - которая превращается в четырехуглеродное соединение. Это и есть ключевой момент процесса, из-за которого он и получил свое название, так как неорганический углерод, акцептируясь трехуглеродным соединением, превращается в четырехуглеродное соединение. В зависимости от того в какое именно четырехуглеродное соединение превращается неорганический углерод различают три группы растений:

НАДФ-МДГ образуют яблочную кислоту при участии фермента малатдегидрогеназы, а затем пировиноградной кислоты,

НАД-МДГ образуют аспарагиновую кислоту и аланин,

ФЕП-КК образуют аспарагиновую кислоту и фосфоенолпировиноградную кислоту.

Наиболее значимые для сельского хозяйства растения относятся к НАДФ-МДГ типу.

После образования четырехуглеродного соединения происходит его перемещение во внутренние клетки обкладочной паренхимы и расщепление или декарбоксилирование этой молекулы. Отделившаяся карбоксильная группа в виде CОО - входит в цикл Кальвина, а оставшаяся трехуглеродная молекула - ФЕП - возвращается опять в клетки мезофилла.

Такой путь фиксации углекислого газа позволяет растениям накапливать в виде органических кислот запас углерода, проводить процесс фотосинтеза в наиболее жаркое время дня при сокращении потерь воды на транспирацию за счет закрытия устьиц. Эффективность использования воды такими растениями в два раза больше, чем у растений, происходящих из умеренных широт.

Для С4-растений характерны отсутствие обратного потока углекислого газа при фотодыхании и повышенный уровень синтеза и накопления органических веществ.

САМ-фотосинтез.

У суккулентных растений семейства Crassulaceae - Толстянковые - процесс фотосинтеза также имеет свои особенности, связанные с особенностями климатической зоны происхождения этих растений. Поскольку эти растения, обитающие в условиях крайне засушливого климата, днем закрывают устьица, то есть дневная транспирация у них отсутствует, то поступление углекислого газа в листья возможно только ночью. При этом углекислый газ немедленно вступает в соединение с пируватом с образованием яблочной кислоты, то есть процесс совпадает с циклом Хэтча-Слэка. Однако, дальнейшее превращение яблочной кислоты в пировиноградную, отщепление карбоксильной группы и включение ее в цикл Кальвина происходит днем, при закрытых устьицах.

Основное отличие этого процесса от цикла Хэтча-Слэка состоит в том, что процессы акцептации углекислого газа и цикл Кальвина разделены во времени, акцептация происходит ночью, а цикл Кальвина - днем.

По английскому наименованию процесса - Crassulacean acid metabolism (САМ) - процесс называют - САМ-фотосинтез.

Фотодыхание.

Фотодыхание представляет собой процесс разложения рибулезодифосфата - ключевого вещества цикла Кальвина - на фосфоглицериновую кислоту и фосфогликолевую кислоту (С5 = С3 + С2). Этот процесс происходит в условиях наличия большого количества кислорода и осуществляется основным ферментом цикла Кальвина РДФ-карбоксилазой, которая в обычных условиях осуществляет собственно акцепцию углекислого газа и образование двух молекул фосфоглицериновой кислоты.

Анатомическая особенность состоит в том, что в процессе фотодыхания в отличие от обычного дыхания, происходящего в митохондриях, задействованы три типа органоидов - хлоропласты, пероксисомы и митохондрии.

Суть химизма процесса состоит в том, что образовавшаяся фосфоглицериновая кислота (С3) поступает в цикл Кальвина, а фосфогликолевая кислота (С2) подвергается дефосфорилированию с образованием гликолата.

Гликолат из хлоропласта поступает в пероксисому, где окисляется до глиоксилата, который затем превращается в аминокислоту глицин. Таким образом, фотодыхание позволяет связать в общем метаболизме синтез углеводов с метаболизмом аминокислот.

Глицин поступает затем в митохондрию, где превращается в серин, освобождая углекислый газ, а серин используется в циклах синтеза аминокислот.

На первый взгляд процесс фотодыхания ничего, кроме потерь не приносит. И, действительно, часть накопленных в процессе фотосинтеза углеводов теряется. Однако все попытки искусственно ингибировать фотодыхание приводили к общему снижению интенсивности фотосинтеза.

На современном этапе развития физиологии растений принято считать, что основное значение фотодыхания заключается в его защитной роли. Сбрасывая таким образом избыточную энергию, растение избегает разрушения фотосистем, обеспечивает сбалансированность световой и темновой фаз фотосинтеза.

Фотодыхание выполняет роль отводного канала в общем русле энергообеспечения растения.

Характеристика основных показателей фотосинтеза:

интенсивности и продуктивности.

Фотосинтез характеризуется следующими количественными показателями:

интенсивностью фотосинтеза,

продуктивностью фотосинтеза.

Интенсивность (скорость) фотосинтеза - это количество углекислого газа, которое усваивается единицей листовой поверхности за единицу времени. В зависимости от вида растения этот показатель колеблется от 5 до 25 мг СО2/дм2. ч.

Продуктивность фотосинтеза - это отношение суточного увеличения массы всего растения (в граммах) к площади листьев. В среднем эта величина составляет от 5 до 12 г сухого вещества на 1 м2 листовой поверхности в сутки.

Существует большое количество методов определения этих количественных показателей.

Интенсивность фотосинтеза можно определять:

газометрическими методами,

радиометрическими методами.

С помощью газометрических методов можно определить либо количество усвоенного углекислого газа, либо количество выделенного кислорода. При этом используют как весовые показатели поглощаемых или выделяемых газов, так и объемные показатели, показатели давления, показатели окраски, показатели теплопроводности определяемых газов.

С помощью радиометрических методов определяют интенсивность поглощения С14О2 растением по наличию в нем С14 или изменение радиоактивности газовой смеси.

Продуктивность фотосинтеза определяют по накоплению ассимилятов в растении. При этом используют такие методы, как:

изменение количества сухого вещества высечек из листа через определенный временной промежуток,

накопление углеводов в листе через определенный временной промежуток,

изменение теплоты сгорания сухого вещества листьев за период экспозиции их на свету.

В процессе вегетации интенсивность и продуктивность фотосинтеза возрастают постепенно от начала развития, достигают максимума в фазе цветения-плодообразования, а затем постепенно убывают.

Усвоение растением фотосинтетически активной радиации.

Фотосинтетически активная радиация (ФАР) - это та часть солнечного излучения, которая способна поглощаться хлорофиллами в процессе фотосинтеза. ФАР имеет спектр волн от 380 до 710 нм и состоит из прямыцх солнечных лучей и рассеянного света, интенсивность которого равна 1/3 прямой солнечной радиации. В рассеянном свете на долю ФАР приходится до 90%, то есть рассеянный свет в отличие от прямых солнечных лучей может быть поглощен растением почти полностью.

Интенсивность фотосинтеза максимальна в красной части спектра и минимальна в синей и зеленой частях.

ФАР по разному поглощается листьями разных растений. Этот процесс определяется количественным и качественным составом пигментов в листе. Утром и вечером фотосинтез у растений с достаточным запасом хлорофилла наиболее интенсивен.

О степени использования растением фотохимической активности хлорофилла судят по ассимиляционному числу - то есть по количеству углекислого газа, ассимилированного единицей хлорофилла в единицу времени.

У растений с темно-зелеными листьями ассимиляционное число невелико, это растения, обитающие в основном в тени, у растений со светло-зеленой окраской - этот показатель значительно выше, так как это светолюбивые растения.

Основное поглощение ФАР происходит в верхних ярусах посева, так же и содержится большее количество хлорофилла.

Поглощение лучистой энергии листом выражается формулой:

Q = R + T + A,

где Q - количество радиации, падающей на лист, R - отраженная радиация, в%, Т - пропущенная радиация, в%, А - поглощенная радиация, в%. Все три показателя зависят от содержания хлорофилла в листе.

Фотосинтез возможен при минимальной интенсивности света, при увеличении интенсивности света до 1/3 от полного солнечного освещения интенсивность фотосинтеза возрастает, при еще более высокой освещенности интенсивность фотосинтеза повышается незначительно, а при максимальном освещении наступает световое насыщение фотосинтеза и вступает в действие механизм фотодыхания.

Общее количество солнечной радиации, падающее на 1 га за период вегетации, составляет 21.109 кДж, из них ФАР - только 8.109 кДж, то есть всего около одной трети.

Количество ФАР, поглощенной посевом определяют по формуле:

П = Q - R - Тп + Rп

где П - поглощенная посевом радиация, Q - суммарная радиация, падающая на посев, R - радиация, отраженная от посева и вышедшая за пределы его верхней границы, Тп - радиация, проникшая к почве, Rп - радиация, отраженная от почвы под растительностью.

Коэффициент поглощения энергии ФАР (Qп) посевом определяют делением обеих частей формулы на Q:

Qп = П/Q = 1 - R/Q - Тп/Q + Rп/Q,

где R/Q - альбедо посева, показывающее, какая доля падающей радиации отражается посевом, Тп/Q - коэффициент пропускания, показывающий, какая доля падающей радиации (Q) достигает почвы под растительностью, Rп/Q - альбедо почвы под растительностью.

Эффективность фотосинтеза можно характеризовать коэффициентом полезного действия, который определяют по формуле:

Е% (КПД) = В.100/А,

где А - количество энергии, поступившей за период вегетации на 1 га посева, или энергии, которая была поглощена посевом, в кДж, В - количество энергии, накопившейся в органической массе урожая (биологического или хозяйственного), в кДж.

Доказано, что для образования продуктов фотосинтеза при всех благоприятных условиях (орошение, высокая концентрация СО2) солнечная энергия используется только на 2%. В среднем КПД фотосинтеза сельскохозяйственных растений в реальных условиях составляет около 0,5-1% (то есть около 16 кДж/м2 в час), теоретически же возможно повышение уровня этого показателя до 4-6%. Одной из самых насущных задач, стоящих перед практическим сельскохозяйственным производством, и является повышение эффективности фотосинтеза.

Условия, влияющие на интенсивность и продуктивность фотосинтеза.

На основные показатели фотосинтеза влияют как внутренние факторы, так и внешние абиотические факторы.

К внутренним факторам - то есть к эндогенным механизмам регуляции фотосинтеза у растений - относятся:

проводимость листа,

фотохимическое лимитирование фотосинтеза,

биохимическое лимитирование фотосинтеза,

гормональное воздействие,

донорно-акцепторные отношения,

накопление углеводов,

возраст листа или растения.

Проводимость листа бывает устьичная и остаточная. Она измеряется в сантиметрах в секунду и является величиной, обратной сопротивлению листа, колеблется от 1 см/с при открытых устьицах до 0,02 см/с при закрытых устьицах, показывает скорость прохождения углекислого газа по тканям листа.

Фотохимическое лимитирование фотосинтеза происходит при недостатке поступления энергии из световой фазы фотосинтеза, то есть при недостатке освещенности.

Биохимическое лимитирование фотосинтеза определяется недостаточным количеством необходимых для фотосинтеза ферментов, в частности рибулезодифосфаткарбоксилазы/оксигеназы, или недостатком собственно субстрата - рибулезодифосфата.

Гормональное воздействие проявляется в действии ингибиторов роста, например, АБК, повышение концентрации которой приводит к закрытию устьиц и к снижению интенсивности фотосинтеза.

Донорно-акцепторные отношения проявляются в том, что если у растения уменьшается число акцепторов продуктов фотосинтеза (число клубней, плодов), то интенсивность фотосинтеза снижается, если же уменьшается число доноров продуктов фотосинтеза (листьев) (например в результате повреждения вредителями, искусственная частичная дефолиация), то интенсивность фотосинтеза у оставшихся листьев увеличивается.

Накопление углеводов (крахмала) может вызвать снижение интенсивности фотосинтеза, хотя вопрос остается до конца не изученным.


Подобные документы

  • Клеточные структуры, строение, состав и свойства основных компонентов растительной клетки. Поглощение и выделение веществ и энергии клеткой. Хлоропласты, их строение, химический состав и функции. Строение молекулы хлорофилла, флавоноидные пигменты.

    контрольная работа [1,0 M], добавлен 05.09.2011

  • Углеводы – группа органических соединений. Строение и функции углеводов. Химический состав клетки. Примеры углеводов, их содержание в клетках. Получение углеводов из двуокиси углерода и воды в процессе реакции фотосинтеза, особенности классификации.

    презентация [890,0 K], добавлен 04.04.2012

  • Общая характеристика клетки: форма, химический состав, отличия эукариот от прокариот. Особенности строения клеток различных организмов. Внутриклеточное движение цитоплазмы клетки, метаболизм. Функции липидов, углеводов, белков и нуклеиновых кислот.

    лекция [44,4 K], добавлен 27.07.2013

  • Признаки и уровни организации живых организмов. Химическая организация клетки. Неорганические, органические вещества и витамины. Строение и функции липидов, углеводов и белков. Нуклеиновые кислоты и их типы. Молекулы ДНК и РНК, их строение и функции.

    реферат [13,5 K], добавлен 06.07.2010

  • Прокариоты и эукариоты, строение и функции клетки. Наружная клеточная мембрана, эндоплазматическая сеть, их основные функции. Обмен веществ и превращения энергии в клетке. Энергетический и пластический обмен. Фотосинтез, биосинтез белка и его этапы.

    реферат [20,8 K], добавлен 06.07.2010

  • Строение, состав и физиологическая роль отдельных органелл клетки. Классификация белков по степени сложности. Состояние воды в живых тканях, ее функции. Полисахариды морских водорослей: состав, строение. Биологическая роль и классификация липидов.

    контрольная работа [1014,7 K], добавлен 04.08.2015

  • Изучение строения и физиологических особенностей светолюбивых и теневыносливых растений. Влияние ризосферной микрофлоры на поглощение минеральных веществ корнями. Поступление воды в растение. Физиологические основы орошения. Химический состав клетки.

    реферат [31,1 K], добавлен 22.06.2012

  • Превращения веществ и энергии, происходящие в живых организмах и лежащие в основе их жизнедеятельности. Назначение обмена веществ и энергии, взаимосвязь анаболических и катаболических процессов. Энергетическая ценность углеводов и жиров в организме.

    реферат [21,9 K], добавлен 28.05.2010

  • Классификация процессов метаболизма и обмена. Виды организмов по различиям обменных процессов, методы их изучения. Метод учета веществ поступивших и выделившихся из организма на примере азотистого обмена. Основные функции и источники белков для организма.

    презентация [3,8 M], добавлен 12.01.2014

  • Клетка как основная единица живого. Химический состав клетки, ее элементарные частицы и характер протекающих внутри процессов. Роль и значение воды в жизнедеятельности клетки. Этапы энергетического обмена клетки, реакций расщепления (диссимиляции).

    реферат [28,2 K], добавлен 11.07.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.