Кислотно-основные индикаторы

Подбор кислотно-основных индикаторов в зависимости от рассчитанных параметров протолитических ТКТ. Ионная и хромофорная теории, их синтез. Изменение окраски индикатора. Момент окончания титрования. Правильный выбор индикатора. Индикаторные погрешности.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 23.01.2009
Размер файла 40,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

4

Кислотно-основные индикаторы, ионно-хромофорная теория, основные характеристики, правила выбора, индикаторные погрешности кислотно-основного метода и их расчет

Рассчитанные параметры протолитических ТКТ (величина скачка титрования, pH в ТЭ) позволяют подобрать наиболее подходящие для обнаружения КТТ (МЭ) кислотно-основные индикаторы.

Кислотно-основные индикаторы в большинстве случаев представляют собой растворимые сложные органические соединения, способные изменять собственную окраску в зависимости от pH раствора. По химической природе они являются слабыми кислотами или основаниями, частично диссоциирующими в растворе по уравнению

HInd H++Ind - или IndOH Ind++OH-.

Цветопеременность кислотно-основных индикаторов ионная теория Оствальда объясняет различием цвета их недиссоциированных молекул и образуемых ионов, а зависимость окраски от pH среды связывает со смещением равновесия в реакции диссоциации с изменением кислотности среды, в результате чего раствор приобретает окраску молекулярной или ионной формы индикатора.

Более современной хромофорной теорией изменение цвета кислотно-основных индикаторов в зависимости от pH их раствора объясняется происходящей при этом внутри молекулярной перегруппировкой с образованием окрашенных форм. Своё название эта теория получила от названия особых атомных групп (обычно с двойными связями) - хромофоров (от греческого "цветонесущие"), наличию которых в молекулах приписывается окраска органических соединений.

К хромофорам относят азогруппу - N?N-, нитрогруппу - NO2, нитрозогруппу - NO, карбонильную =CO, хиноидную = = = и др. Углублению окраски способствуют другие группы - ауксихромы (от греческого "усиливающие цвет"). К ним относят группы - NH2, - OH и их производные, содержащие радикалы - OCH3, - N(CH3) 2, - N(C2H5) 2 и др.

Например, структурные изменения индикатора метилового оранжевого с изменением pH можно представить схемой

Аналогично для фенолфталеина:

HInd - форма (бесцветная) Ind - форма (малиновая)

Ионная и хромофорная теории дополняют друг друга и вместе образуют ионно-хромофорную.

Наблюдаемый переход окраски одной окрашенной формы кислотно-основного индикатора в другую происходит не при строго определенном значении pH, а в интервале изменения от pH1 до pH2, называемом интервалом перехода окраски индикатора.

Границы этого интервала pH1 и pH2 можно рассчитать, зная константу диссоциации индикатора K (HInd):

K(HInd) = .

Опытным путем установлено, что изменение окраски индикатора становится визуально видимым (отличным) при соотношении или Подставив данное соотношение в выражение для K(HJnd), получим

K(HInd) = ,

откуда [H+] = K(HInd) ?10 или K(HInd) /10.

pH = pK(HInd) + 1 или pK(HInd) - 1.

Формула pH = pK(Ind) ± 1 используется для расчета границ интервала перехода окраски любого кислотно-основного индикатора.

Значение pH, при котором индикатор наиболее отчетливо изменяет свою окраску, называется показателем титрования и обозначается pT. Для большинства практических случаев

pT=

Момент окончания титрования соответствует достижению pH титруемого раствора, равного pT, отличается от pH в момент эквивалентности: чем ближе pT индикатора к pH в ТЭ, тем точнее будет результат анализа. Поэтому правильный выбор индикатора является одним из наиболее важных моментов в объемно-аналитических определениях.

Правильный выбор индикатора проводят по ТКТ. Он зависит от типа ТКТ, pH в ТЭ, величины скачка титрования, а также природы и свойств индикатора (pT, pH1?pH2). При выборе следует руководствоваться следующими правилами:

предпочтение следует отдавать индикатору, у которого pT наиболее близок к рН в ТЭ;

величина интервала перехода окраски индикатора должна полностью или частично входить в скачок титрования;

при титровании слабых кислот нельзя применять индикаторы с интервалами перехода, лежащими в кислой области, а при титровании слабых оснований - в щелочной;

при титровании сильных кислот и сильных оснований можно применять практически любые индикаторы, однако при титровании разбавленных электролитов с c(1/z?X) <0,01 моль/дм3 следует придерживаться второго правила: ток как скачок титрования становится малым.

Практически никогда не удается подобрать индикатор, у которого рТ совпадал бы с рН в ТЭ, поэтому чаще всего изменение окраски индикатора происходит до или после МЭ. В первом случае раствор будет недотитрован, а во втором - перетитрован.

Это приводит к погрешностям, называемым индикаторными погрешносттями титрования. Они выражают молярную долю неоттитрованной или перетитрованной кислоты или основания. Классификация, причины и расчетные формулы индикаторных погрешностей приведены в табл.1.8.1. Рассмотрим выводы формул индикаторных погрешностей.

Таблица 1.8.1

Типы индикаторных погрешностей

Тип погрешности

Причина погрешности

Расчетная формула погрешности,%

Водородная

Избыток ионов Н+ вследствие недотитрования сильной кислоты или перетитрования основания (сильного или слабого) сильной кислотой

?H+ =

Гидроксильная

Избыток ионов ОН - вследсвие недотитрования сильного основания или перетитрования кислоты (слабой или сильной) сильным основанием

?ОН-=

Кислотная

Избыток молекул слабой кислоты НА при её недотитровании

?НА =

Щелочная

Избыток молекул слабого основания MOH при его недотитровании

?МОН=

где V1 и V2 - объемы анализируемого раствора до и после титрования; с - молярная концентрация эквивалента вещества анализируемого раствора; рК - показатель константы диссоциации слабого электролита; рТ - показатель титрования индикатора; V1/V2=2, если концентрации титранта и анализируемого раствора равны.

1. Водородная погрешность (?H+).

Пусть она является результатом недотитрования сильной кислоты НА сильным основанием МОН в присутствии некоторого индикатора с показателем титрования рТ.

По определению ,%,

где n(HA) неот и n(HA) от - количества вещества не оттитрованной и оттитрованной кислоты в КТТ. Так как n(HA) от >> n(HA) неот, то величиной n(HA) неот в знаменателе можно пренебречь, тогда

.

В КТТ рН = рТ, т.е. [H+] = 10-pT, следовательно, в этот момент c(HA) неот = [H+] КТТ = 10-pT; обозначим c(HA) от ? c(HA) исх = с(HA), V(HA) неот = V(HA) исх+V(MOH) ККТ = V2, а V(HA) от?V(HA) исх=V1.

Подставим полученное в формулу для ?H+:

,%.

Если c(HA) = c(MOH), то V2 = 2V1 и

,%.

2. Гидроксильная погрешность (?ОН_).

Пусть она является результатом недотитрования сильного основания MOH сильной кислотой НА в присутствии индикатора с показателем титрования рТ.

По определению ,%

В КТТ n(MOH) от >> n(MOH) неот, следовательно, n(MOH) неот в знаменателе можно пренебречь тогда

,%.

В КТТ с(MOH) неот= [OH-] КТТ, а

Так как с(MOH) от ? с(MOH) исх = с(MOH);

V(MOH) неот = V(MOH) исх + V(HА) КТТ = V2;

V(MOH) от = V(MOH) исх = V1, оттуда после подстановки получим:

.

Если с(MOH) = с(НА), то V2 = 2V1, следовательно,

.

3. Кислотная погрешность (?НА).

Пусть она является результатом недотитрования слабой кислоты НА сильным основанием МОН с индикатором с показателем титрования рТ, тогда ,%.

В КТТ [HA] от = [MA] = [A-], следовательно,

,%.

Из выражения для К(НА) получим , но поскольку в КТТ [H+] = 10-pT, а К(НА) = 10-pK, то

,

откуда после подстановки

.

4. Щелочная погрешность (?МОН).

Пусть она является результатом недотитрования слабого основания МОН сильной кислотой НА с индикатором с показателем рТ, тогда

.

В КТТ [МОH] от = [MA] = [М+], следовательно,

.

Из выражения для К(МОН) получим

но поскольку в КТТ

[H+] = 10-pT, а KW =10-14, K(MOH) = 10-pK,

то ,

откуда после подстановки .

Прямым титрованием в протолиметрии определяют концентрацию кислоты или основания, или содержание элементов, образующих растворимые кислоты и основания (например фосфора в виде фосфорной кислоты и т.п.). Обратным или косвенным титрованием находят содержание некоторых солей. Например, для определения содержания NH4+ в NH4Cl обратным титрованием можно добавить к анализируемому раствору точно отмеренный избыток стандартного раствора NaOH, нагреть смесь до полного удаления NH3, а затем остаток раствора NaOH оттитровать кислотой в присутствии метилового оранжевого. Косвенный вариант титрования NH4+ можно осуществить формальдегидным методом, заместив ионы NH4+ эквивалентным количеством Н+ - ионов реакцией раствора NH4Cl с избытком формальдегида по реакции

NH4Cl + 6CH2O ? (CH2) 6N4 + HCl + 6H2O

Содержание NH4+ находят по результатам алкалиметрического титрования заместителя, т.е. HCl.

Протолиметрическое титрование в основном проводят в водной среде, но существует и неводный вариант. В последнем случае, подобрав соответствующий растворитель, можно направленно изменять силу растворенных в нем кислот и оснований, превращать соли в кислоты и основания и т.д. Например, HCN в водном растворе - слабая кислота, а в среде сжиженного аммиака - сильная, мочевина в растворе безводной СН3СООН - сильное основание, а в сжиженном аммиаке - кислота и т.п. Поэтому применение неводного титрования делает возможным титрование очень слабых кислот и оснований, различных смесей солей с близкими свойствами, смесей солей с кислотами и основаниями, определение нерастворимых в воде и разлагаемых ею соединений.

В зависимости от относительной силы кислот и оснований различают четыре основных случая протолиметрического титрования, каждый из которых моделируется соответствующей ТКТ: I - сильную кислоту титруют сильным основанием; II - сильное основание титруют сильной кислотой; III - слабую кислоту титруют сильным основанием; IV - слабое основание титруют сильной кислотой.

Кислоты и основания с Кдис >10-2 считаются сильными, и для них ТКТ рассчитывают по типу ? - ??, кроме точки эквивалентности, в которой рН находят как для слабых кислот или оснований.

Титрование слабых кислот так же, как и титрование слабых оснований, возможно только при условии, если их Кдис ? 10-7…10-8. При Кдис ? 10-9 скачок титрования на ТКТ отсутствует и зафиксировать ТЭ в реальном титровании невозможно.

Выбор индикатора и расчет индикаторной погрешности рассмотрим на примере решения следующей задачи.

Задача: определите тип и величину индикаторной погрешности при титровании муравьиной кислоты с с(НСООН) = 0,1 моль/дм3 раствором NaOH c c(NaOH) = 0,1 моль/дм3 в присутствии метилового оранжевого и фенолфталеина. Сделайте заключение о возможности применения данных индикаторов, если рНТЭ = 8,22, рТМ0 = 4, рТффт = 9, рК(НСООН) = 3,75.

Решение:

а) титрование с метиловым оранжевым.

Титруем кислоту, следовательно, в процессе титрования рН раствора растет. Тип индикаторной погрешности определим с помощью графической схемы титрования.

КТТ

4,0 8,22 рН

рТМО рНТЭ

Из схемы следует, что титрование с данным индикатором закончим до ТЭ, недотитровав слабую кислоту. Это приведет к кислотной погрешности титрования

?НА =

Вывод: погрешность с данным индикатором недопустимо велика, индикатор метиловый оранжевый не пригоден для титрования.

б) титрование с фенолфталеином

КТТ

8,22 9,0 рН

рНТЭрТффт

Из схемы следует, что в КТТ раствор кислоты будет перетитрован сильным основанием, т.е. будет содержать избыток ОН - ионов. Это приведет к гидроксильной погрешности.

?ОН - =

Вывод: индикаторная погрешность при титровании с фенолфталеином меньше допустимой (0,1%), следовательно, данный индикатор можно использовать.


Подобные документы

  • Понятие и сущность индикаторов. Индикаторные и безиндикаторные титриметрические методы. Индикаторы, особенности и требования к ним. Классификация индикаторов. Теоретические кривые титрования, их расчет и использование для выбора индикатора.

    реферат [27,2 K], добавлен 23.01.2009

  • Сущность и классификация методов кислотно-основного титрования, применение индикаторов. Особенности комплексонометрического титрования. Анализ методов осадительного титрования. Обнаружение конечной точки титрования. Понятие аргенометрии и тицианометрии.

    контрольная работа [28,3 K], добавлен 23.02.2011

  • Выбор наиболее оптимального варианта индикатора, соответствующего скачку рН на заданной кривой титрования. Определение точки эквивалентности линии нейтральности. Титрование NaOH и HCl с помощью индикатора фенолфталеина. Интервал перехода окраски.

    контрольная работа [81,4 K], добавлен 03.01.2016

  • Метод кислотно-основного титрования: понятие и содержание, основные этапы и принципы реализации, предъявляемые требования, главные условия и возможности применения. Расчет рН растворов. Построение кривых титрования. Выбор индикатора и его обоснование.

    презентация [1,4 M], добавлен 16.05.2014

  • Возможность применения кислотно-основного титрования. Постепенное изменение концентрации ионов водорода. Индикаторы, обладающие свойством отдавать протоны. Проведение титрования сильных кислот сильным основанием, слабых кислот сильным основанием.

    реферат [54,3 K], добавлен 04.04.2014

  • Прямое титрование в протолиметрии. Водный и неводный варианты. Четыре основных случая протолиметрического титрования. Выбор оптимального индикатора и определение индикаторной погрешности. Процент оттитрования. Редокс-индикатор. Титруемое вещество.

    курсовая работа [100,6 K], добавлен 24.01.2009

  • Расчет индикаторных погрешностей для выбранных индикаторов, кривой титрования 25 мл 0,05 М раствора CH3COOH 0,05 М раствором KOH. Кислотно-основные индикаторы. Этапы титрования: начальная точка, область до точки и область после точки эквивалентности.

    контрольная работа [72,8 K], добавлен 18.12.2013

  • Общая характеристика ступенчатого титрования. Определение барбитуратов алкалиметрическим титрованием после предварительного извлечения эфиром. Кислотно-основные индикаторы. Обесцвечивание фенолфталеина при окончании реакции. Анализ лекарственных форм.

    курсовая работа [336,5 K], добавлен 02.05.2014

  • Понятие индикаторов как химических веществ, изменяющих окраску, люминесценцию, образующих осадок при изменении концентрации какого-либо компонента в растворе. Обратимые и необратимые индикаторы, их основные виды. Точка эквивалентности - момент титрования.

    презентация [359,9 K], добавлен 15.04.2014

  • Последовательность расчета кривой титрования раствора соляной кислоты раствором слабого основания гидроксида аммония. Построение кривой титрования, определение точки эквивалентности и прямой нейтральности. Подбор индикатора и вычисление его ошибки.

    контрольная работа [32,6 K], добавлен 03.01.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.