Проблемі модифікації мікро- та нанодисперсних систем
Значення елекропровідності основних типів спряжених полімерів та методи їх одержання. Використання поліанілінових нанокомпозитів, рентгенометричні дані глауконітів. Дериватогафічний та термічний аналіз композиційного матеріалу, мікроскопічні дослідження.
Рубрика | Химия |
Вид | дипломная работа |
Язык | украинский |
Дата добавления | 01.04.2011 |
Размер файла | 1,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Пошук нових шляхів та можливостей для створення функціональних матеріалів, а особливо на основі електропровідних полімерів з широким спектром фізико-хімічних властивостей є актуальним завданням сучасної хімічної науки.
Синтез ПАн за наявності природного мінералу глауконіту шляхом окиснення аніліну натрій пероксодисульфатом у 0,5 М водних розчинах сульфатної кислоти показав, що в процесі взаємодії компонентів утворюється композитний матеріал до складу якого входить глауконіт та емеральдинова сіль полі аніліну. За допомогою рентгенофазового, ІЧ-ФП, Раман-ФП спектральних методів підтверджена міжфазова взаємодія між поліаніліновими шарами та частиками глауконіту, яка реалізується за допомогою водневих звязків. Ці ж методи, а також вимірювання електропровідності, магнітної сприйнятливості дають підстави стверджувати, що синтезована речовина є композитним матеріалом, а не механічню сумішшю, що складається із дисперсії ПАн та дисперсного глауконіту.
Очевидним є також факт вливу глауконіту на деякі досліджені фізико-хімічні властивості ПАн/Гл композиту, а саме: кристалічність, термічну деструкцію, електропровідність, магнітну сприйнятливість.
Поверхня частинок глауконіту, очевидно, відіграє роль вільного темплейту, тобто його поверхня, а точніше дефекти, є центрами зародження макромолекулярни ланцюгів, що сприяють утворенню на його поверхні плівок чи шарів ПАн різної товщини з певною мікро- чи наноструктурою.
Очевидно, що структурні та термічні властивості синтезованого композиту зумовлені міжфазовою поліанілін - глауконіт взаємодією. В процесі витримування дисперсії Гл в розчині Ан відбувається його адсорбція на частинках мінералу, що призводить до переважаючого утворення в процесі окислювальної поліконденсації на такій поверхні поліаніліну з певним ступенем кристалічності. Кристалічність ПАн залежатиме від швидкості перебігу хімічної реакції окиснення аніліну натрій пероксодисульфатом, температури синтезу, тощо. Хімічне окиснення Ан за наявності природного мінералу глауконіту показало можливість модифікації поверхні мінералу поліаніліном [61,62].
Одержаний композит ПАн/Гл проявив деякі (структурні та термічні) властивості відмінні від властивостей зразків ПАн синтезованого в аналогічних умовах. Очевидно, що проведенням хімічного синтезу поліаніліну в присутності дрібнодисперсного мінералу глауконіту при оптимальних температурах (275 К) та співвідношенням реагентів і дисперсної фази, можна одержувати композити з певними фізико-хімічними властивостями.
Проведення порівняльних синтезів ПАн та ПАн/Гл композитів та їхній фізико-хімічний аналіз за допомогою сучасних високоточних методів дає підстави стверджувати, що шляхом поєднання співвідношень компонентів, температури синтезу, природи кислоти та рН реакційного середовища можна досягти оптимальної кристалічності, провідності, магнітної сприйнятливості та інших характеристик композитів на основі поліаніліну та глауконіту.
Висновки
Вперше синтезовано композитний матеріал на основі природного мінералу глауконіту та електропровідного полімеру поліаніліну.
За допомогою сучасних фізико-хімічних методів аналізу показано, що одержаний матеріал при різному співвідношенні Ан:Гл 1:1, 1:2 та 1:4 є композитним матеріалом, а не простою механічною сумішшю.
Наявність міжфазової взаємодії глауконіт - поліанілін підтверджена ІЧ-ФП та Раман-ФП спектральними методами.
Досліджено та поміряно ряд фізико-хімічних властивостей одержаного композиту, а саме: термічну стійкість та термодеструкцію як в середовищі повітря, так і в середовищі азоту, структурні характеристики, електро-провідність, магнітну сприйнятливість.
Показано, що вміст глауконіту 50 % (мас) практично не змінює електропровідності зразка ПАн стосовно чистого ПАн та підвищує магнітну сприйнятливість практично до рівня чистого дисперсного глауконіту.
Зміною умов синтезу (температури, порядку змішування реагентів, перемішування чи його відсутності тощо) можна одержувати ПАн/Гл композити із різною кристалічністю та термічними властивостями.
Список використаної літератури
Gurunathan K., Murugan A.V., Marimuthu R., Mulik U.P., Amalnerkar D.P. Electrochemically synthesised conducting polimeric materials for applications towards technology in electronics, optoelectronics and energy storage devices // Mater. Chem. Phys. 1999. Vol. 61. P. 173-191.
Stejskal Ja., Spirkova M., Riede A., Helmetedt M., Mokreva P., Prokes J. Polyanilins dispersions. 8. The control of particle morphology // Polymer. 1999. Vol. 40. P. 2487-2492.
Stejskal Ja., Sapurina L., Prokes J., Zemek J.. In-situ polymerized polyanilins films // Synth. Met. 1999. Vol. 105. P. 195-202 .
Koval'chuk E.P., Stratan N.V., Reshetnyak J.V., Blazejowski J., Whittingham M.S. Synthesis and properties of the polyanisidines // Solid State Ionics. 2001. Vol. 141-142. P. 217-224.
Guo R., Bariebi J.W., Innis P.C., Too C.O., Wallace G.G., Zhou D. Electrohydro-dynamic polymerization of 2-nathoxyanilinne-s-sulfonic acid // Synth. Met. 2000. Vol. 114. P. 267-272.
Faez R., Paoli M.-A. A conductive rubber based on EPOM and polyaniline. I. Doping method effect // Eur. Polym. J. 2001. Vol. 37. P. 1139-1143.
Mac Diarmid A.G., Chiang J.C., Richter A.F., Samarisi N.L.D. Special Applications. Reidel, Dordrecht // Conducting polymers. 1987 P. 105.
Novak P., Muller K., Santhanom K.S.V., Haas O. Electrochemically active polymers for rechargeable batteries // Chem. Rev. 1997. Vol. 97. P. 207-281.
Shaolin M., Bidong Q. Poly-o-methylaniline used as a cathode material and rechargeable batteries // Synth. Met. 1989. Vol. 32. P. 129-134.
Batich C.D., Laitinen H.A., Zhou H.C. Cromic changes in polyaniline films // J. Electrochem. Soc. 1990. Vol. 137. P. 883-885.
Koul S., Dhavan S.K., Chandra S., Chandra R.. Conducting PANI as a sensor material for the detection of HCl vapors // Indian. J. Chem. 1997. Vol. 37A. P. 901-904.
Koul S., Chandra R., Dhavan S.K. Conducting polyaniline composite: reusable sensor material for aqueous ammonia // Sens. Actuatоrs. - 2001. - Vol. B75. - P. 151-159.
Meijerink M.G.H., Strike D.J., N.F. de Rooij, Kondelna-Hep M.. Reproducible fabrication of an array of gas sensitive chemoresistors with commercially available // Sens. Actuatоrs. - 2000. - Vol.68, - P. 331-334.
Huang M.-R., Yang X.-G. Li, Y. Oxidative polymerization of o-phenilendiamin and pirimidyleamine // Polym. Degrad. Stability. - 2001 - Vol. 71. - P. 31-38.
Angappane S., Srinivasan D., Rangarajan G., Prasad V., Subramanyam S.V., Wessling B. Transport and magneto-transport study on some conducting polyanilines // Physica B. - 2000. - Vol. 284. - P. 1982-1983.
Laska J., Zak R., Pron F. Conducting blends of polyaniline with conventional polymers.// Proceeding of ICSM'96.- Praha,-1996.- Paper N3863.- P.117-118.
Mitsuyuki М. Effects of solvent and electrolyte on the electrochromic behavior and degradation of chemically preparated polyaniline-poly(vinyl alcohol) composite films // J. Polym. Sci.: Part B. Polym. Phys. -1994.- Vol. 32.- P.231-242.
Bessiere A., Duhamel C., Badot J.-C., Lucas V., Certiat M.-C.. Study and optimization of a flexible electrochromic device based on polyaniline // Electrochim. Acta. - 2004. - Vol. 49.- P. 2051-2055.
Yang X., Zhao T., Yu Y., Wei Y.. Synthesis of conductive polyaniline/epoxy resin composites: doping of the interpenetrating network // Synth. Met.-2004.- Vol. 142. - P. 57-61.
Diaz F.Z., Sanches C.O., Del Valle M.A., Tagle L.N., Beraede J.C., Tregouet Y.Synsesis, characterization and electrical properties of digalogenated polyanilines // Synth. Met.- 1998.- Vol. 92.- P.99-106.
Gurunathan К., Murugan A., Marinuthu R., MulikU.P., Amalnekar D.P. Electrochemically Synthesized conducting polimeric materials for applications towards technology in electronics, optoelectronics and energy storage devices // Mater. Chem. Phys. - 1999. - Vol.61. - P. 173-191.
Походенко В.Д., Крылов В.А. Электрохимия органических полимеров с системой сопряженых связей // Теор. химия. - 1994. - Т.30, №3. - С. 111-129.
Volfkovich Yu. M., Sergeev A.G., Zolotova Т.К. et all. Macrokmetics of polianiline based electrode: effects of porous structure, microcinetics, diffusion and electrical double laer // Electrochim. Acta. - 1999. - Vol.44. - P. 1543- 1558.
Яцишин М., Ковальчук Є. Поліанілін: Хемічний синтез, механізм синте-зу, структура і властивості, легування // Праці НТШ. - 2008. - Т. 21. - С. 87-102.
Яцишин М., Лиходід А. Поліанілін. Модифікація поверхонь матеріалів та застосування // Вісн. Львів. ун-ту. Серія. хім. - 2009. - Вип. 50. - С. 324-329.
Anand J., Palaniappan S., Sathyanarayana D.N. Condacting polyaniline blends and composites // Prog. Polym. Sci. - 1998. - Vol. 23. - P. 993-1018.
Malinauskas A. Chemical deposition of conducting polymers // Polymer. - 2001. -Vol. 42, Is. 9. - P. 3957-3972.
Riede A., Stejskal J, Helmstedt M. In-situ prepared composite polyaniline films // Synth. Met. - 2001. - Vol. 121. - P. 1365-1366.
Mo Z., Zhang P., Zuo D., Sun Y., Chen H. Synthesis and characterization of polyaniline nanorods/Ce(OH)3-Pr2O3/montmorillonite composites through reverse micelle template // Mater. Res. Bull. - 2008. - Vol. 43. - P. 1664-1669.
Carrado K.A. Synthetic organo- and polymer-clays: preparation, characterization, and materials applications // Appl. Clay Sci. - 2000. - Vol. 17. - P. 1-23.
Sudha J.D., Reena V.L. Structure - Directing Effect of Renewable Resource Based Amphiphilic Dopants on the Formation of Conducting Polyaniline-Clay Nanocomposite // Macromol. Symp. - 2007. - Vol. 254. - P. 274-283.
Pan L., Pu L., Shi Y., Song S., Xu Z., Zhang R., Zheng Y. Synthesis of polyaniline nanotubes with a reactive template of manganese oxide // Adv. Mater. - 2007. - Vol. 19. - P. 461464.
Deng J., He Ch., Peng Y., Wang J, Long X., Li P.,. Chan A.S.C Magnetic and conductive Fe3O4-polyaniline nanoparticles with core-shell structure // Synth. Met. - 2003. - Vol. 139. - P. 295-301
Long Y., Chen Z., Duvail J.L., Zhang Z., Wan M. Electrical and magnetic properties of polyaniline/Fe3O4 nanostructures // Physica B. - 2005. - Vol. 370. - P. 121130.
Li X., Chen W., Bian C., He J., Xu N., Xue G. Surface modification of TiO2 nanoparticles by polyaniline // Appl. Surf. Sci. - 2003. - Vol. 217. - P. 16-22.
Tai Р., Jiang Y., Xie G., Yu J., Chen X. Fabrication and gas sensitivity of polyaniline-titanium dioxide nanocomposite thin film // Sens. Actuators. B. - 2007. - Vol. 125. - P. 644650.
Parvatikar N., Jain S., Kanamadi C.M., Chougule B.K. Bhoraskar S.V., Prasad A. M. V. N. Humidity Sensing and Electrical Properties of Polyaniline/Cobalt Oxide Composites // J. Appl. Polymer Sci. - 2007. - Vol. 103. - P. 653-658.
He Y. One-dimensional polyaniline nanostructures synthesized by interfacial polymerization in a solids-stabilized emulsion // Appl. Surf. Sci. - 2006. - Vol. 252. - P. 21152118.
He Y. A novel emulsion route to sub-micrometer polyaniline/nano-ZnO composite fibers // Appl. Surf. Sci. - 2005. - Vol. 249. - P. 1-6.
Xu J., Li X., Liu J., Wang X., Peng Q., Li Y. Solution route to snorganic nanobelt-conducting organic polymer core-shell nanocomposites // J. Polym. Sci. - 2005. - Vol. 43. - P. 28922900.
Majid K., Awasthi S., Singla M.L. Low temperature sensing capability of polyaniline and Mn3O4 composite as NTC material // Sens. Actuators A. - 2007. - Vol. 135. - P. 113118.
Singla M.L., Awasthi S., Srivastava A., Jain D.V.S. Effect of doping of organic and inorganic acids on polyaniline/Mn3O4 composite for NTC and conductivity behaviour // Sens. Actuators A. - 2007. - Vol. 136. - P. 604612.
Li X., Shen J., Wan M., Chen Z., Wei Y. Core-shell structured and electro-magnetic functionalized polyaniline composites // Synth. Met. - 2007. - Vol. 157. - P. 575-579.
He Y. Interfacial synthesis and characterization of polyaniline nanofibers // Mater. Sci. Engineering B. - 2005. - Vol. 122. - P. 7679.
Li X., Li X., Wang G. Fibrillar polyaniline/diatomite composite synthesized by one-step in situ polymerization method // Appl. Surf. Sci. - 2005. - Vol. 249. - P. 266-270.
Liu Y., Liu P., Su Z. Core-shell composite particles via in situ oxidative polymerization // Synth. Met. - 2007. - Vol. 157. - P. 585-591.
Яцишин М., Ковальчук Є., Думанчук Н. Хемічний синтез наноструктурованого поліаніліну та його застосування // Праці НТШ. 2008. Т. 21. С. 108-122.
Feng X., Yang G., Liu Y., Hou W., Zhu J.-J. Synthesis of Polyaniline/MCM-41 Composite Surface Polymerization of Aniline // J. Appl. Polym. Sci. - 2006. - Vol. 101. - P. 2088-2094.
Бетехтин А.Г. Курс минералогии // Государственное Издательство геологической литературы. М.: 1951. 542 с.
Narayanan Binitha N., Sankaran Sugunan. Polyaniline/Pillared Montmorillonite Clay Composite Nanofibers// Wiley Periodicals, Inc. J Appl Polym Sci. - 2008. - Vol. 107 - P. 3367-3372.
Матковский О., Павлишин В., Сливко Є. Основи мінералогії України // Вид. Львів. ун-ту ім. ІванаФранка. Львів. 2008. 840 с.
Yatsyshyn М.М., Grynda Yu.М., Reshetnyak O.V., Кun'ko А.S., Koval'chuk E.P., Kulyk Yu.О., Blazejowski J. Physico-chemical properties of the polyaniline-mineral composites // Abstract XVI international seminar on physics and chemistry of solids (ISPCS'10) Ukraine, L'viv, june, 6-9, - 2010
Anand J., Rao P. S., Palaniappan S., Sathyanarayana D.N. ZnCl2-induced changes in the electronic properties of polyaniline-HCl // Synth. Met. - 1998. - Vol. 95. - P. 57-62.
Sedenkova I., Trchova M., Blinova N.V., Stejskal J. In-situ polymerized polyaniline films. Preparation in solutions of hydrochloric, sulfuric, or phosphoric acid // Thin Solid Films. - 2006. - Vol. 515. - P. 1640-1646
Li X. Improving the electrochemical properties of polyaniline by co-doping with titanium ions and protonic acid // Electrochim. Acta. - 2009. - Vol. 54. - P. 5634-5639
Sun T., Bi H., Zhu K.R. An infrared and Raman spectroscopic study of polyanilines co-doped with metal ions and H+ // Spectrochim. Acta. - 2007. - P. A 66. - P. 1364-1368.
Zhang L., Wan M., Wei Y. Polyaniline/TiO2 microspheres prepared by a template-free method // Synth. Met. 2005. - Vol. 151. - P. 1-5.
Duran N.G., Karakэsёla M., Aksu L., Sacёak M. Conducting polyaniline/kaolinite composite: Synthesis, characterization and temperature sensing properties // Mater. Chem. Phys. - 2009. - Vol. 118. - P. 93-98.
Kim J. H., Fang F. F., Choi H.J., Seo Y. Magnetic composites of conducting polyaniline/nano-sized magnetite and their magnetorheology // Mater. Lett. - 2008. - Vol. 62. - P. 2897-2899.
Гринда Ю.М., Лиходід А.С., Яцишин М.М. Термічна деструкція поліаніліну // Тези доп. Друга Всеукраїнська наук. конф. "Хімічні каразінські читання - 2010" Харків 19-22 квітня 2010 р. Харків. С. 189-190.
Кузько А., Гринда Ю., Яцишин М., Юрій Кулик Мікро- структуровані композити на основі полі аніліну // Тези доп. VIII Всеукраїнська конф. мол. вч., студентів та аспірантів з актуальних питань хімії. Харків 11-14 травня 2010 р. Харків. С. 22.
Яцишин М., Гринда Ю., Кунько А., Кулик Ю. Полімеризація аніліну за наявності глауконіту // Вісник Львів. ун-ту. Серія. хім. 2010. Вип. 51. С. 1-12. (в друці)/
Додаток А
Безпека життєдіяльності та охорона праці
Вступ
З розвитком науки і техніки умови праці в хімічній лабораторії все ж залишаються небезпечними. Адже сучасну хімію неможливо уявити без широкого використання електроенергії, високого тиску, глибокого вакууму, високих та низьких температур, різноманітних агресивних та токсичних сполук і т.д. З'являються нові, невідомі раніше небезпечні фактори. Тому і надалі залишається актуальним питання про попередження професійних захворювань, визначення гранично допустимих концентрацій шкідливих речовин у повітрі робочої зони, розробка та експлуатація засобів індивідуального захисту, системи вентиляції та ін. [9].
Успішна робота в хімічній лабораторії можлива тільки за умови забезпечення повної безпеки людей, які в ній працюють. Тому працівник сучасної хімічної лабораторії повинен знати, як організувати свою роботу, щоб уникнути небезпечних ситуацій. Механізація та автоматизація виробничих процесів, зменшення кількості ручної праці, суворе дотримання норм і правил техніки безпеки - це основи зниження кількості випадків виробничого травматизму, аварій та професійних захворювань [10].
При синтезі полімерів аніліну, при конструкції гальванічних елементів, вивченні зарядно-розрядних характеристик, використовують легкозаймисті, токсичні і вибухонебезпечні речовини. У роботі також використовують прилади, які працюють при високій напрузі. Отже, виникає необхідність ознайомитись з правилами поводження з реактивами та електроприладами. Але при правильній організації робіт та чіткому виконанні правил безпеки отруєнь, травматизму, опіків та аварій під час роботи в лабораторії можна повністю уникнути.
A.1 Аналіз стану виробничих умов
A.1.1 Характеристика лабораторії
Магістерська робота виконувалась в лабораторії № 4 для фізико-хімічних досліджень, яка знаходиться на першому поверсі хімічного факультету. Підлога покрита лінолеумом. Площа приміщення становить 42 м?. В лабораторії 5 робочих місць. Лабораторія забезпечена витяжною вентиляцією, водопроводом, електромережею, каналізацією. Швидкість руху повітря 0,2 м/с. Температура повітря становить 15-22?С, відносна вологість - 40-70%. Задня стінка і робочий стіл витяжної шафи обкладені плиткою. Освітлення в лабораторії змішане: штучне та природне. В кімнаті є два вікна, які забезпечують природне освітлення. Коефіцієнт природного освітлення в приміщенні при боковому світлі становить 0,26%, а нормативне значення становить 1,5%. Для штучного освітлення використовують розжарювальні лампи, а для кращого освітлення стіни і прилади в лабораторії пофарбовані в світлий колір. В лабораторії присутні деякі джерела шуму та вібрації, а пилу відсутні. Джерелами електромагнітного випромінювання є електроприлади і комп'ютери. Шкідливі речовини, які зберігаються в лабораторії є в дозволених кількостях. В лабораторії є аптечка з медикаментами. На випадок пожежі є два вогнегасники марок ОХП-5 і ОУ-5, пісок, відра, лопати. Лабораторія належить до А класу пожежонебезпечності і відповідає нормам техніки безпеки.
A.1.2 Аналіз методів дослідження та характеристика обладнання
В ході роботи є необхідність застосовувати токсичні речовини, скляний посуд, електроприлади, а саме: полярограф, сушильну вакуумну шафу, електроплитки, термостати, прилади для випарювання тощо . У випадку їхньої несправності чи неправильному поводженні з ними можливим є ураження електричним струмом.
Електричний струм є небезпечним як у пожежному відношенні, так і для життя людини. Пожежо небезпечні моменти можуть виникнути при перегріві електроприладу або його несправності, при поганому контакті чи короткому замиканні. Небезпека для людини виникає при наявності оголених електропроводів, поганому заземленні або його відсутності [1].
При роботі з горючими чи легкозаймистими речовинами можливі опіки. Хімічні опіки можуть виникнути при роботі з концентрованими лугами, кислотами. При неправильному користуванні токсичними речовинами можливі отруєння. Робота зі скляним посудом пов'язана з можливістю порізів і травм, тому необхідно суворо дотримуватися правил техніки безпеки [2].
Робота з скляним посудом може спричинити до порізів і травм, тому необхідно суворо дотримуватися правил техніки безпеки. Особливо слід бути обережним при відкриванні апул.
Живлення використовуваних приладів - від електромережі (U = 220 В). При недбалому чи неправильному використанні електроприладів можливе ураження електричним струмом. При експлуатації приладів необхідно пам'ятати, що для людини є небезпечним постійний та змінний струм. Безпечною для людини вважається величина змінного струму 0,001 А і постійного - 0,005 А. Величина змінного струму 0,005 - 0,025 А вважається невідпускаючою для людини [11].
Також великий негативний вплив на організм людини проявляє комп'ютер (вплив на зоровий аналізатор, на нервово-психічну діяльність, на репродуктивну функцію у жінок, спричиняє перенапруження скелетно-м'язової системи,), тому при організації робочого місця користувача ПК важливими є заходи, що дозволяють зменшити цей вплив.
При виконанні магістерської роботи було використано метод окислювальної хімічної конденсації. Цей мето дозволяє синтезувати електропровідні полімери, а конкретно в даній магістерській роботі - полі анілін (ПАн) за допомогою зливання розчинів окисника і мономеру. Змінюючи умови синтезу, а саме концентрацію реагентів, температуру середовища, умови проведення, можна спостерігати за утворенням того чи іншого складу та структури полімеру, які відповідають тій чи іншій структурі полімеру. Потенційно небезпечними в даному методі є : скляний посуд, розчини кислот, та електромішалка.
A.1.3 Характеристика речовин та їх небезпечних властивостей
Речовини, що використовувалися при виконанні практичної частини магістерської роботи, є в певній мірі токсичними [2,3] і до них належать:
1. Анілін ( амінобензол) - масляна рідина. Дуже сильна кров'яна отрута. У великих концентраціях шкідливий. Отруєння можливі як шляхом вдихання парів, так і при попаданні на шкіру. Мr=93,13; Тпл=-6,2?С; Ткип=184,4?С. Розчинність 3,6г на 100г води. Гранично допустима концентрація (ГДК) парів аніліну в повітрі 0,1 мг/м3. Клас небезпеки 2.
2. Сульфатна кислота - безбарвна масляниста речовина, вогненебезпечна, пари токсичні. Вдихання парів приводить до тяжких захворювань, попадання кислоти на шкіру викликає сильні хімічні опіки. Мr=98,08; Тпл=10,37?С; Ткип=330?С. ГДК в повітрі рівна 1мг/м3 [2]. Клас небезпеки 2.
3. Азотна кислота - безбарвний розчин, Mr=63; Тпл=-41,6?С; Ткип=83?С. Гранично допустима концентрація (ГДК) 5 мг/м3. Клас небезпеки 3.
4. NaOH - натрій гідроксид, розчин. Mr=40,0. Розчиняється у воді, етиловому спирті, гліцерині, фенолі; нерозчинний у етиловому ефірі, та ацетоні. Гранично допустима концентрація (ГДК) 1 мг/м3. Клас небезпеки 2.
5. Глауконіт - мінерал, класу силікатів групи гідрослюд, до складу якого входять кремній, алюміній, калій, залізо та ін., належить до групи слюд, загального складу (К,Na,Ca)?(Fe3+,Mg,Fe2+,Al)2[(Al,Si)Si3O10] (OH)2?H2O, і містить (%): SiO2 - 44-56; Аl2O3 - 3-22; Fe2O3 - 0-27; FeO - 0-8; MgO - 0-10; K2O до 10%, H2O - 4-10%. Глауконіт вирізняється цілим комплексом унікальних властивостей і використовується як сорбент нафтопродуктів, радіонуклідів і важких металів. Не токсичний.
Можливі небезпеки під час виконання роботи
При виконанні магістерської роботи можуть виникати такі небезпеки:
пожежа або займання;
вибух;
отруєння;
хімічні і термічні опіки;
порізи і травми при роботі зі скляним посудом.
A.2 Організаційно-технічні заходи
A.2.1 Організація робочого місця і роботи
Вимоги ергономіки до робочого місця
Робоче місце являє собою найменшу цілісну одиницю виробництва, де взаємодіють три основні елементи праці предмет, засоби і суб'єкт праці.
Просторова організація робочого місця це розміщення у визначеному порядку елементів основного і допоміжного виробничого обладнання відносно людини, що працює в заданих просторових межах.
Просторова організація робочого місця повинна забезпечувати:
відповідність планування робочого місця до санітарних і протипожежних норм і вимог;
безпеку працівникам;
відповідність просторових відношень між елементами робочого місця, антропометричними, біомеханічними, фізіологічними, психофізіологічними і психічними можливостями людини, що працює;
можливість виконання основних і допоміжних операцій в робочому положенні, що відповідає специфіці трудового процесу, в раціональній робочій позі і з використанням найбільш ефективних прийомів праці;
вільне переміщення працівника по оптимальних траєкторіях;
достатню площу для розміщення обладнання, інструменту, засобів контролю, деталей та ін.
Просторові і розмірні відношення між елементами робочого місця повинні дозволяти:
розміщення працівника з врахуванням робочих рухів і переміщень згідно з технологічним процесом;
оптимальний огляд джерела візуальної інформації;
зміну робочої пози і положення;
раціональне розміщення основних і допоміжних засобів праці.
Обов'язковою умовою є те, що на робочому місці повинні знаходитись лише ті технічні засоби, які необхідні для виконання робочого завдання, і розміщуватися вони повинні в межах досяжності, з метою виключення частих нахилів і поворотів корпусу людини, що працює.
Організація робочого місця і роботи
1.Перед початком роботи необхідно пройти інструктаж з техніки безпеки, який проводить керівник дипломної роботи, та розписатись про це в журналі. Необхідно підготувати до роботи робоче місце, лабораторне обладнання, перевірити справність газо- та водопроводів, справність і наявність електрообладнання, одягнути спецодяг (халат). Провітрити приміщення, ввімкнути витяжну вентиляцію за 20 хв. до початку роботи.
2.У процесі роботи постійно слідкувати за роботою приладів. Операції з токсичними речовинами проводити у витяжній шафі.
3.Після закінчення роботи вимкнути електричний струм , закрити крани водо та газопостачання, прибрати робоче місце.
4.В аварійних ситуаціях вимкнути електричний струм, перекрити подачу газу загальним краном, вивести всіх працюючих з лабораторії, надати першу допомогу потерпілим, при виникненні пожежі викликати пожежну команду [3].
При роботі з персональним комп'ютером необхідно щоб:
робоча поверхня знаходилась на висоті 72 см, стілець був оснащений підйомним пристроєм, кут між плечем і передпліччям був більший 90?.
оптимальна висота знаків була не менше 3,1 мм, а ширина повинна становити 60-70% від висоти.
оптимальна яскравість екрану була 100 кд/м?, частота регенерації екрану повинна становити 85 Гц для моніторів з ЕПТ. Освітленість робочої поверхні має бути не менше 400 люкс, а співвідношення яскравості екрану до фону має становити 3:1[4].
A.2.2 Санітарно-гігієнічні вимоги
Величина освітленості у лабораторії повинна бути 200 люкс - для лампи розжарюваня та 300 люкс - для люмінесцентних ламп. На працездатність в лабораторії впливають параметри мікроклімату, які повинні бути:
а) в холодну пору року температура 21-24?С, відносна вологість 40-60%, швидкість руху повітря 0,1 м/с.
б) в теплу пору року температура 22-25?С, відносна вологість 40-60%, швидкість руху повітря 0,1-0,2 м/с.
Вентиляційна система повинна бути розрахована на трикратну заміну повітря за 1 годину від важких газів (NO2,CO2,O3) через нижні вентиляційні отвори, а від легких газів через верхні вентиляційні отвори.
В лабораторії потрібно працювати у халаті, захисних окулярах та рукавицях. Завершуючи роботу, потрібно ретельно вимити посуд та руки. В лабораторії заборонено їсти, пити, зберігати харчові продукти[5]. В даному приміщенні є наявні засоби особистої гігієни та засоби захисту органів зору та шкіри.
Найбільш продуктивна розумова праця є в умовах цілковитої тиші,та допустимий рівень шуму не повинен перевищувати 50 дБА 8.
A.2.3 Заходи безпеки під час роботи з обладнанням, об'єктом дослідження і речовинами
Для роботи використовуються лише справні електроприлади, добре ізольовані з'єднувальні шнури. Самі корпуси приладів повинні бути заземлені шляхом приєднання їх до загального корпусу заземлення. Опір заземлення має бути не більше 4 Ом. Кожного разу перед вмиканням електроприладу необхідно візуально переконатись у справності заземлення[6]. Скло - ламкий матеріал, який легко б'ється, тому користуючись скляним посудом необхідно дотримуватись наступних правил роботи: Скляний посуд не призначений для роботи при підвищеному тиску. Не можна допускати нагрівання рідин в закритих колбах чи приладах;
Категорично заборонено використовувати посуд, який має тріщини чи відбиті краї. Уламки робочого посуду прибирати тільки з допомогою щітки і совка, але не руками. Скляні прилади і посуд великих розмірів можна переносити тільки двома руками.
Заходи безпеки під час роботи з об'єктом дослідження і речовинами
У лабораторіях заборонено:
проводити будь-які роботи, які не пов'язані з виконанням доручених завдань;
користуватись реактивами без етикеток чи з не чіткими написами на них;
залишати без нагляду працюючі установки, ввімкнені електронагрівальні прилади, газові пальники;
зливати в раковину відходи хімічних реактивів, органічних розчинників, водні розчини хімічних речовин;
працювати в лабораторії одному.
Щоб уникнути нещасних випадків при роботі з об'єктом дослідження та речовинами необхідно дотримуватись наступних вимог:
одягнути спецодяг, мати при собі рукавиці і захисні окуляри;
не пізніше, як за 20 хв. до початку роботи ввімкнути вентиляцію і перевірити її ефективність;
при роботі з їдкими речовинами потрібно особливо захищати очі і руки;
при наповненні піпетки їдкими та отруйними речовинами користуватися гумовою грушею, ні в якому разі не тягнути рідину ротом;
всі роботи з їдкими і токсичними речовинами проводити у витяжній шафі;
сильнодіючі отруйні речовини зберігати окремо від всіх реактивів в запломбованих шафах;
банки та інший посуд з речовинами забороняється ставити на робочий стіл біля електроприладів, для цього відводять спеціальне місце;
розчини для проведення дослідів виливають у спеціально приготований для цього посуд;
щоб уникнути термічних опіків, посуд із сушильної шафи потрібно виймати тільки після охолодження до кімнатної температури;
після закінчення роботи прибрати робоче місце і вимити руки з милом.
A.2.4 Протипожежні заходи
Можливими причинами виникнення пожежі на робочому місці є оголеність дротів електричних приладів, незаземлені прилади, коротке замикання, необережне поводження з легкозаймистими речовинами.
Для запобігання займання і виникнення пожеж необхідно:
проходи і робочі місця звільнити від зайвих речей ;
з легкозаймистими речовинами працювати подалі від вогню та електронагрівальних приладів;
не виливати горючі речовини в каналізацію;
легкозаймисті речовини зберігати у товстостінному посуді з притертим корком, ємністю не більше 1л, поміщеному в металевий ящик;
у разі випадкового виливання легкозаймистих речовин необхідно виключити газові пальники і нагрівальні прилади, місце розливу засипати піском;
електроприлади вмикати, перевіривши їх ізоляцію, заземлення;
у випадку спалаху рідин необхідно повідомити співробітників, виключити пальники, вентиляцію, винести весь посуд з горючими рідинами, ліквідувати пожежу, використовуючи найбільш ефективні для цього випадку засоби гасіння пожежі.
На випадок гасіння пожежі в лабораторії повинні бути первинні засоби гасіння пожежі: не менше двох вогнегасників марок ОХП-5 і ОУ-5, азбестові ковдри, пісок, відра, лопати.
A.3. Аналіз впливу виробничих умов на довкілля
У ході виконання експериментальної частини магістерської роботи речовини у тих кількостях, які використовуються в лабораторіях і процеси не мають помітного впливу на навколишнє середовище.
ВИСНОВКИ
Лабораторія електрохімічних досліджень відповідає вимогам техніки безпеки і охорони праці. Щоб звести до мінімуму можливість виникнення непередбачених ситуацій та нещасних випадків працівники повинні бути пильними при будь-якій роботі, дотримуватись правил техніки безпеки при роботі з обладнанням та хімічними речовинами. Бути уважними та відповідно відноситись до виконання магістерської роботи, керуватися принципом науковості та правильності щодо техніки безпеки у лабораторії при роботі з хімічними речовинами.
Додаток Б
Таблиця Співвідношення між компонентами та умови синтезу модифікованого ПАн/Гл-9.
Размещено на Allbest.ru
Подобные документы
Методи одержання та напрями використання електропровідних полімерів. Методика синтезу композитів ПАн-МоО3 та ППірол-МоО3. Особливості виготовлення та дослідження розрядних характеристик літієвих джерел струму із синтезованими катодними матеріалами.
курсовая работа [139,2 K], добавлен 03.05.2015Номенклатура, електронна будова, ізомерія, фізичні, хімічні й кислотні властивості, особливості одержання і використання алкінів. Поняття та сутність реакцій олігомеризації та ізомеризації. Специфіка одержання ненасичених карбонових кислот та їх похідних.
реферат [45,5 K], добавлен 19.11.2009Основні принципи дизайну координаційних полімерів. Електронна будова та фізико-хімічні властивості піразолу та тріазолу. Координаційні сполуки на основі похідних 4-заміщених 1,2,4-тріазолів. Одержання 4-(3,5-диметил-1Н-піразол-4-іл)-4Н-1,2,4-тріазолу.
курсовая работа [1,5 M], добавлен 29.12.2011Дослідження основних вимог до якості мінеральної води. Класифiкацiя мінеральних вод, їх значення. Показники якості фасованої води. Методи контролю якості. Визначення іонного складу води за електропровідністю. Іонохроматографічний аналіз мінеральної води.
курсовая работа [319,9 K], добавлен 28.10.2010Моделювання структуроутворень в аморфних полімерах. Мінеральні наповнювачі полівінілхлориду. Ультразвукові та теплофізичні експериментальні методи досліджень властивостей аморфних полімерів та їх систем. Фрактальні розмірності полівінілхлоридних систем.
дипломная работа [415,4 K], добавлен 22.12.2012Властивості і застосування циклодекстринів з метою підвищення розчинності лікарських речовин. Методи одержання та дослідження комплексів включення циклодекстринів. Перспективи застосування комплексів включення в сучасній фармацевтичній технології.
курсовая работа [161,5 K], добавлен 03.01.2012Моногалогенопохідні та полігалогенопохідні алканів: номенклатура, ізомерія, методи одержання, електронна будова, фізичні та хімічні властивості. Ненасичені галогенопохідні: загальна характеристика, методи та обґрунтування процесу одержання, властивості.
курсовая работа [2,0 M], добавлен 03.11.2013Загальна характеристика рибофлавіну, його властивості та значення. Рекомендації щодо прийому вітаміну В2, його застосування рибофлавіну. Технологія одержання рибофлавіну. Визначення поживного середовища, посівного матеріалу. Основний процес ферментації.
курсовая работа [381,1 K], добавлен 19.05.2019Розгляд систем зі змішаним титруванням. Розробка методичних принципів поєднання одночасних титрометричних реакцій різних типів в єдиному титрометричному акті, виявлення переваг такого поєднання. Послідовні та одночасні титрометричні реакції різних типів.
статья [141,8 K], добавлен 31.08.2017Дослідження складу, оптичних, електричних властивостей нафти. Огляд особливостей використання в хімічній промисловості. Значення в'язкості для видобутку і транспортування нафтопродуктів. Технології перегонки нафти. Аналіз проблем забруднення середовища.
презентация [1,5 M], добавлен 24.12.2012