Физиология растений

Процессы превращения веществ и энергии внутри растительного организма как основные физиологические функции растения. Химический состав клетки. Строение, классификация и функции углеводов, липидов и аминокислот. Кинетика ферментативного катализа.

Рубрика Биология и естествознание
Вид курс лекций
Язык русский
Дата добавления 15.06.2010
Размер файла 188,8 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Возраст листа (растения) определяет повышение интенсивности фотосинтеза у завершившего рост листа и постепенное снижение интенсивности фотосинтеза у стареющего листа за счет деградации хлоропластов.

На показатели фотосинтеза значительно влияют такие абиотические факторы, как:

освещенность,

температура,

водный режим,

минеральное питание,

содержание углекислого газа.

Освещенность растения влияет не только за счет количества ФАР, падающей на лист, но и за счет качества падающей световой энергии. Качество света влияет на превращение промежуточных продуктов фотосинтеза и на направленность дальнейшего процесса биосинтеза. Так коротковолновой свет способствует образованию аминокислот, белков, органических кислот, а длинноволновой - образованию углеводов. Интенсивность фотосинтеза максимальна в красной части спектра и минимальна в синей и зеленой его частях.

Интенсивность фотосинтеза незначительно меняется под воздействием количества падающей радиации, так как ее количество лист регулирует с помощью фототаксиса хлоропластов. При избытке света может наступать разрушение фотосинтетического аппарата.

Температура воздуха положительно влияет на интенсивность фотосинтеза, если повышается до 25-35оС, но при более высоких показателях может снижать интенсивность фотосинтеза за счет перегрева листа. Температура листьев зависит от угла падения на них солнечных лучей. При расположении листьев параллельно лини падения солнечных лучей, перегрева не наблюдается, таким образом растение может регулировать температуру с помощью движений листьев. Нижняя температурная граница, при которой может осуществляться фотосинтеза, составляет около -5оС (у хвойных пород зимой), оптимальна температура около 25оС.

Водный режим определяет степень обводненности тканей и, следовательно, поглощение энергии солнечной радиации, поступление и ассимиляцию углекислого газа, систему ферментативных реакций в фотосистеме П, интенсивность транспирации. При водном дефиците происходит деградация сформированных хлоропластов, изменяется структурная связь хлорофилла с белками, увеличивается количество прочносвязанной воды. Дефицит воды в листьях может быть общим показателем фотосинтеза, поскольку в нем отражается влияние влажности почвы и всех метеорологических факторов (температуры, влажности воздуха, радиационного режима).

Минеральное питание. Корневая система усваивает различные макро и микроэлементы, необходимые для процесса фотосинтеза, для формирования фотосинтетического аппарата: хлорофиллов, каротиноидов, ферредоксинов, других ферментов и коферментов. Необходимо поступление и микроэлементов (магния, марганца, серы, железа), и макроэлементов (азота, калия, фосфора), без которых невозможны ни процессы образования макроэргических молекул, ни биосинтез продуктов фотосинтеза. При недостатке азота и фосфора в почвенном растворе наблюдаются глубокие изменения ультраструктуры хлоропластов, нарушение синтеза пигментов. В свою очередь оптимальный световой режим в посевах способствует повышению эффективности действия минеральных удобрений.

Содержание углекислого газа. Обычное содержание в воздухе углекислого газа в объеме 0,03%, является минимальным, поэтому увеличение его концентрации в атмосфере всегда приводит к повышению энергии фотосинтеза и положительно влияет как на интенсивность, так и на продуктивность фотосинтеза. Так, при увеличении концентрации углекислого газа до 0,08% интенсивность фотосинтеза возрастает в 2-3 раза.

Пути повышения продуктивности фотосинтеза.

Основываясь на механизмах влияния внутренних и внешних факторов, действующих на показатели фотосинтетической активности растений, в практике сельского хозяйства используют ряд приемов, позволяющих увеличить интенсивность фотосинтеза и повысить урожайность сельскохозяйственных культур.

Прежде всего это точное соблюдение оптимальной технологии:

соблюдение режима орошения,

соблюдение режима минерального питания,

использование необходимых внекорневых подкормок микроэлементами,

повышение в защищенном грунте концентрации углекислого газа за счет применения органических удобрений (внесение навоза), использования сухого льда, поддымление парниковых рам. При этом у огурцов не только повышается интенсивность фотосинтеза, но и увеличивается количество женских цветков.

Соотношение между количеством усвоенного в процессе фотосинтеза углекислого газа и накопленного сухого органического вещества называется коэффициентом эффективности фотосинтеза.

Необходимо учитывать, что на итоговое накопление органического вещества влияют два процесса: фотосинтез и дыхание. Количество накапливаемых органических веществ зависит от интенсивности фотосинтеза и дыхания растений, то есть от положения компенсационной точки. Компенсационная точка характеризует такое состояние растения, когда в нем фотосинтез и дыхание полностью уравновешиваются, т.е. при таких условиях органическое вещество не накапливается.

Накопление органического вещества растением за определенный период или за всю его жизнь следует рассматривать как разницу между количеством созданного на свету органического вещества и израсходованного на дыхание.

Кроме того, в процессе преобразования веществ также может происходить уменьшение массы (например, масса клетчатки на 10% меньше массы глюкозы, из которой она образуется), на накопление органического вещества влияет также опадение или гибель частей растения (цветков, корневых волосков) в период вегетации.

При оптимальных условиях влажности и температурного режима важно также соблюдать оптимальное размещение растений. Для лучшего освещения растений рядки располагают с востока на запад или с северо-востока на юго-запад. Величина урожая в значительной мере зависит от оптимальной структуры посевов.

Структурой посевов называется создаваемая архитектоника сообщества растений, которое характеризуется определенными морфологическими признаками и физиологическими функциями, а оптимальная структура - это такой посев, который имеет высокий КПД фотосинтеза и обеспечивает максимальный урожай. Обычно потери энергии на дыхание составляют 15-25%, но при загущенном посеве нижние, а частью и средние листья становятся не столько синтезирующими, сколько потреблояющими.

Одной из важнейших задач селекции является создание сортов, способных развивать большую фотосинтезирующую поверхность, имеющих высокую продуктивность фотосинтеза и дающих большой биологических и хозяйственный урожай.

В сельском хозяйстве наибольший интерес представляет получение конечного продукта - полезной накопленной биомассы растений, то есть чистой продуктивности фотосинтеза.

Чистую продуктивность фотосинтеза определяют, пользуясь легко определяемыми величинами: площадью листовой поверхности и фактически накопленной биомассой:

В21

Фч. пр. = - ---------------

(Л12).1/2п,

где В1 и В2 - масса сухого вещества пробы урожая в начале и конце учетного периода, т.е.

В2 - В1 - прирост сухой массы за учетный период (п дней), Л1 и Л2 - площадь листьев пробы в начале и конце периода, т.е. (Л12).1/2п - средняя площадь листьев за указанный отрезок времени, п - число дней в учетном периоде.

Кроме общей чистой продуктивности фотосинтеза определяют и интенсивность работы листьев, направленную на создание хозяйственной части урожая. В этом случае вместо В2 - В1 подставляют величины Х2 - Х1, то есть прирост сухой массы хозяйственной части урожая.

Фотосинтетический потенциал растений - это сумма ежедневных показателей площади листьев посева за весь вегетационный период (или за его часть), выраженная в

м2. дни/га.

Биологический урожай - это сумма суточных приростов за весь вегетационный период:

Убиол. = С1,2... п,

где С - суточные приросты массы, в кг/га в сутки.

Ф. Кэф.

С= - ---------

Л

Х1000,где Ф - количество ассимилированного СО2, Кэф. - коэффициент фотосинтеза (суточный прирост урожая/ суточное усвоение углекислого газа), Л - листовая поверхность, 1000 - граммы (для пересчета в кг). В среднем при хорошей агротехнике сельскохозяйственные культуры накапливают 15-20 т/га сухой биомассы.

Хозяйственный урожай составляет ту долю биологического, которая используется человеком:

Ухоз. = Убиол. Кхоз.

Коэффициент хозяйственного использования у разных культур может сильно различаться (зерновые культуры и сахарная свекла).

Продуктивность фотосинтеза сельскохозяйственных культур целесообразно оценивать величиной выхода полезной энергии с гектара.

Демонстрация таблиц с данными по интенсивности фотосинтеза для разных культур.

Для определения площади листовой поверхности используют три основных метода:

фотопланиметрирование - когда с помощью специального прибора определяют уменьшение интенсивности светового потока, пропорциональное площади листа,

расчет по высечкам - когда, взвесив несколько высечек известной площади, делят общий вес листа на вес высечек и узнают общую площадь листа,

расчет по линейным размерам листа по формуле S. b. k, где а и b - ширина и длина листа, а k - коэффициент для данной сельскохозяйственной культуры. Для всех сельскохозяйственных культур он определен и приведен в справочниках: для кукурузы - 0,68; для ячменя - 0,65; для сахарной свеклы - 0,76; для яблони - 0,62-0,74.

Суточный ход фотосинтеза у светолюбивых и теневыносливых растений.

В связи с тем, что основой жизнедеятельности растений является фотосинтез, все растения любят свет. Однако, есть растения, выносливые к недостатку света, которые называют теневыносливыми. Светолюбивость или теневыносливость растений определяется сформировавшимися в процессе эволюции механизмами приспособления к окружающим факторам среды.

Светолюбивость проявляется в значительном уменьшении содержания зеленых пигментов и соответствующем повышении количества каротиноидов. У светолюбивых растений часто наблюдается усиленное развитие ассимилирующей ткани палисадной паренхимы, состоящей из нескольких слоев клеток меньшей величины, чем у теневыносливых; у них число устьиц больше и поэтому углекислый газ быстрее проникает внутрь листа. Внешне у светолюбивых растений листья всегда более мелкие и имеют более бледную зеленую окраску, чем теневыносливые.

Интенсивность фотосинтеза у светолюбивых растений повышается к полудню и уменьшается утром и вечером, у теневыносливых максимум фотосинтеза приходится на утро и вечер, и минимальна интенсивность фотосинтеза в полдень.

Роль зеленых растений в природе.

Зеленые растения, являясь основными автотрофами на нашей планете, определяют несколько существеннейших параметров жизни:

накопление кислорода в атмосфере,

накопление биомассы,

основное звено синтеза органики в пищевых цепях,

преобразование физической энергии Солнца в химическую энергию органических веществ.

В.И. Вернадский писал о значении растений так: "На нашей планете свободный кислород, находящийся на ней в виде газа или в форме раствора в природных водах, нацело создается жизнью. Мы не знаем пока ни одного случая, когда бы он выделялся в значительном количестве в результате какого бы то ни было химического процесса, независимо от жизни. Но нам известны тысячи земных химических процессов, в которых свободный кислород поглощается, переводится в новые соединения, исчезает как таковой. А между тем, количество его в биосфере не меняется, остается все тем же. Это достигается непрерывной работой зеленых растений, и это одно дает меру их значения на нашей планете, дает представление о размахе их геохимической энергии".

В ранние геологические периоды теплый и влажный климат и высокое содержание углекислого газа в атмосфере Земли содействовали пышному расцвету фотосинтезирующих растений. При этом все большее количество углерода переходило в состав органических веществ, которые затем превращались в залежи полезных ископаемых (уголь, нефть, торф) и гумус. Эти запасы ныне достигают 6.1015тонн.

Космическая роль зеленых растений выражается в их влиянии на изменение условий жизни на Земле и в обеспечении возникновения новых форм жизни.

Атмосфера обогащалась кислородом, уменьшалось количество углекислого газа. Имеющееся в современной атмосфере количество кислорода, равное 1,5.1015 тонн, близко к тому количеству, которое должно было выделиться при образовании органических запасов углерода на Земле (6.1015тонн).

По современным подсчетам годовая продуктивность всей растительности Земли оценивается в 100 миллиардов тонн сухой биомассы.

Преобладающую роль в продуктивности наземной растительности играют леса - 28,4 миллиарда тонн, затем идут пастбища (степи, луга) - 10,4 миллиарда тонн, затем сельскохозяйственные угодья, которые дают около 8,7 миллиардов тонн сухой биомассы.

Основное же количество сухой биомассы накапливает растительность океанов и других водоемов.

Ежегодно растения поглощают из окружающей среды 2.109 т азота, 6.109 фосфора, 158.109 т углекислого газа и 128.109 т воды, а выделяют 115.109 т кислорода.

В процессе дыхания растений окисляется 25.109 т органики, причем выделяется 34,5.109 т углекислого газа.

Весь животный мир разлагает 3,5.109 т органики с образованием 4,8.109 т углекислого газа.

За счет сжигания полезных ископаемых в промышленности и быту в атмосферу выделяется 15.109 т углекислого газа.

Тема: Дыхание растений.

Дополнительная литература по теме:

В.Л. Кретович "Основы биохимии растений". М, 1971,А. Ленинджер "Биохимия" М., 1974,Я. Мусил, О. Новакова, К. Кунц "Современная биохимия в схемах".М., 1981.

Перечень вопросов:

Общая характеристика дыхания.

Гликолиз.

Пентозофосфатный цикл.

Цикл Кребса.

Глиоксилатный цикл.

Цепь дыхательных ферментов.

Строение и функции митохондрии и дыхательных ферментов. Энергетика процесса дыхания.

Влияние условий окружающей среды на дыхание растений.

Регулирование дыхания сельскохозяйственных продуктов при хранении.

Общая характеристика дыхания.

Дыхание занимает исключительное положение среди других физиологических процессов. Окислительное дыхание свойственно всем многоклеточным живым организмам, как растительным, так и животным. Ряд видов прокариот также ведут этот процесс. Поэтому основные этапы дыхания являются одинаковыми для всех живых организмов, получающих энергию с помощью этого способа.

Дыхание является ключевым процессом метаболизма любого организма по двум причинам: при дыхании происходит освобождение химической энергии органических веществ, используемых в качестве дыхательного материала. Экзотермические реакции дыхательного процесса непосредственно связаны с эндотермическими процессами клеточного обмена и служат для них источником энергии. Таким образом, дыхание обеспечивает возможность течения эндотермических реакций обмена, процессов образования структур и осуществления движений, что требует затрат энергии, при дыхании протекают такие химические превращения, в результате которых образуются высокоактивные соединения, обладающие большой реактивной способностью и играющие исключительную роль в обмене веществ в организме.

Итоговое уравнение дыхания:

С6Н12О6 + 6 О2 = 6 СО2 +: 2О + 686 ккал (2867 кДж)

Дыхание обеспечивает организм энергией, необходимой для поддержания процессов, протекающих с ее затратой и высокоактивными веществами, принимающими участие в клеточном обмене.

Подавляющее большинство живых организмов для поддержания своей жизни используют ту энергию, которая освобождается во время диссимиляции органических веществ, в первую очередь углеводов, образовавшихся в процессе фотосинтеза и являющихся по образному выражения К.А. Тимирязева, как бы "консервом" энергии солнечных лучей.

Остановка или значительное замедление дыхания вызывает остановку или глубокие изменения в ходе всех жизненных процессов организма.

В клетке непрерывно происходят различные процессы, направленные на биосинтез веществ, поддержание осмотического и электрического потенциалов, осуществление механических движений как клетки, так и ее отдельных органоидов. Все эти процессы идут с использованием свободной энергии, т.е. являются эндотермическими реакциями, а свободная энергия в клетке образуется только в результате преобразования высокомолекулярных соединений (например, АТФ) в более низкомолекулярные соединения (например, АДФ), и при этом выделяется определенная часть энергии. В процессе дыхания как раз и происходит на многих этапах осуществление процесса дефосфорилирования (АТФ = АДФ + Ф), что и определяет выделение энергии.

Дыхание состоит из трех основных этапов:

гликолиза (разложения субстрата (углеводов, жиров, аминокислот) до пировиноградной кислоты),

цикла Кребса (разложения пировиноградной кислоты до СО2 и Н+),

цепи дыхательных ферментов (по ним переносятся ионы Н+ на акцептор О2 и образуется Н2О).

При этом гликолиз и цикл Кребса являются стадиями анаэробными, а кислород включается в процесс уже на последнем этапе процесса. Гликолиз происходит в цитоплазме, а цикл Кребса и перенос по цепи дыхательных ферментов осуществляются в митохондрии.

Гликолиз.

Гликолиз является первым этапом разложения глюкозы, то есть сложного органического вещества (шестиуглеродного соединения) до пировиноградной кислоты, то есть более простого органического вещества (трехуглеродного соединения). Глюкоза, в свою очередь, образуется либо из поли - или олигосахаридов, либо из аминокислот, либо из жиров.

Гликолиз, в свою очередь, состоит из двух этапов:

фосфорилирование простых сахаров и их превращение в глицеральдегидфосфат, при этом происходит дефосфорилирование АТФ в АДФ, т.е. использование энергии АТФ,

превращение глицеральдегидфосфата в пировиноградную кислоту, при этом образуется АТФ, то есть происходит запасание энергии.

Второй этап гликолиза, в свою очередь, происходит в две стадии:

сначала глицеральдегидфосфат превращается в фосфоглицериновую кислоту,

затем фосфоглицериновая кислота через образование фосфоенолпировиноградной кислоты превращается в пировиноградную кислоту, при этом также происходит субстратное фосфорилирование АДФ, в результате чего образуется АТФ.

Гликолиз, происходящий таким традиционным путем, то есть дихотомическим деление глюкозы на две трехуглеродные молекулы, называют также путь Эмбдена-Мейергофа-Парнаса (ЭМП). У некоторых видов микроорганизмов этот этап дыхания может происходить с использованием другой схемы превращения веществ, например идти по пути Энтнера-Дудорова.

Физиологическое значение гликолиза состоит прежде всего в активировании гексоз, образовании ряда простых промежуточных соединений, а также в образовании молекул АТФ. При этом биохимическая составляющая функции гликолиза значительнее его энергетической составляющей.

Пентозофосфатный цикл.

Пентозофосфатный цикл является у растений дополнительным циклом к процессу гликолиза при преобразовании гексоз. Этот биохимический процесс характерен только для растений и чаще всего протекает у видов, склонных к накоплению крахмала в качестве основного запасного вещества. В отличие от гликолиза, происходящего, как правило, по пути дихотомического деления глюкозы, пентозофосфатный цикл является апотомическим путем деления глюкозы, при котором глюкоза сначала превращается в глюконовую кислоту, а затем подвергается реакции декарбоксилирования, в результате чего теряется карбоксильная группа в виде СО2 и происходит образование молекулы НАДФ. Н2, то есть идет процесс запасания энергии. При декарбоксилировании глюконовой кислоты образуется пентоза. В свою очередь, из двух молекул пентозы могут образовываться самые различные моносахара, что обеспечивает растению биохимическое разнообразие молекул.

Физиологический смысл пентозофосфатного цикла заключается в образовании большого разнообразия простых сахаров, образовании молекул НАДФ. Н2, как источника водорода, необходимого для восстановительного синтеза аминокислот и жирных кислот, а также дополнительном источнике энергии. Чистый выход энергии в результате пентозофосфатного цикла составляет в пересчете на 1 молекулу глюкозы 35 молекул АТФ.

Пентозофосфатный цикл может происходить как в цитоплазме, так и в пластидах.

Цикл Кребса.

Цикл Кребса, или цикл лимонной и изолимонной кислот, или цикл ди - и три-карбоновых кислот является основным этапом процесса дыхания. Этот процесс практически универсален, является главным путем окисления остатков уксусной кислоты у всех живых организмов.

Цикл Кребса состоит из двух стадий:

декарбоксилирование пировиноградной кислоты с образованием уксусной кислоты и СО2, в результате чего уксусная кислота соединяется с коферментом А и образует ацетилКоА, являющийся ключевым веществом, входящим в собственно цикл Кребса и образующийся также при прохождении ряда других биохимических реакций. АцетилКоА служит исходным продуктом для синтеза жирных кислот, для некоторых гормонов, терпенов, изопреноидов и стероидов.

включение ацетилКоА в цикл Кребса путем присоединения его к щавелевоуксусной кислоте (четырехуглеродному соединению, дикарбоновой кислоте), в результате чего образуется лимонная кислота (шестиуглеродное соединение, трикарбоновая кислота). После образования лимонной кислоты через ряд промежуточных соединений происходит образование щавелевоуксусной кислоты, при этом выделяется две молекулы СО2 и 8 Н+.

Физиологический смысл цикла Кребса состоит в том, что именно здесь происходит разложение органического вещества (уксусной кислоты) до неорганических веществ (углекислого газа и ионов водорода), при этом образуется большое количество энергии в виде молекул АТФ.

Цикл Кребса происходит в матриксе митохондрий.

Через образование пировиноградной кислоты и ряда других органических кислот в процесс дыхания поступают также продукты разложения белков - аминокислоты. При этом углеродные скелеты аминокислот подвергаются окислительному расщеплению на фрагменты. Аминогруппы большинства аминокислот переносятся в различных реакциях трансаминирования на пировиноградную, щавелевоуксусную или -кетоглутаровую кислоты. В конечном счете -кетоглутаровая кислота превращается при этом в глутаминовую кислоту. Такие аминокислоты как аланин, цистеин, глицин, серин и треонин образуют ацетил-Коа через пировиноградную кислоту, а лейцин, лизин, фенилаланин, тирозин и триптофан образуют ацетилКоА через ацетоацетилКоА. Пролин, гистидин, аргинин, глутамин и клутаминовая кислота включаются в цикл Кребса через -кетоглутаровую кислоту, метионин, изолейцин и валин - через янтарную кислоту, фенилаланин и тирозин - через фумаровую кислоту, аспарагин и аспарагиновая кислота - через щавелевоуксусную кислоту.

Глиоксилатный цикл.

У многих растений, синтезирующих в качестве запасных веществ жиры, происходит дополнительный к циклу Кребса глиоксилатный цикл.

В этом процессе жирные кислоты сначала активируются в наружной митохондриальной мембране путем этерификации с образованием коферментА-эфиров. Эти эфиры превращаются затем в эфиры карнитина, которые могут проходить сквозь внутреннюю митохондриальную мембрану и попадать в матрикс, где снова превращаются в КоА-эфиры. Последовательное отщепление молекул ацетилКоА от КоА-эфиров жирных кислот называется -окислением.

В глиоксилатном цикле ацетилКоА, также как и в цикле Кребса, вступает в реакцию с щавелевоуксусной кислотой, образуя лимонную кислоту, но в цепи дальнейших превращений разлагается на четырехуглеродное соединение (янтарную кислоту), которая уходит в цикл Кребса, и глиоксилевую кислоту, которая, соединяясь со второй молекулой ацетилКоА, образующегося при -окислении жирной кислоты, превращается в щавелевоуксусную кислоту.

Физиологический смысл глиоксилатного цикла состоят в дополнительном пути разложения жиров и образовании ряда разнообразных промежуточных соединений, играющих важную роль в биохимических реакциях.

Цепь дыхательных ферментов.

Продукты разложения уксусной кислоты, образующиеся в матриксе митохондрий, в дальнейшем преобразуются различными путями. Углекислый газ перемещается в виде бикарбонат-иона в цитоплазму, где либо выделяется, либо вступает в другие биохимические процессы. Ионы водорода перемещаются в помощью дыхательных ферментов на кристы митохондрии, где постепенно переносятся на акцептор - молекулярный кислород.

Этот процесс переноса и является третьим этапом дыхания, осуществляется цепью специфических ферментов, в состав которых входят, в основном, гемсодержащие белки. Это цитохромы и флавинсодержащие ферменты, в состав которых входит железо, легко переходящее из окисленной формы (Fe3+) в закисную (Fe2+). Перенос электронов по цепи ферментов проходит по мере убывания окислительно-восстановительного потенциала, поэтому не происходит неэффективного выброса энергии, которая по мере перехода с одного фермента на другой запасается в виде АТФ (при фосфорилировании АДФ). Конечной стадией этого этапа является перенос ионов водорода на молекулярный кислород и образование второго конечного продукта дыхания - воды.

Физиологический смысл цепи дыхательных ферментов состоит в постепенном транспорте электронов, что позволяет клетке запасти максимально много молекул АТФ, то есть энергии.

Процессы, происходящие на третьем этапе дыхания, были теоретически обоснованы Митчеллом в 1961 году. Предлагаемая им хемиоосмотическая гипотеза основана на том, что энергия окисления субстрата (АН2) используется для образования электрохимического потенциала ионов водорода по обе стороны внутренней мембраны митохондрий и на векторном перемещении электронов через мембрану как движущей силе в реакции энергетического сопряжения.

Согласно гипотезе Митчелла дыхание и фосфорилирование связаны между собой через посредство электрохимического потенциала и ионов водорода на митохондриальной мембране. Функционирование дыхательной цепи, локализованной во внутренней митохондриальной мембране приводит к накоплению ионов водорода по одну сторону мембраны и образованию ионов гидроксила по другую. При этом снаружи остаются два иона водорода и окисленный субстрат, а на внутреннюю сторону передаются два электрона по дыхательной цепи, встроенной в толщу мембраны, соответствующему акцептору водорода, который затем присоединяет два иона водорода из водной фазы митохондриального матрикса. Ионы водорода сообщают внешней поверхности мембраны положительный заряд, а электроны, перенесенные на внутреннюю поверхность, заряжают ее отрицательно. В результате между двумя поверхностями мембраны возникает разность потенциалов. передвижение протонов водорода с наружной стороны мембраны к внутренней рассматривается как процесс, сопряженный с присоединением остатков фосфата к АДФ и образованием АТФ.

Кроме электрического поля мембрана имеет градиент концентрации ионов фодорода. Эти два градиента - электрический и концентрационный - и являются непосредственно источником энергии для синтеза АТФ: химическая энергия окисления энергия электрического поля и градиента концентрации энергия АТФ.

Хемиоосмотическая гипотеза объясняет необходимость мембран (крист митохондрий) и механизм действия веществ - разобщителей окисления и фосфорилирования.

Эти разобщители служат переносчиками протонов через мембрану. При этом перенос их осуществляется на той стороне мембраны, где дыхание создает избыток ионов водорода, затем происходит их диффузия через мембрану и освобождение

ионов водорода в противоположном отсеке, где ионы водорода в дефиците. Процесс осуществляется в виде двух реакций.

Реакция 1 - это окисление субстрата АН2 ферментом - акцептором электронов (на внешней поверхности мембраны), в результате чего электроны присоединяются к ферменту, а протоны перемещаются в воду. Затем электроны переносятся на внутреннюю сторону мембраны и там восстанавливают акцептор водорода В (чаще всего кислород). Этот акцептор связывает ионы водорода справа от мембраны, превращаясь в ВН2.

Реакция П - это отщепление двух ионов водорода и фосфата от АДФ с правой стороны мембраны, что компенсирует потерю двух ионов водорода при восстановлении акциптора В. Один из атомов кислорода фосфата переносится на внешнюю сторону мембраны и, соединяясь с двумя ионами водорода с этой стороны, образует воду (Н2О). Остаток фосфата, присоединяясь к АДФ, образует АТФ.

Строение и функции митохондрии и дыхательных ферментов. Энергетика процесса дыхания.

Митохондрия является одним из важнейших органоидов любой эукариотической клетки. Она, возможно, образовалась в результате деградирования прокариотной клетки при образовании либо симбиотических, либо паразитических отношений при формировании первых эукариотических форм. Митохондрия окружена двойной мембраной, внутри в матриксе имеются многочисленные выросты внутренней мембраны, которые называются кристами. В матриксе помимо белков, включающих многочисленные ферменты, катализирующие биохимические реакции цикла Кребса, глиоксилатного цикла, дыхательной цепи, имеются и молекулы РНК и фрагменты молекул ДНК, управляющие синтезом этих белков. Наружная мембрана метихондрий проницаема для малых молекул и ионов, что и позволяет легко проникать в митохондрию пировиноградной кислоте (основному продукту гликолиза) и столь же легко удаляться углекислому газу в ионной форме.

Расположенные на кристах ферменты относятся к оксидоредуктазам, так как обеспечивают окислительно-восстановительные реакции в процессе переноса электронов сквозь мембраны. Эти ферменты делятся на две большие группы:

дегидрогеназы,

оксидазы.

Дегидрогеназы по характеру действия также делятся на две группы:

аэробные,

анаэробные.

К аэробным дегидрогеназам относятся двухкомпонентные ферменты, содержащие кофермент (простетическую группу) рибофлавин (производное витамина В2). Именно ферменты этой группы переносят водород непосредственно на О2. Донорами электронов для аэробных дегидрогеназ служат анаэробные дегидрогеназы, а акцепторами - цитохромы и кислород.

К анаэробным дегидрогеназам относятся пиридиновые дегидрогеназы, способные к гидрированию и дегидрированию пиридиновых ядер. Коферментами пиридиновых дегидрогеназ являются НАД (никотинамидадениндинуклеотид) и НАДФ (никотинамидадениндинуклеотидфосфат). Анаэробные дегидрогеназы переносят водород на какой-либо акцептор водорода по схеме:

АН2 + дегидрогеназа + В (акцептор) = А + ВН2

При этом акцептором водорода может быть и другая дегидрогеназа.

Оксидазы активируют молекулярный кислород и придают ему способность восстанавливаться до перекиси водорода. Они действуют на конечном этапе дыхания, когда водород окисляемого вещества необходимо выделять из системы. Процесс был подробно изучен видным им биохимиком В.И. Палладиным в 40-ых годах 20 века. Реакция происходит следующим образом:

АН22 = А + Н2О2

Н2О2 = Н2О + О

Группа оксидаз многочисленна, основная роль принадлежит оксидазам, содержащим медь (полифенолоксидазы, аскорбатоксидаза) и железо (цитохромы, каталаза, пероксидаза).

Полифенолоксидазы в присутствии молекулярного кислорода окисляют полифенолы в хиноны. Процесс идет только в неповрежденных клетках. Если же клетки повреждаются, то вместо восстановления хинонов образуются темноокрашенные пигменты, что в обиходе можно наблюдать при разрезании плодов (разрезанное яблоко или картофель быстро темнеют, что является следствием нарушения реакции восстановления хинонов).

Цитохромы делятся на четыре группы в зависимости от формы входящего в состав молекулы гемогруппы:

цитохромы а, содержащие железоформилпорфирин,

цитохромы b. содержащие железопротопорфирин,

цитохромы с, содержащие замещенный железомезопорфирин,

цитохромы d, содержащие железодигидропорфирин.

Каталитическая роль железа заключается в его способности к окислению и восстановлению путем отдачи и присоединения электрона. Железо в цитохроме легко переходит из двухвалентного в трехвалентное, что соответствует окислению, и, наоборот, что соответствует восстановлению. Обратимое окисление и восстановление цитохромов связано с изменением валентности железа в коферменте. Цитохромы являются переносчиками электронов, а цитохромоксидаза играет роль последнего звена, которое способствует их переносу на кислород воздуха.

Особенно важными компонентами ферментных систем являются ферменты каталаза и пероксидаза.

Каталаза - один из ферментов, простетическая группа которых представлена порфирином железа. Процесс разрушения перекиси водорода под действием каталазы описывается следующими уравнениями:

4Fe+++каталаза + 2 Н2О2 = 4Fe++каталаза + 4Н+ + 2 О2

4Fe++каталаза + 2 Н2О2 = 4Fe+++каталаза + 2 Н2О

Итог реакции: 2 Н2О2 = О2 + 2 Н2О

Пероксидаза с помощью перекиси водорода может окислять различные соединения, например полифенол в хинон.

В итоге процесса дыхания образуется при разложении одной молекулы глюкозы при условии прохождения трех основных этапов (гликолиза, цикла Кребса, цепи дыхательных ферментов) в стандартных условиях (температура 25 оС, давление 1 Па и концентрация реагирующих веществ 1 М) 38 молекул АТФ или 686 ккал или 2872 кДж. Энергетический выход в процессе дыхания по этапам составляет:

при гликолизе 2 молекулы АТФ,

в цикле Кребса - 12 молекул АТФ,

в цепи дыхательных ферментов - 24 молекулы АТФ.

Влияние условий окружающей среды на дыхание растений.

Основными количественными показателями процесса дыхания являются интенсивность дыхания и дыхательный коэффициент.

Интенсивность дыхания - это количество углекислого газа, выделяемое единицей площади листовой поверхности в единицу времени.

Дыхательным коэффициентом называется отношение количества выделившегося углекислого газа к количеству поглощенного кислорода. Дыхательный коэффициент обозначается буквами RQ и величина его колеблется в зависимости от природы субстрата, использующегося для дыхания, то есть от соотношения углекислого газа, выделяющего при окислении субстрата и кислорода, затрачиваемого на окисление субстрата.

Если субстратом служат сахара, то

RQ = 1 (6/6=1), (С6 Н12 О6 + 2 = 6 Н2О + 6СО2).

Если субстратом служат липиды, белки и другие соединения с высокой степенью восстановления, то

RQ < 1 (18/26=0,7)

18 Н36 О2 (стеариновая кислота) + 26О2 = 8 Н2О + 18СО2).

Если субстратом служат вещества с низкой степенью восстановления, например органические кислоты, то

RQ > 1 (4/2,5=1,6)

4 Н4О5 (щавелевоуксусная кислота) + 2,5О2 = 2 Н2О + 4СО2).

Методы определения дыхательного коэффициента основываются на количественном учете поглощенного кислорода и выделенного углекислого газа. Для измерения дыхательного коэффициента используют прибор респирометр Варбурга.

Наиболее интенсивно дышат молодые, быстрорастущие части растений с большим количеством эмбриональных тканей (верхушка стебля, кончики корешков, прорастающие семена).

При интенсивном дыхании и незначительном фотосинтезе у проростков в сутки теряется до 1% массы, у старых же растений, интенсивность дыхания которых невелика потеря массы составляет в 10-20 раз меньше. Интенсивность дыхания значительно варьирует в зависимости:

от вида растений (например, пшеница дышит в 3-5 раз интенсивнее бобовых культур, теневыносливые растения дышат менее активно, чем светолюбивые формы);

от органа растения (интенсивнее дышат периферические ткани, что связано с лучшим снабжением их кислородом; у древесных растений наиболее интенсивно дышит камбий, а минимальная интенсивность дыхания характерна для древесины. Высокая интенсивность дыхания клеток камбия связана с высоким содержанием в этой ткани белковых веществ);

от климатического пояса (северные формы дышат интенсивнее южных при пониженных температурах, а при высоких температурах - наоборот).

В процессе вегетации на интенсивность дыхания влияют температура, влажность, минеральное питание, свет, газовый состав среды, физиологически активные вещества и ингибиторы.

Температура.

Интенсивность дыхания увеличивается с повышением температуры (до жизненного предела). Минимум, оптимум и максимум интенсивности дыхания при различных температурах не остаются постоянными у растения и зависят прежде всего от фаз-0ы его развития, органа и физиологического состояния как органа, так и растения в целом.

Влажность.

Интенсивность дыхания определяется содержанием воды в тканях. С повышением содержания воды интенсивность дыхания возрастает. Это положение справедливо для семян и проростков. Напротив, у вегетирующих растений недостаточное водоснабжение стимулирует интенсивность дыхания, при этом растения переходят на анаэробное дыхание с интенсивным выделением углекислого газа, что свидетельствует о депрессии фотосинтеза и активации процесса дыхания. Недостаточное водоснабжение в течение длительного периода вызывает переход растений на обмен веществ с отрицательным дыхательно-ассимиляционным комплексом, что приводит к снижению урожайности.

Минеральное питание.

Разные элементы влияют на интенсивность дыхания неоднозначно. Например, недостаток калия приводит к повышению интенсивности дыхания (в результате сдвига в азотном обмене), избыток азота при нитратном питании снижает интенсивность дыхания, а при аммиачном питании - наоборот повышает его. Интенсивность дыхания обусловлена биосинтезом различных ферментов для формирования которых нужны как макро, так и микроэлементы, особенно такие, как медь, железо, марганец, молибден. Недостаточное минеральное питание может привести к нарушению структуры митохондрий и вызвать нарушение окислительного фосфорилирования и разобщение его с дыханием.

Свет.

В зависимости от вида растений дыхание может происходить и в темноте, и на свету. Например, пшеница поглощает углекислый газ и на свету, и в темноте, а горох - только на свету. Восстановительная активность тканей возрастает в течение дня и снижается ночью, а кислотность в листьях уменьшается днем и увеличивается ночью. У растений короткого дня поглощение углекислого газа постепенно возрастает в темноте и усиливается его выделение на свету. В условиях короткого дня происходит адаптированный синтез ферментных систем, которые катализируют реакции поглощения углекислого газа в темноте.

Темновое дыхание состоит из двух компонентов:

дыхания роста (Rq),

дыхания поддержания структур (Rm).

Затраты на дыхание поддержания структур составляют до 0,2 г углерода на 1 г углерода в растении. Расходы на этот тип дыхания пропорциональны фитомассе и резко возрастают к концу вегетации.

На дыхание роста расходуется до 17% усвоенного за день фотосинтеза углекислого газа.

Газовый состав среды.

При повышении концентрации кислорода в атмосфере интенсивность дыхания возрастает, а при повышении углекислого газа - уменьшается. При недостатке кислорода преобладают анаэробные процессы и гликолитический путь превращения глюкозы, в частности вмещение к процессу спиртового брожения, при избытке кислорода преобладает пентозофосфатный цикл превращения глюкозы.

Физиологически активные вещества и ингибиторы.

Различные стимуляторы роста: ауксины (ИУК, НУК) и гиббереллины - стимулируют общий уровень активности дыхания за счет усиления пентозофосфатного пути.

Ингибиторы (например, динитрофенол, гидразид малеиновой кислоты, фенилмеркурхлорид) значительно снижают интенсивность дыхания за счет изменения активности ферментных систем. Эта особенность используется при обработке посевов ингибиторами роста за 2-3 недели до уборки, для снижения потерь накопленных углеводов, ингибирования биохимических процессов.

Связь между дыханием растений и их урожайностью.

В конечном счете урожай растений определяет соотношение фотосинтеза и дыхания, при этом используется основная формула:

М+м= fРТ -аР1Т1,где М - сухая масса всего растения (без азота и золы) за весь период вегетации, м - масса опавших за время вегетации частей растения, f - интенсивность фотосинтеза, а - интенсивность дыхания, Р - фотосинтезирующая площадь, Р1 - масса растения, Т - длительность фотосинтетической деятельности растения, Т1 - время дыхания растения.

Оценка эффективность накопления растением биомассы определяется рядом показателей: суточным приростом биомассы растения, коэффициентом эффективности роста, соотношением фотосинтеза и дыхания.

Суточный прирост биомассы растения определяется по формуле:

? W = Pg - Rt,

где Pg - брутто-фотосинтез целого растения (количество поглощенного углекислого газа) и Rt - дыхание целого растения за сутки.

Если расход на дыхание относят к единице биомассы растения, то получают удельное дыхание (УД, г СН2О/г. сутки).

Коэффициент эффективности роста (КЭР) в результате дыхание варьирует в зависимости от вида растения от 0,3 до 0,8. Чем выше КЭР, тем ниже эффективность превращения субстрата в структурную биомассу. Чем выше содержание белка и липидов в биомассе и чем больше глюкозы используется для восстановления нитратов, тем ниже коэффициент эффективности роста.

Основной показатель накопления биомассы - это соотношение фотосинтеза и дыхания, которое высчитывается по формуле:

Rt / Pg

Это соотношение составляет 30-60%, что позволяет судить об эффективности продуцирования биомассы, и выявить, насколько сельскохозяйственные культуры и сорта экономно используют ассимиляты на дыхание. При этом в стрессовых ситуациях фотосинтез подавляется быстрее, чем дыхание.

Регулирование дыхания сельскохозяйственных продуктов при хранении.

В практике сельского хозяйства особенно важным является вопрос регуляции того или иного физиологического процесса. В открытом грунте регуляц3ия процесса дыхания практически невозможна. Однако в защищенном грунте и в условиях хранилищ, где происходит хранение разного рода сельскохозяйственных продуктов такая регуляция вполне возможна.

Наиболее широко распространенным и важным приемом регуляции дыхания является регуляция состава газовой среды. Так, увеличение концентрации углекислого газа в атмосфере ведет не только к увеличению интенсивности фотосинтеза, но и, автоматически, к уменьшению интенсивности процесса дыхания, что, безусловно, способствует повышению урожая культур в защищенном грунте.

Особенно важным процессом в практике сельского хозяйства является процесс сохранения семян, плодов, корнеплодов, клубней как семенного, так и продовольственного назначения. Сохранность указанной продукции обеспечивается соблюдением определенного режима влажности и температуры, а также газового состава среды и использованием ряда регуляторов роста. При этом все физиологические процессы внутри семян, корнеплодов, клубней, плодов снижаются до минимума, что и обеспечивает долгий период их сохранности. Очень важным моментом является закладка на хранение хорошо вызревших плодов, корнеплодов, клубней, семян. Недозрелые органы при дыхании переходят на систему анаэробного разложения органических веществ, накапливают этиловый спирт, ацетальдегид, поэтому их вкус значительно ухудшается и хранятся они хуже, быстрее заболевают, теряют нужные качества: всхожесть, способность к прорастанию.

Регуляция дыхания семян:

влажность 14-15% для семян злаковых и бобовых культур, 8-9% - для семян масличных культур,

температура - 10-20 оС.

Регуляция дыхания плодов:

влажность 80-95%,

температура - 0 - 7оС.

использование специальных газовых смесей в хранилищах с высоким содержанием углекислого газа,

использование ингибиторов роста (этилена и абсцизовой кислоты), как в составе газовой смеси, так и путем обработки хранящихся плодов.

Тема "Минеральное питание"

Дополнительная литература по теме:

Вопросы к теме:

Условия поглощения растениями минеральных элементов.

Системы классификаций элементов в растении.

Характеристика физиологической роли основных минеральных элементов.

Характеристика взаимоотношений элементов в растворах.

Особенности поглощения растениями элементов из почвенного раствора.

Корень как орган поглощения минеральных элементов.

Количественные показатели поглощения минеральных элементов.

Особенности поглощения отдельных элементов у различных сельскохозяйственных культур.

Роль растений в круговороте азота в природе.

Диагностика различных видов минерального голодания и меры борьбы с ними.

Влияние условий внешней среды на поглощение минеральных элементов.

Роль минерального питания в формировании урожая и регулировании роста и развития растений.

Условия поглощения растениями минеральных элементов.

Поглощение воды и минеральных веществ растением непосредственно не связано друг с другом. Поглощение воды протопластом основывается на гидрофильности биоколлоидов, а поглощение ионов - на образовании лабильных соединений с макромолекулами протоплазмы. Поэтому поглощение воды не может вызвать поглощения солей, а поглощение ионов может вызвать изменения в оводненности протоплазматических структур и повлечь за собой поглощение воды.

Определяющим условием поглощения растениями минеральных элементов является поглощающая способность почвы. Вопросы поглощения почвой различных ионов были изучены русским ученым Гедройцем. Согласно его теории катионы в коллоидах почвы способны обмениваться с катионами почвенного раствора. Эти катионы называются поглощенными или обменными, а общее их количество на 100 г почвы (в мг/экв) называется емкостью поглощения или емкостью обмена. Адсорбция и удерживание растворимых веществ - это свойство почвы, которое называется поглощающей способностью. Эта способность определяется коллоидной частью почвы, которая называется почвенным поглощающим комплексом. От состава обменных катионов зависят свойства почвы.

Различают пять видов поглощения веществ почвой:

механическая поглощающая способность (при этом почва выступает в качестве фильтра для грубых суспензий),

физическая поглощающая способность (при этом происходит либо положительная адсорбция катионов на поверхность твердых частиц, либо отрицательная фильтрация анионов,

физико-химическая поглощающая способность (при этом происходит адсорбция и обменные химические реакции между почвенным раствором и почвенными частицами, что играет существенную роль в создании плодородия почв),

химическая поглощающая способность (при этом происходит превращение веществ в трудно растворимые соединения, например, при внесении фосфорных удобрений в почву, богатую ионами кальция, образуется нерастворимый фосфат кальция,


Подобные документы

  • Клеточные структуры, строение, состав и свойства основных компонентов растительной клетки. Поглощение и выделение веществ и энергии клеткой. Хлоропласты, их строение, химический состав и функции. Строение молекулы хлорофилла, флавоноидные пигменты.

    контрольная работа [1,0 M], добавлен 05.09.2011

  • Углеводы – группа органических соединений. Строение и функции углеводов. Химический состав клетки. Примеры углеводов, их содержание в клетках. Получение углеводов из двуокиси углерода и воды в процессе реакции фотосинтеза, особенности классификации.

    презентация [890,0 K], добавлен 04.04.2012

  • Общая характеристика клетки: форма, химический состав, отличия эукариот от прокариот. Особенности строения клеток различных организмов. Внутриклеточное движение цитоплазмы клетки, метаболизм. Функции липидов, углеводов, белков и нуклеиновых кислот.

    лекция [44,4 K], добавлен 27.07.2013

  • Признаки и уровни организации живых организмов. Химическая организация клетки. Неорганические, органические вещества и витамины. Строение и функции липидов, углеводов и белков. Нуклеиновые кислоты и их типы. Молекулы ДНК и РНК, их строение и функции.

    реферат [13,5 K], добавлен 06.07.2010

  • Прокариоты и эукариоты, строение и функции клетки. Наружная клеточная мембрана, эндоплазматическая сеть, их основные функции. Обмен веществ и превращения энергии в клетке. Энергетический и пластический обмен. Фотосинтез, биосинтез белка и его этапы.

    реферат [20,8 K], добавлен 06.07.2010

  • Строение, состав и физиологическая роль отдельных органелл клетки. Классификация белков по степени сложности. Состояние воды в живых тканях, ее функции. Полисахариды морских водорослей: состав, строение. Биологическая роль и классификация липидов.

    контрольная работа [1014,7 K], добавлен 04.08.2015

  • Изучение строения и физиологических особенностей светолюбивых и теневыносливых растений. Влияние ризосферной микрофлоры на поглощение минеральных веществ корнями. Поступление воды в растение. Физиологические основы орошения. Химический состав клетки.

    реферат [31,1 K], добавлен 22.06.2012

  • Превращения веществ и энергии, происходящие в живых организмах и лежащие в основе их жизнедеятельности. Назначение обмена веществ и энергии, взаимосвязь анаболических и катаболических процессов. Энергетическая ценность углеводов и жиров в организме.

    реферат [21,9 K], добавлен 28.05.2010

  • Классификация процессов метаболизма и обмена. Виды организмов по различиям обменных процессов, методы их изучения. Метод учета веществ поступивших и выделившихся из организма на примере азотистого обмена. Основные функции и источники белков для организма.

    презентация [3,8 M], добавлен 12.01.2014

  • Клетка как основная единица живого. Химический состав клетки, ее элементарные частицы и характер протекающих внутри процессов. Роль и значение воды в жизнедеятельности клетки. Этапы энергетического обмена клетки, реакций расщепления (диссимиляции).

    реферат [28,2 K], добавлен 11.07.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.