Физиология растений

Процессы превращения веществ и энергии внутри растительного организма как основные физиологические функции растения. Химический состав клетки. Строение, классификация и функции углеводов, липидов и аминокислот. Кинетика ферментативного катализа.

Рубрика Биология и естествознание
Вид курс лекций
Язык русский
Дата добавления 15.06.2010
Размер файла 188,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Помимо участия таких минеральных элементов, как азот, фосфор, сера, в непосредственном синтезе органических соединений, все остальные минералы играют весьма важную роль в качестве кофакторов различных ферментов, регуляторов транспортных и обменных процессов, входят в состав гормонов, алкалоидов, сапонинов, фитоалексинов и других биологически активных веществ. В свою очередь, именно совокупность соответствующих ферментов и регуляторов позволяет растению осуществлять процессы роста, переходить в процессе онтогенеза от одной фазы к другой, накапливать необходимые вещества для формирования плодов и семян.

Осуществляя поглощение веществ, растение с помощью корневой системы обеспечивает и выделение ряда веществ, т.е. способствует процессу обмена с окружающей средой. Например корни люпина, гречихи, гороха выделяют органические кислоты, что позволяет им поглощать фосфаты из фосфорной муки, а выделение органических кислот корнями злаковых культур позволяет им поглощать калий из силикатов.

Для выделения веществ из корня служат те же механизмы, что и для поглощения веществ корневыми волосками. В связи с выделяющей функцией корней растения делят на две большие группы:

Не выделяющие в больших количествах фосфорную кислоту и другие минеральные вещества - это злаки, клубнеплоды, овощные культуры;

Выделяющие в больших количествах фосфорную кислоту и другие минеральные вещества - это бобовые и масличные культуры.

В первой группе растения характеризуются нейтральной реакцией клеточного сока и накоплением углеводов.

Во второй группе растения характеризуются кислой реакцией клеточного сока и накоплением белков и жиров.

Процесс выделения растениями фосфорной кислоты является ярким примером активного участия растений в круговороте веществ.

Например, люпин, горчица, рапс выделяют от 14 до 34% поглощенной фосфорной кислоты. Этот процесс определяется тем, что коллоидные структуры клеток этих растений, в частности белки, легко меняют свой заряд с положительного на отрицательный или нейтральный при поглощении фосфорной кислоты, а в силу высокой кислотности клеточного сока происходит их нейтрализация, фосфорная кислота легко отщепляется от белков и может выделяться с обратным током веществ в окружающую среду.

Напротив, у растений с нейтральной реакцией (у злаков) органические коллоиды в клетках находятся в изоэлектрическом состоянии, поэтому присоединившаяся к внутренним коллоидам в клетке фосфорная кислота, в силу высокой буферности содержимого цитоплазмы, уже не может легко высвобождаться, и, поэтому, не выделяется.

Помимо выделения корневой системой в почвенный раствор неорганических веществ в качестве обмена ионами, растения выделяют различные сахара, органические кислоты, аминокислоты, ферменты, витамины, сапонины и другие вещества. Все эти выделения обуславливают особое состояние почвы возле корневой системы и определяют наличие таких явлений, как:

аллелопатия, то есть взаимодействие ризосферных выделений растений друг на друга, что особенно актуально в подборе растений на небольших площадях, например в условиях огорода,

бактериориза, то есть развитие в ризосфере особого комплекса бактериальных организмов, участвующих в процессе азотфиксации,

микориза, то есть развитие в ризосфере особого комплекса грибных организмов, которые играют важную роль в процессе поглощения веществ растениями, особенно многолетними, участвуют в какой-то степени и в процессе азотфиксации, а также и в усвоении азота растениями, поскольку переводят неорганические формы азота в аминокислотную форму. Среди растений существуют даже облигатные микотрофы, то есть такие растения, которые в отсутствие особых видов грибов не развиваются (орхидея, вереск). Особенно важную роль играет микориза для лесных пород, тогда как среди плодовых деревьев такой тесной зависимости не отмечено.

Для эффективного применения удобрений необходимо знать:

качественные и количественные индексы потребности растения в элементах минерального питания в онтогенезе для создания запланированного урожая,

индексы степени плодородия почвы,

возможные коэффициенты использования питательных веществ, находящихся в почве и вносимых с удобрениями,

обеспеченность растений водой.

Растение в первую фазу развития питается в основном запасом питательных веществ в семени, в дальнейшем потребность в элементах питания возрастает и достигает максимума в период цветения и завязывания плодов. С прекращением накопления органического вещества в растении наблюдается резкое снижение потребности в минеральном питании и даже происходит обратный переход части веществ из растения в почву.

Важно вносить удобрения в умеренных дозах, так как в противном случае слишком высокая концентрация почвенного раствора может вызвать увядание растений, особенно молодых.

Сочетание основного предпосевного внесения удобрений с дополнительным в виде подкормок дает возможность наиболее полно обеспечить растений в соответствующие фазы развития элементами питания.

Наиболее эффективным способом внесения минеральных удобрений является локальный с заделкой в почву.

В ряде случаев применяют внекорневую подкормку растений, как способ дополнительного снабжения растений элементами минерального питания в период вегетации.

Кроме того, внекорневую подкормку можно эффективно использовать для воздействия на обмен веществ растения:

подкормка калийно-фосфорными удобрениями за две-три недели до уборки способствует переводу сахарозы в сахарной свекле из листьев в корни,

подкормка азотными удобрениями в период налива зерна у зерновых культур способствует большему накоплению клейковины,

подкормка калийно-фосфорными удобрениями в период поражения растений тлей снижает вредоносность этого вредителя, так как происходит уменьшение количества аминокислот, что вызывает у тли бесплодие,

применение ионофоров - мембраноактивных соединений для регуляции интенсивности ионных потоков в растениях например, диметилсульфоксида (ДМСО) -

(СН3) 2SO приводит к усиленному поглощению фосфора корнями и активизации транспорта фосфатных и нитратных потоков, а также вызывает отток ассимилятов из листьев в корнеплоды, что особенно благоприятствует увеличению урожайности и сахаристости у сахарной свеклы.

Весьма важной в сельском хозяйстве является нетрадиционная технология возделывания растений, то есть гидропоника или культивирование растений без почвы. Особенно массово эта технология внедрена в странах Северной Европы, в Шотландии, в Гренландии, где суровые условия открытого грунта не позволяют выращивать там в традиционной технологии овощные и ягодные культуры. Гидропоника подразделяется на три типа:

выращивание растений на инертных субстратах (песок, вермикулит, перлит),

выращивание растений в питательных растворах,

аэропоника.

Все эти разновидности требуют хороших знаний именно в области минерального питания растений и создания микроклимата в зависимости от особенностей как культуры, так и выращиваемого сорта, поскольку все необходимые вещества растение получает только извне с питательным раствором.

Каждая из этих разновидностей имеет свои положительные и отрицательные стороны, поэтому выбор используемой технологии зависит прежде всего от технических возможностей.

Более подробно об этом аспекте возделывания растений также можно прочитать в дополнительной литературе.

Подводя итог теме "Минеральное питание", необходимо отметить, что успешное выращивание растений, получение высоких урожаев достигаются непременно в совокупности обеспечения:

оптимального уровня снабжения растения всеми необходимыми элементами питания, как минерального характера, так и источником углерода,

оптимального соотношения элементов минерального питания в почве или в искусственном субстрате в течение вегетации в зависимости от фазы развития растения,

высокого уровня снабжения энергией с помощью регуляции светового режима,

сохранения относительного постоянства обводненности листьев за счет регуляции поливного режима.

Тема: Взаимопревращение органических веществ в растении.

Дополнительная литература:

В.Л. Кретович "Основы биохимии растений", М., 1971

Вопросы к теме:

Взаимопревращение в растении углеводов.

Синтез и распад белков в растении.

Синтез и распад жиров в растении.

Связи между тремя основными группами органических веществ.

Передвижение органических веществ в растении.

Метаболизм или обмен веществ - это совокупность всех химических реакций, направленных на самоорганизацию и самовоспроизведение, это важнейшее свойство жизни и непременный ее признак у всех клеточных организмов.

Поступившие в растение неорганические вещества превращаются в органические, последние входят в отрегулированную систему превращения веществ и энергии.

Метаболизм растения - это огромное количество физических и химических реакций, находящихся в состоянии непрерывного взаимодействия между собой, а также с окружающей средой.

Наряду с интенсивно превращающимися первичными органическими соединениями (углеводами, белками, липидами, нуклеиновыми кислотами, аминокислотами, органическими кислотами) в растительных организмах существуют медленно перемещаемые и локально синтезируемые вещества, называемые вторичными, так как они образуются в процессах вторичного обмена и не являются ни источниками энергии, ни запасными веществами (гликозиды, алкалоиды, сапонины).

Взаимопревращение в растении углеводов.

Биосинтез глюкозы и других углеводов из более простых предшественников является в количественном отношении наиболее важным биосинтетическим процессом в биосфере.

Растения образуют огромные количества гексоз из углекислого газа и воды, а гексозы, в свою очередь, превращаются в крахмал, целлюлозу и другие полисахариды.

Превращение глюкозы в пировиноградную кислоту, катализируемое ферментами гликолиза (первый этап дыхания), является центральным путем катаболизма углеводов.

Превращение пировиноградной кислоты в глюкозу является наиболее важным путем биосинтеза моно и полисахаридов в процессах обмена веществ в клетке.

В этот центральный биосинтетический путь вливаются два главных "питающих" пути начинающихся с двух различных наборов неуглеводных предшественников:

первый состоит из ряда реакций, посредством которых промежуточные продукты цикла Кребса превращаются в пировиноградную кислоту.

Этот процесс называют глюконеогенезом.

второй состоит из реакций, приводящих к восстановлению углекислого газа до глюкозы, т.е. реакции цикла Кальвина.

Образование глюкозо-6-фосфата в центральном пути биосинтеза приводит к последующему появлению:

свободной глюкозы,

запасных полимерных сахаридов (крахмала у растений, гликогена у грибов, гетеротрофных бактерий и животных организмов),

других моносахаридов и их производных,

дисахаридов и олигосахаридов,

компонентов клеточной стенки и клеточной оболочки (целлюлозы, ксиланов, муреина, мукополисахаридов).

Синтез полисахаридов происходит в процессе трансгликозидирования, т.е. реакций переноса гликозидных остатков с участием ферментов гликозилтрансфераз.

Например, в основе синтеза сахарозы лежат следующие реакции:

АТФ + УДФ (уридиндифосфат) УТФ + АДФ

УТФ + глюкозо-1-фосфат УДФГ (уридиндифосфатглюкоза) + Н4Р2О7, УДФГ + фруктоза сахароза + УДФ.

Нуклеозиддифосфатсахара играют большую роль в биосинтезе крахмала. Основная реакция при синтезе крахмала выглядит следующим образом:

УДФГ + "затравка" (полисахарид из 3-4 остатков глюкозы) УДФ + крахмал

Основной фермент в этой повторяющейся много раз реакции при создании разветвленной многоцепочечной молекулы крахмала - крахмалглюкозилтрансфераза.

Часто более активным соединением при синтезе крахмала является не УДФГ, а АДФГ (адениндифосфатглюкоза).

Углеводы в растительном организме служат основным питательным и скелетным материалом клеток и тканей растения. В прорастающих тканях сложные запасные вещества распадаются на более простые. Процесс распада крахмала на олигосахариды и моносахариды, жиров на жирные кислоты и глицерин, белков на аминокислоты - относится к гидролитическому типу и проходит с присоединением воды.

Превращение крахмала по гидролитическому типу в простые сахара происходит под воздействием фермента амилазы. Количество амилазы в проростке гораздо выше, чем в покоящемся семени. Осахаривание крахмала в эндосперме идет до конце только в контакте с растущим побегом, использующим сахар, образующийся при гидролизе.

Второй путь расщепления крахмала по фосфоролитическому типу осуществляется под действием фермента фосфорилазы. При этом глюкоза переносится на неорганический фосфат, в результате чего образуется глюкозо-1-фосфат, включающийся затем в различные циклы синтеза углеводов.

Ключевыми звеньями в обмене углеводов являются пировиноградная кислота и глюкозо-1-фосфат или глюкозо-6-фосфат. Через пировиноградную кислоту осуществляется переход от метаболизма углеводов к метаболизму других органических веществ.

Синтез и распад белков в растении.

Характерной особенностью растений является способность к синтезу всех входящих в состав белков аминокислот непосредственно за счет неорганических азотистых соединений - аммиака и нитратов.

Свободный аммиак ядовит для растений, поэтому растения сразу используют его на синтез аминокислот. Нитраты же могут накапливаться в тканях растений и в довольно больших количествах. Нитраты, прежде, чем вступить во взаимодействие с углеводами, подвергаются восстановлению до нитритов, а затем до аммиака. Промежуточным продуктом при этом является гидроксиламин.

Схема восстановления нитратов до аммиака:

НNO3 НNO2 (НNO2) 2 NH2OH NH3

гипонитрит гидроксиламин

Этот процесс имеет универсальное значение.

Аммиак, либо образовавшийся из нитритов, либо поглощенный, немедленно вступает в реакцию с кетокислотами, образуя аминокислоты. Прямое аминирование кетокислот аммиаком - общий способ построения аминокислот. Это основной путь синтеза аминокислот. Протекание этих реакций - процесс обратимый, так как разложение амсинокислот (например при прорастании семян) или дезаминирование, протекающее по окислительному типу, заканчивается образованием кетокислоты и аммиака.

Процесс идет в две стадии:

Образование иминокислоты:

NH3 + CH3COCOOH CH3C=NHCOOH + H2O

пировиноградная аланиндегидрогеназа иминокислота кислота

Образование аминокислоты:

CH3C=NHCOOH + 2Н+ СН3СНNН2СООН

НАД. Н2 аланин

Образование аминокислот может также происходить в результате ферментативного превращения одной аминокислоты в другую, например:

орнитин пролин глютаминовая кислота

Биосинтез белка - один из сложнейших процессов в клетке. Он осуществляется в рибосомах, важным компонентом которых является магний, который составляет до 2,5% от сухого веса и поддерживает активную структуру рибосом. В биосинтезе белка задействована информационная система - ядерная ДНК информационная РНК рибосомальная (матричная) РНК - и большое количество АТФ, так как это процесс эндэрготический, при котором потребляется большое количество энергии.

Аминокислоты, синтезирующиеся в клетке, активируются своими специфическими ферментами и с помощью транспортных РНК переносятся к рибосоме, где собственно и происходит процесс построения первичной цепочки любого пептида. Транспортная РНК имеет антикодон, который должен соответствовать кодону матричной РНК для того, чтобы аминокислота отсоединилась от т-РНК и встроилась в пептид.

Диссимиляция белка начинается с его гидролитического расщепления, происходящего под воздействием протеолитических ферментов и сопровождающегося образованием свободных аминокислот. Этот процесс активно происходит при прорастании семян, при этом образующиеся аминокислоты идут на построение тканей проростка. Важнейшим этапом диссимиляции аминокислот является их дезаминирование с образованием свободного аммиака.

Окислительное дезаминирование (с образованием кетокислоты и аммиака) является процессом, обратным синтезу аминокислот, и происходит через образование иминокислоты. Именно этот процесс происходит при брожении, в частности, при спиртовом брожении, когда используются натуральные продукты (зерно, сахарная свекла), имеющие в своем составе белки. При брожении из белков образуются в результате дезаминирования кетокислоты, которые и придают специфический неприятный запах и вкус бродильной жидкости и называются "сивушными маслами".

Разложение белков может также проходить по механизмам восстановительного дезаминирования и гидролитического дезаминирования.

Восстановительное дезаминирование является путем, соединяющим метаболизм белков и липидов:

RCHNH2COOH + 2H+ RCH2COOH + NH3

Гидролитическое дезаминирование является путем, соединяющим метаболизм белков и углеводов:

СООНСН2СНNH2COOH + HOH (H2O) COOHCOCH2COOH + NH3 + 2H+

аспарагиновая кислота щавелевоуксусная кислота

Водород, отнятый у аминокислоты дегидрогеназой, передается хинону, который превращается в полифенол, а затем опять окисляется до воды и хинона:

+ + хинон полифенол + О Н2О + хинон

Дезаминирование аминокислот является основным способом превращения азотистых веществ в безазотистые соединения, которые могут быть затем использованы для дальнейшей переработки в углеводы и жиры.

Аммиак либо вступает в реакцию аминирования и образует с кетокислотами новые аминокислоты, либо связывается с органическими кислотами, образуя аммиачные соли (особенно у кислых растений - щавеля, ревеня). У большинства растений обезвреживание аммиака происходит путем образования амидов - аспарагина и глютамина (т. е. амидов аспарагиновой и глютаминовой аминокислот).

Физиологическая роль амидов заключается в:

обезвреживании (связывании) аммиака,

создании резерва диаминодикарбоновых аминокислот, необходимых для ферментативного переаминирования,

предохранении от окисления дикарбоновых аминокислот.

Синтез амидов проходит по схеме:

Синтез аспарагиновой или глютаминовой кислот,

Амидирование аспарагиновой или глютаминовой кислот в следующем порядке:

а). АТФ + глютаминсинтетаза глютаминсинтетазафосфат + АДФ,

б). глютаминсинтетазафосфат + НООС-СН2СН2СНNH2СООН

РООС-СН2СН2СНNH2СООН + глютаминсинтетаза

в). РООС-СН2СН2СНNH2СООН + NH3 NH2-CO-СН2СН2СНNH2СООН + Н3РО4

глютамин

Кроме дезаминирования при диссимиляции аминокислот важную роль играет и процесс декарбоксилирования, сопровождающийся образованием углекислого газа и аминов. Амины либо вступают в реакции синтеза новых аминокислот, либо появляются при гнилостных распадах белков и входят в круговорот веществ уже в качестве питания для других организмов. Ферменты, определяющие этот процесс, называются декарбоксилазами.

Особенно легко амины используются растением для синтеза алкалоидов. Алкалоиды образуются из аминов путем выделения аммиака и образования соответствующего азотистого гетероцикла. Кроме того, амины могут подвергаться дальнейшему окислению, образуя аммиак и альдегид. При этом альдегид снова вступает во взаимодействие другими аминами и карбонильными соединениями, образуя алкалоиды.

Кроме образования алкалоидов одним из путей дальнейшего превращения аминов является их метилирование, проходящее с помощью метилтрансфераз. С помощью этого процесса происходит, например, образование никотина в табаке, холина, который играет важную роль в метаболизме клетки, являясь частью фосфатидов, или встречается в свободном виде.

Метилированию могут подвергаться не только амины, но и аминокислоты, в результате образуются бетаины, которые затрудняют кристаллизацию сахара.

Белковый и аминокислотный обмен тесно связан с обменом витаминов, так как некоторые из них являются составной частью активных групп ферментов, катализирующих превращения аминокислот. Кроме того, некоторые витамины образуются из аминокислот, например, никотиновая кислота из триптофана. Из ряда аминокислот образуются также гормоны роста типа ауксина, -индолилуксусной кислоты.

В растении метаболизм азота начинается процессом гидролитического и окислительного распада белков, образованием аминокислот и амидов, которые поступают из эндосперма или семядолей в росток и служат в нем исходным материалом для синтеза белков протоплазмы. Когда росток начинает ассимилировать углекислый газ, главными местами новообразования белков становятся лист и корень. По мере развития растения начинается перетекание аминокислот и белков из листьев к соцветиям и плодам, а, следовательно, к семенам.

Синтез и распад жиров в растении.

Главные этапы синтеза жира в растении представлены следующими процессами:

из сахаров образуются глицерин и жирные кислоты, как насыщенные, так и ненасыщенные,

из глицерина и жирных кислот образуются жиры при участии фермента липаза.

Все эти процессы обратимые и постоянно происходят в клетке.

Главным источником образования компонентов жира являются гексозы, хотя могут использоваться и другие простые сахара. Особенно легко используется для синтеза жира уксусная кислота.

Глицерин, из которого синтезируются жиры, образуется в процессе анаэробной диссимиляции углеводов путем восстановления глицеринового альдегида, получающегося из фруктозодифосфата под действием фермента альдолазы.

Включение сахарного остатка в галактолипиды происходит благодаря действию трансгликозилаз, причем часто источником остатков сахара является уридиндифосфатгалактоза.

Процессу синтеза жирных кислот из сахара предшествует распад сахара на уксусную кислоту, этиловый спирт и пировиноградную кислоту (процесс дыхания).

Например, масляная кислота образуется путем конденсации двух молекул уксусной кислоты в ацетоуксусную и последующим ее восстановлением до масляной:

2 СН3СООН СН3СОСН2СООН СН3СН2СН2СООН

Уксусная кислота используется для синтеза жирных кислот только в присутствии АДФ. Исходным соединением для биосинтеза жирных кислот ячвляется не сама уксусная кислота, а ацетилкофермент А, который дает активные ацетильные радикалы. Реакция происходит в два этапа по следующей схеме:

2 СН3СОSКоА СН3СОСН2СОSКоА +НSКоА

СН3СОСН2СОSКоА + Н2О СН3СОСН2СООН + НSКоА

Образующаяся из ацетоуксусной кислоты масляная кислота, вступая в реакцию в ацетилКоА, образует капроновую кислоту. Однако, механизм биосинтеза высших жирных кислот у растений пока мало исследован.

Для осуществления синтеза жирных кислот необходимы также ионы марганца и НАДФ. Н2. В процессе синтеза жирных кислот участвует и углекислый газ, который вступает в реакцию с ацетилкоферментом А, образуя малонилкофермент А, являющийся важнейшим промежуточным продуктом при ферментативном синтезе жирных кислот.

В процессе присоединения углекислого газа к ацетилкоферментуА важную каталитическую роль играет витамин биотин, а источником энергии для этого процесса является АТФ. Высшие ненасыщенные жирные кислоты образуются из насыщенных жирных кислот в процессе дегидрирования.

Процесс расщепления жира в растении происходит особенно энергично при прорастании семян. Наиболее ярко этот процесс выражен у масличных культур. Он начинается с гидролитического распада жиров, происходящего под действием фермента липазы и сопровождается накоплением глицерина и свободных жирных кислот, которые используются для различных синтезов в развивающемся проростке. При этом главным продуктом распада жиров является сахар. Из ненасыщенных жирных кислот сахара образуются быстрее.

Важную роль в метаболизме липидов играют такие ферменты, как сатураза (катализирует гидрирование ненасыщенных кислот в насыщенные) и липоксигеназа (катализирует окисление ненасыщенных кислот).

Важнейшим этапом диссимиляции жирных кислот является -окисление, открытое Федором Кноопом. Процесс изучен в теме "Дыхание растений" в вопросе о глиоксилатном цикле. В этом процессе принимает участие кофермент А, происходит он, как правило, в митохондриях.

Наряду с -окислением жирные кислоты подвергаются и -окислению. При этом процесс окисления начинается с декарбоксилирования жирной кислоты под действием пероксидазы и при участии перекиси водорода, в результате образуется альдегид, содержащий уже на 1 атом углерода меньше, чем исходная жирная кислота, который под действием альдегиддегидрогеназы превращается в новую, более простую, жирную кислоту.

Связи между тремя основными группами органических веществ.

Поскольку все три основные группы органических веществ тесно связаны в метаболизме, можно выделить два основных ключевых момента в их взаимопревращении. Это прежде всего образование пировиноградной кислоты и уксусной кислоты. Именно эти два вещества являются теми краеугольными камнями, на которых основываются круговороты углеводов, жиров и белков.

От пировиноградной кислоты отходят пути образования глюкозы, а, следовательно и глюкозо-1-фосфата, как основы образования углеводов, и образование органических кислот (кетокислот), которые начинают путь синтеза аминокислот.

Уксусная кислота, образовываясь в русле синтеза органических кислот от пировиноградной кислоты, является началом пути образования жиров, а в русле расщепления жирных кислот в результате -окисления, является связкой между метаболизмом жиров и углеводов.

Образование нуклеиновых кислот, различных вторичных органических соединений основывается на веществах, синтезирующихся на промежуточных этапах синтеза этих трех групп веществ.

Передвижение органических веществ в растении.

В растении лист является основным органом биосинтеза. Продукты фотосинтеза запасаются в виде крахмала в хлоропластах и лейкопластах, перераспределение углеводов происходит при переходе крахмала в растворимые простые сахара.

В растении ксилема служит для перемещения воды и минеральных веществ из почвы в надземную часть, а флоэма служит для доставки сахарозы из листьев в другие органы растения.

По флоэме отток веществ наблюдается от донора (органа-синтезатора) вверх и вниз - к любому органу-акцептору, где эти вещества запасаются или потребляются. Органы, акцептирующие вещества, относятся, как правило, к запасающим органам (корнеплоды, корневища, клубни, луковицы).

По ксилеме же вещества движутся только снизу вверх.

Все потребляющие органы обеспечиваются, как правило, ближайшим к ним донором. Верхние фотосинтезирующие литься снабжают растущие почки и самые молодые листья. Нижние листья обеспечивают корни. Плоды обеспечиваются из ближайших к ним листьев.

Транспорт по флоэме может происходить одновременно в двух направлениях. Эта "двухнаправленность" является результатом одностороннего тока в отдельных, но смежных ситовидных трубках, соединенных с различными донорами и акцепторами.

Ситовидные трубки - это тонкостенные удлиненные клетки, соединенные своими концами и образующие непрерывную трубку. В местах соприкосновения клеточные стенки пронизаны ситовидными порами и называются поэтому ситовидными пластинками. В отличие от ксилемных клеток ситовидные флоэмные клетки - живые, хотя и непохожи на обычные живые клетки. Они не имеют ядра, но содержат некоторые другие органеллы и плазмалемму, которая играет важную роль в удержании сахаров в ситовидных трубках. Доказательством может служить способность флоэмных клеток к плазмолизу. Ситовидные трубки имеют короткий период жизни и постоянно заменяются новыми, образующимися при делении камбия.

Перемещение веществ по флоэме происходит с большой скоростью: до 100 см/час. Транспорт по флоэме осуществляется путем перетекания растворов. Высокое гидростатическое давление, обусловленное движением воды в богатые сахаром зоны с высоким отрицательным водным потенциалом, вызывает перетекание растворов в зоны с более низким давлением. Удаление сахара из них гарантирует постоянное наличие градиента и, следовательно, перетекание раствора. Загрузка растворенных веществ включает совместный транспорт (котранспорт) сахарозы и ионов водорода с участием специфической пермеазы. Этот процесс обусловлен градиентом кислотности и электрохимическим градиентом. Поглощенные ионы водорода выделяются впоследствии с помощью протонного транспортера, использующего энергию АТФ.

Кроме сахарозы во флоэмном потоке транспортируются аминокислоты и амиды (аспарагин, глютамин), при старении добавляются также органические и минеральные вещества из отмирающих органов.

В направленном транспорте ассимилятов в растении участвуют в основном три системы:

выталкивающая или нагнетающая (лист),

проводящая (флоэма),

аттрагирующая или притягивающая (меристематические и запасающие ткани).

Таким образом передвижение веществ в растении включает сложный комплекс процессов передвижения пасоки по ксилеме и флоэме, который регулируется растением и зависит как от внешних факторов, так и от фазы развития растения.

Тема: Рост и развитие растений.

Дополнительная литература:

М.Х. Чайлахян. Гиббереллины растений. Изд-во АН СССР, 1961, 63 с.

Ж. Бернье, Ж. - М. Кине, Р. Сакс. Физиология цветения. т.1-2, М.: Агропромиздат, 1985

В.В. Полевой, Т.С. Саламатова. Физиология роста и развития растений. Изд-во Ленинградского университета, Л., 1991, 239 с.506 с.

Вопросы к теме:

Характеристика факторов, определяющих закономерности роста и развития растений.

Рост растений (закономерности, типы).

Виды движения у растений.

Развитие растений (типы онтогенеза, этапы онтогенеза, особенности периода эвокации, особенности фазы покоя).

Теория старения и омоложения растений Кренке.

Особенности созревания продуктивных частей растений.

Использование регуляторов роста в практике сельского хозяйства.

Характеристика факторов, определяющих закономерности роста и развития растений.

Все ранее изученные процессы в совокупности определяют прежде всего осуществление основной функции растительного организма - роста, образования потомства, сохранения вида. Эта функция осуществляется через процессы роста и развития.

Жизненный цикл любого эукариотного организма, т.е. его развитие от оплодотворенной яйцеклетки до полного формирования, старения и гибели в результате естественной смерти, называется онтогенезом.

Рост - это процесс необратимого новообразования структурных элементов, сопровождающийся увеличением массы и размеров организма, т.е. количественное изменение.

Развитие - это качественное изменение компонентов организма, при котором имеющиеся формы или функции превращаются в другие.

На оба процесса оказывают влияние различные факторы:

внешние абиотические факторы окружающей среды, например солнечный свет,

внутренние факторы самого организма (гормоны, генетические признаки).

Благодаря генетической тотипотентности организма, определяемой генотипом, происходит строго последовательное образование того или иного типа тканей в соответствии с этапом развития организма. Образование определенных гормонов, ферментов, типов тканей в определенной фазе развития растения определяется обычно первичной активацией соответствующих генов и называется дифференциальной активацией гена (ДАГ).

Вторичная активация генов, а также их репрессия могут происходить и под воздействием некоторых внешних факторов.

Одним из важнейших внутриклеточных регуляторов активации генов и развития того или иного процесса, связанного с ростовыми процессами или переходом растения в следующую фазу развития являются фитогормоны.

Изученные фитогормоны делят на две большие группы:

стимуляторы роста

ингибиторы роста.

В свою очередь стимуляторы роста делят на три класса:

ауксины,

гиббереллины,

цитокинины.

К ауксинам относятся вещества индольной природы, типичным представителем является индолил-3-уксусная кислота (ИУК). Образуются они в меристематических клетках и передвигаются как базипетально, так и акропетально. Ауксины ускоряют митотическую активность как апикальных меристем, так и камбия, задерживают опадание листьев и завязей, активируют корнеобразование.

К гиббереллинам относятся вещества сложной природы - производные гибберелловой кислоты. Выделены из аскомицетных грибов (род Gibberella fujikuroi), имеющих ярко выраженную конидиальную стадию (род фузариум). Именно в конидиальной стадии этот гриб вызывает у риса болезнь "дурных побегов", характеризующуюся стремительным ростом побегов, их вытягиванием, истончением, и, как следствие, гибелью. Гиббереллины также транспортируются в растении акропетально и базипетально как по ксилеме, так и по флоэме. Гиббереллины ускоряют фазу растяжения клеток, регулируют процессы цветения и плодоношения, индуцируют новообразование пигментов.

К цитокининам относятся производные пурина, типичным представителем которых является кинетин. Эта группа гормонов не обладает столь ярко выраженным действием, как предыдущие, однако цитокинины воздействуют на многие звенья метаболизма, усиливают синтез ДНК, РНК, белков.

Ингибиторы роста представлены двумя веществами:

абсцизовая кислота,

этилен.

Абсцизовая кислота - это гормон стресса, ее количество сильно увеличивается при недостатке воды (закрывание устьиц) и питательных веществ. АБК подавляет биосинтез нуклеиновых кислот и белков.

Этилен - это газообразный фитогормон, который тормозит рост и ускоряет созревание плодов. Этот гормон выделяется созревающими органами растений и воздействует как на другие органы этого же растения, так и на растения, находящиеся рядом. Этилен ускоряет опадение листьев, цветков, плодов за счет освобождения целлюлазы у черешков, что ускоряет образование отделительного слоя. Этилен образуется при распаде этрела, что сильно облегчает его практическое применение в сельском хозяйстве.

Рост растений (закономерности и типы).

Под термином рост у растений подразумевается несколько процессов:

рост клетки,

рост ткани,

рост растительного организма в целом.

Рост клетки характеризуется наличием следующих фаз:

Эмбриональная фаза (вакуоли нет, остальные органоиды в небольшом количестве).

Фаза растяжения (появление вакуоли, укрепление клеточной стенки, увеличение размера клетки).

Фаза дифференциации (появление в клетке специфических для данной ткани органоидов).

Рост ткани в зависимости от ее специфичности может проходить по какому-либо из типов:

Апикальному (побег, корень).

Базальному (лист).

Интеркалярному (стебель у злаков).

Рост растительного организма в целом характеризуется наличием следующих фаз:

Лаг-фаза или индукционный рост (прорастание семени).

Лог-фаза или фаза логарифмического роста (формирование вегетативной массы растения).

Фаза замедленного роста (в период плодоношения, когда образование новых вегетативных частей растения ограниченно).

Фаза стационарного состояния (совпадает, как правило, со старением и отмиранием растения).

Скорость роста и относительный рост или прирост у растений определяют, измеряя параметры растений в определенном временном режиме.

Для определения прироста пользуются разнообразными методами, в частности:

с помощью линейки,

с помощью горизонтального микроскопа,

с помощью меток,

с помощью ауксанографа,

с помощью масштабного фотографирования.

В среднем скорость роста у растений составляет 0,005 мм/мин., однако есть быстрорастущие растения и органы: тычинки злаков растут со скоростью 2 мм/мин., бамбук - 1 мм/мин.

По результатам современных исследований (В.С. Шевелуха) предложена следующая классификация типов роста:

синусоидальный тип (кривая суточного хода скорости линейного роста имеет вид синусоиды с фазой максимума в дневные и минимума в ранние утренние часы) (характерна для злаков),

импульсный тип роста (кривая усиления скорости ростовых процессов и их торможения происходит скачкообразно под прямым или острым углом в течение десятков минут. Максимальная скорость роста наступает в 20-21 час и сохраняется всю ночь, днем рост заторможен) (характерна для корнеплодов и клубней),

двухволновой тип (в течение суток скорость роста имеет две волны, дважны достигая максимума и минимума),

выравненный тип роста (кривая роста имеет плавный характер).

Виды движения у растений.

Несмотря на то, что растения, как правило, стационарно закрепляются в окружающем пространстве, они способны к ряду видов движения.

Основные виды движения у растений:

таксисы.

нутации,

настии,

тропизмы,

Таксисы характерны только для низших водных неприкрепленных растений,

для высших растений характерны первые три вида.

Нутации совершают растущие апикальные побеги, вращаясь вокруг своей оси, причем надземные побеги совершают их только под влиянием гормонов, а корни - как под влиянием гормонов, так и с помощью особых клеток (статоцитов (с органеллами статолитами), которые способны использовать естественные силы гравитации при осуществлении этого процесса.

Настии растение совершает под влиянием равномерно действующего абиотического фактора (света, воды и т.д.).

Тропизмы растение совершает под влиянием неравномерно действующего абиотического фактора (света, воды, гравитации и т.д.).

Развитие растений (типы онтогенеза, этапы онтогенеза, особенности периода эвокации, особенности фазы покоя).

Развитие растений или онтогенез характеризуется тем, что на переход растения из одной фазы онтогенеза в другую действуют очень большое количество факторов, причем часто необходимо их совокупное действие.

Различают следующие типы онтогенеза растений:

По продолжительности жизни:

однолетние,

двулетние,

многолетние;

По количеству плодоношений:

монокарпические,

поликарпические.

Любое растение проходит в процессе онтогенеза следующие этапы развития:

эмбриональную фазу (от оплодотворения семяпочки до формирования семени),

ювенильную фазу (от прорастания семени до появления всхода на поверхности почвы),

фазу формирования надземных вегетативных органов,

фазу цветения и плодообразования,

фазу созревания,

фазу отмирания.

Наиболее насыщенной является ювенильная фаза развития, которая делится на такие периоды, как:

набухание,

проклевывание,

гетеротрофный рост проростка в темноте,

переход к автотрофному типу питания.

Практически каждое онтогенетическое изменение происходит под воздействием внутренних и внешних факторов. При этом из внешних фактором наиболее важное значение имеет солнечный свет. Переход к автотрофному способу питания, переход к фазе бутонизации и цветения, переход к состоянию покоя у многолетних растений непосредственно связаны именно с воздействием продолжительности солнечного освещения и поэтому называются фотоморфогенезом. Свет является сигналом не тольлко к смене фазы развития, но и непосредственно влияет на рост, транспирацию и другие физиологические процессы в растении. Непосредственное воздействие света выражается в способности клеток образовывать соответствующие гормоны, в частности абсцизовую кислоту, что позволяет растению замедлять скорость роста при переходе к автотрофному питанию. Опосредованное воздействие света в виде длительности светового дня определяет переход к следующей фазе развития, в частности к цветению.

Восприятие растением воздействия солнечного света происходит благодаря наличию специальных фоторецепторов и гормонов.

Непосредственное воздействие света воспринимается растением с помощью фоторецептора "криптохром", и пигмента "фитохром". Особенно важен фитохром, который способен воспринимать различные составляющие спектра солнечного света и, в зависимости от поглощенной длины волны, превращается либо в форму Фк, поглощающий красный свет с длиной волны 600 нм, либо в форму Фдк, поглощающий дальний красный свет с длиной волны 730 нм. При обычных условиях этот пигмент находится в обеих формах в равных пропорциях, однако, при смене условий, например на затененные, происходит образование большего количества пигмента Фк, и это определяет вытягивание и этиолирование тканей побега. На основе действия этих фоторецепторов и пигментов растение проходит суточные изменения в определенном ритме, который называется циркадным, или биологическими часами растения.

Световой фактор вызывает также синтез определенных гормонов, которые определяют переход растения в фазу цветения или в фазу эвокации, т.е. переход от вегетативного состояния к генеративному развитию. Основным гормоном, действующим на этом этапе онтогенеза, является гормон "флориген", состоящий из двух групп гормонов:

гиббереллинов, вызывающих образование и рост цветоносов,

антезинов, вызывающих формирование цветков.

Понимание этого момента весьма важно на практике, особенно в плодоводстве, где использование подвоя и привоя в определенных фазах онтогенеза будет влиять на скорость вступления в плодоношение привитого растения. Поток гормонов, в том числе и флоригена, идет от привоя к подвою, поэтому важно использование подвоя с растения, находящегося в определенной фазе развития. Флоральный морфогенез контролируется сложной системой многих факторов, каждый из которых в необходимой концентрации и в нужное время запускает свою цепь процессов, ведущих к закладке цветков.

Вторым важным фактором, играющим определенную роль в формировании флорального морфогенеза является температурный фактор. Он особенно важен для озимых и двулетних культур, поскольку именно пониженные температуры вызывают у этих культур те биохимические преобразования, которые определяют синтез флоригена и других сопутствующих гормонов, определяющих инициацию цветения.

Именно на действии пониженных температур основан прием яровизации, который используется в различных опытных исследованиях, когда необходимо ускорить смену поколений у озимых культур. К таким же результатам приводит и обработка растений гиббереллинами, благодаря которой можно ускорить цветение двулетних растений.

По отношению к фотопериоду растения делят на три группы:

растения короткого дня (цветение при длине дня меньше 12 часов) (хризантема, георгин, топинамбур, просо, сорго, табак),

растения длинного дня (цветение при длине дня больше 12 часов) (астра, клевер, лен, лук, морковь, свекла, шпинат),

нейтральные растения (цветение не зависит от длины дня) (подсолнечник, гречиха, бобы, рапс, томат).

В онтогенезе растений обязательно имеется фаза ослабления жизнедеятельности, которая носит название состояния покоя. У однолетних растений это состояние наступает только один раз - при формировании семени, у многолетних растений - много раз при переходе к существованию в неблагоприятные условия среды (зима, засуха). Покой - это такое состояние растения, которое характеризуется отсутствием ростовых явлений, крайней степенью угнетенности дыхания и снижением интенсивности превращения веществ.

Различают летний и зимний покой у многолетников, глубокий и вынужденный покой у всех растений. Вынужденный покой возможен только при участии человека, который может обеспечить особые условия хранения покоящихся органов в специальных хранилищах с помощью специальных методов. Очень важным моментом перехода в состояние покоя является этап послеуборочного дозревания, что позволяет предотвратить преждевременное прорастание семян, сконцентрировать максимальное количество запасных веществ.

Теория старения и омоложения растений Кренке.

В процессе онтогенеза растение подвергается определенным изменениям, которые связаны с явлением возрастной изменчивости. Теорию, объясняющую закономерности этой изменчивости предложил в 40 годы прошлого столетия, Н.П. Кренке. Основные постулаты этой теории:

Каждый организм, начиная от возникновения, непрерывно стареет до своей естественной смерти.

В первой половине жизни старение прерывается периодически омоложением, т.е. образованием новых побегов, листьев и т.п., что замедляет темп старения.

Растениям присущ физиологический возраст, который определяет истинный возраст органа растения: листья однолетнего и десятилетнего деревьев неравноценны, неравноценны и листья на одном дереве, но на побегах разного порядка. Различают понятие "возраст" (календарный возраст) и "возрастность" (физиологический возраст. Возрастность определяется возрастом органа и материнского растения. В пределах плодового дерева листья на побегах высших порядков ветвления физиологически более старые, чем листья того же возраста на побегах низших порядков ветвления. Поэтому по форме, анатомическому строению, физиологическим и биохимическим признакам верхние листья, несмотря на свой меньший возраст, обнаруживают признаки большего старения, срок их жизни часто короче, чем у средних листьев на том же побеге.

Цикличность онтогенетического развития заключается в том, что дочерние клетки при своем новообразовании являются временно омоложенными по отношению к материнским.

Скорость старения и нормальная средняя продолжительность жизни определяются начальным потенциалом жизнеспособности и обуславливаются генетическими особенностями вида.

Проблемой старения и омоложения плодово-ягодных культур занимался и П.Г. Шитт. В 60-ых годах прошлого столетия он впервые установил наличие возрастных качественных изменений у корней. И.В. Мичурин также указывал на тесную связь между органообразовательными процессами в организмах и возрастной изменчивостью.

Установленные Н.П. Кренке закономерности изменения морфологии листьев и побегов в связи с их возрастом позволили разработать рекомендации по ранней диагностике скороспелости растений в пределах вида, выявить коррелятивные связи между качеством клубней и корнеплодов и скороспелостью сорта. Установлено, что для скороспелых сортов характерно резкое изменение морфологических признаков листьев (быстрое пожелтение и отмирание листьев), а у позднеспелых сортов изменения происходят постепенно. Эта закономерность имеет важное значение в процессе селекции сортов на скороспелость и качество.

Морфологические признаки тесно связаны с генетически заложенной скороспелостью, что дает возможность использовать их в селекции плодовых культур, например:

у однолетних сеянцев скороспелых сортов яблони междоузлия короче, ветвление более сильное, листья расположены гуще, чем у сортов, позже вступающих в плодоношение,

у двулетних сеянцев яблони интенсивность зеленой окраски листьев при переходе от верхних ярусов к нижним у скороспелых форм изменяется более резко, чем у позднеспелых,

чем выше по стеблю плодового растения взят черенок или почка (при вегетативном размножении), тем раньше после укоренения или окулировки растение способно зацветать.

На основе теории Кренке были усовершенствованы приемы подрезки растений, технология выбора побегов и их частей требуемого качества при вегетативном размножении растений, обеспечивающая лучшую укореняемость черенков, технология достижения оптимального сочетания вегетативного и генеративного развития растений при черенковании и прививках.

Особенности созревания продуктивных частей растений.

Продуктивными частями растений называют как органы генеративного размножения (плоды, семена), так и органы вегетативного размножения (клубни, луковицы). Остальные продуктивные части (листья у зеленных культур, стеблеплоды, корнеплоды и др.) не несут функции размножения и поэтому закономерности из роста и развития не имеют столь важного значения.

Плод, содержащий семена, является органом размножения у подавляющего большинства сельскохозяйственных растений. Он выполняет две функции:

защита семян,

распространение семян.

Для осуществления этих функций у различных плодов имеются соответствующие приспособления (сухие и сочные плоды, крючочки, крылатки, привлекательный вкус и т.д.).


Подобные документы

  • Клеточные структуры, строение, состав и свойства основных компонентов растительной клетки. Поглощение и выделение веществ и энергии клеткой. Хлоропласты, их строение, химический состав и функции. Строение молекулы хлорофилла, флавоноидные пигменты.

    контрольная работа [1,0 M], добавлен 05.09.2011

  • Углеводы – группа органических соединений. Строение и функции углеводов. Химический состав клетки. Примеры углеводов, их содержание в клетках. Получение углеводов из двуокиси углерода и воды в процессе реакции фотосинтеза, особенности классификации.

    презентация [890,0 K], добавлен 04.04.2012

  • Общая характеристика клетки: форма, химический состав, отличия эукариот от прокариот. Особенности строения клеток различных организмов. Внутриклеточное движение цитоплазмы клетки, метаболизм. Функции липидов, углеводов, белков и нуклеиновых кислот.

    лекция [44,4 K], добавлен 27.07.2013

  • Признаки и уровни организации живых организмов. Химическая организация клетки. Неорганические, органические вещества и витамины. Строение и функции липидов, углеводов и белков. Нуклеиновые кислоты и их типы. Молекулы ДНК и РНК, их строение и функции.

    реферат [13,5 K], добавлен 06.07.2010

  • Прокариоты и эукариоты, строение и функции клетки. Наружная клеточная мембрана, эндоплазматическая сеть, их основные функции. Обмен веществ и превращения энергии в клетке. Энергетический и пластический обмен. Фотосинтез, биосинтез белка и его этапы.

    реферат [20,8 K], добавлен 06.07.2010

  • Строение, состав и физиологическая роль отдельных органелл клетки. Классификация белков по степени сложности. Состояние воды в живых тканях, ее функции. Полисахариды морских водорослей: состав, строение. Биологическая роль и классификация липидов.

    контрольная работа [1014,7 K], добавлен 04.08.2015

  • Изучение строения и физиологических особенностей светолюбивых и теневыносливых растений. Влияние ризосферной микрофлоры на поглощение минеральных веществ корнями. Поступление воды в растение. Физиологические основы орошения. Химический состав клетки.

    реферат [31,1 K], добавлен 22.06.2012

  • Превращения веществ и энергии, происходящие в живых организмах и лежащие в основе их жизнедеятельности. Назначение обмена веществ и энергии, взаимосвязь анаболических и катаболических процессов. Энергетическая ценность углеводов и жиров в организме.

    реферат [21,9 K], добавлен 28.05.2010

  • Классификация процессов метаболизма и обмена. Виды организмов по различиям обменных процессов, методы их изучения. Метод учета веществ поступивших и выделившихся из организма на примере азотистого обмена. Основные функции и источники белков для организма.

    презентация [3,8 M], добавлен 12.01.2014

  • Клетка как основная единица живого. Химический состав клетки, ее элементарные частицы и характер протекающих внутри процессов. Роль и значение воды в жизнедеятельности клетки. Этапы энергетического обмена клетки, реакций расщепления (диссимиляции).

    реферат [28,2 K], добавлен 11.07.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.