Энтропия органических веществ при нормальных и повышенных давлениях

Прогнозирование энтропий органических соединений при повышенной температуре. Зависимость идеально-газовой энтропии окиси этилена от температуры. Расчет изотермических изменений энтропии. Состояния Ли-Кеслера. Графическая зависимость изотерм и их анализ.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 17.01.2009
Размер файла 90,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Прогнозирование энтропий органических соединений при повышенной температуре

При прогнозировании энтропий органических веществ, находящихся при давлении 1 атм и температуре, отличающейся от 298 К, используются:

значение вещества, вычисленное любым из аддитивных методов или взятое из справочников;

сведения о температурной зависимости теплоемкости вещества в виде аппроксимирующего уравнения или в табулированной форме;

уравнение (2.4) для расчета температурной зависимости энтропии.

Процедура расчета иллюстрируется примером 2.4, при этом использованы справочные данные для теплоемкостей вещества, поскольку вопросы прогнозирования обсуждаются позже (разд. 3 данного пособия).

Пример: Рассчитать окиси этилена при 400, 500 и 600 К. Энтропия окиси этилена составляет 242,4 Дж/(мольК) [1], значения теплоемкостей C0p,T при 400, 500 и 600 К заимствованы из [1] и приведены в табл. 2.6.

Решение: С использованием уравнения (2.4) вычисляются энтропиии окиси этилена при интересующих температурах. При этом средние величины теплоемкостей окиси этилена считаются величинами постоянными для каждого из температурных диапазонов (от 300 до 400, от 400 до 500 и от 500 до 600 К) по условию создания таблиц, допускающему линейную интерполяцию соседних значений в них.

Результаты расчета приведены ниже и в табл. 2.6 сопоставлены с рекомендуемыми значениями [1].

= 242,74+(48,53+62,55)/2?(ln400 - ln300) = 258,72 Дж/(мольК);

= 258,72+(62,55+75,44)/2·(ln500 - ln400) = 274,12 Дж/(мольК);

= 274,12 +(75,44+86,27)/2?(ln600 - ln500) = 288,86 Дж/(мольК).

Температурная зависимость иллюстрируется рис. 2.1.

Рис. 2.1. Зависимость идеально-газовой энтропии окиси этилена от температуры

Таблица 2.6

Т, К

[1], Дж/(моль·К)

[1], Дж/(моль·К)

(расчет), Дж/(моль·К)

Погрешность,

% отн.

298

242,42

48,28

300

242,76

48,53

242,74

0,00

400

258,65

62,55

258,72

0,03

500

274,01

75,44

274,12

0,04

600

288,78

86,27

288,86

0,03

Прогнозирование энтропий органических соединений при повышенных давлениях

При прогнозировании энтропий веществ при повышенных давлениях широко используется подход, аналогичный рассмотренному выше для энтальпий образования (разд. 1) и основанный на принципе соответственных состояний и разложении Питцера для энтропии:

(2.11)

и таблицах Ли-Кеслера (табл. 2.7, 2.8) для энтропии.

В уравнении (2.11) ? - ацентрический фактор; - поправка к энтропии на давление, характеризующая поведение простого вещества; - функция отклонения в поведении рассматриваемого вещества от поведения простого вещества; - идеально-газовая энтропия вещества при рассматриваемой температуре, - искомая энтропия, R - газовая постоянная, равная 8,31441 Дж/(мольК) или 1,98725 кал/(мольК); - стандартное давление (1 атм, 101325 Па и пр.), - интересующее давление, для которого производится расчет энтропии, выраженное в тех же единицах, что и стандартное давление.

Таблицы Ли-Кеслера, как и для энтальпий (разд. 1), составлены на основе достаточно универсального уравнения состояния вещества (уравнение Бенедикта-Уэбба-Рубина) с соблюдением общепринятых принципов, т.е. между любыми соседними значениями в столбцах или строках таблицы корректной является линейная интерполяция. В таблицах область, лежащая выше ломаной линии, принадлежит жидкому состоянию вещества.

Расчет иллюстрируется примером 2.5.

Пример 2.5

Рассчитать окиси этилена при давлении, изменяющемся от 0,71 до 142 атм., и при температурах 304,85, 422,10, 492,45 и 562,80 К.

Изотермические изменения энтропии, рассчитанные по уравнению

Значения для простого вещества

Tr

Pr

0,010

0,050

0,100

0,200

0,400

0,600

0,800

0,30

11,614

10,008

9,319

8,635

7,961

7,574

7,304

0,35

11,185

9,579

8,890

8,205

7,529

7,140

6,869

0,40

10,802

9,196

8,506

7,821

7,144

6,755

6,483

0,45

10,453

8,847

8,157

7,472

6,794

6,404

6,132

0,50

10,137

8,531

7,841

7,156

6,479

6,089

5,816

0,55

0,038

8,245

7,555

6,870

6,193

5,803

5,531

0,60

0,029

7,983

7,294

6,610

5,933

5,544

5,273

0,65

0,023

0,122

7,052

6,368

5,694

5,306

5,036

0,70

0,018

0,096

0,206

6,140

5,467

5,082

4,814

0,75

0,015

0,078

0,164

5,917

5,248

4,866

4,600

0,80

0,013

0,064

0,134

0,294

5,026

4,649

4,388

0,85

0,011

0,054

0,111

0,239

4,785

4,418

4,166

0,90

0,009

0,046

0,094

0,199

0,463

4,145

3,912

0,93

0,008

0,042

0,085

0,179

0,408

0,750

3,723

0,95

0,008

0,039

0,080

0,168

0,377

0,671

3,556

0,97

0,007

0,037

0,075

0,157

0,350

0,607

1,056

0,98

0,007

0,036

0,073

0,153

0,337

0,580

0,971

0,99

0,007

0,035

0,071

0,148

0,326

0,555

0,903

1,00

0,007

0,034

0,069

0,144

0,315

0,532

0,847

1,01

0,007

0,033

0,067

0,139

0,304

0,510

0,799

1,02

0,006

0,032

0,065

0,135

0,294

0,491

0,757

1,05

0,006

0,030

0,060

0,124

0,267

0,439

0,656

1,10

0,005

0,026

0,053

0,108

0,230

0,371

0,537

1,15

0,005

0,023

0,047

0,096

0,201

0,319

0,452

1,20

0,004

0,021

0,072

0,085

0,177

0,277

0,389

1,30

0,003

0,017

0,033

0,068

0,140

0,217

0,298

1,40

0,003

0,014

0,027

0,056

0,114

0,174

0,237

1,50

0,002

0,011

0,023

0,046

0,094

0,143

0,194

1,60

0,002

0,010

0,019

0,039

0,079

0,120

0,168

1,70

0,002

0,008

0,017

0,033

0,067

0,102

0,137

1,80

0,001

0,007

0,014

0,029

0,058

0,088

0,117

1,90

0,001

0,006

0,013

0,025

0,051

0,076

0,102

2,00

0,001

0,006

0,011

0,022

0,044

0,067

0,089

2,20

0,001

0,004

0,009

0,018

0,035

0,053

0,070

2,40

0,001

0,004

0,007

0,014

0,028

0,042

0,056

2,60

0,001

0,003

0,006

0,012

0,023

0,035

0,046

2,80

0,000

0,002

0,005

0,010

0,020

0,029

0,039

3,00

0,000

0,002

0,004

0,008

0,017

0,025

0,033

3,50

0,000

0,001

0,003

0,006

0,012

0,017

0,023

4,00

0,000

0,001

0,002

0,004

0,009

0,013

0,017

Таблица 2.7

Состояния Ли-Кеслера

Pr

1,000

1,200

1,500

2,000

3,000

5,000

7,000

10,000

7,099

6,935

6,740

6,497

6,182

5,847

5,683

5,578

6,663

6,497

6,299

6,052

5,728

5,376

5,194

5,060

6,275

6,109

5,909

5,660

5,330

4,967

4,772

4,619

5,924

5,757

5,557

5,306

4,974

4,603

4,401

4,234

5,608

5,441

5,240

4,989

4,656

4,282

4,074

3,899

5,324

5,157

4,956

4,706

4,373

3,998

3,788

3,607

5,066

4,900

4,700

4,451

4,120

3,747

3,537

3,353

4,830

4,665

4,467

4,220

3,892

3,523

3,315

3,131

4,610

4,446

4,250

4,007

3,684

3,322

3,117

2,935

4,399

4,238

4,045

3,807

3,491

3,138

2,939

2,761

4,191

4,034

3,846

3,615

3,310

2,970

2,777

2,605

3,976

3,825

3,646

3,425

3,135

2,812

2,629

2,463

3,738

3,599

3,434

3,231

2,964

2,663

2,491

2,334

3,569

3,444

3,295

3,108

2,860

2,577

2,412

2,262

3,433

3,326

3,193

3,023

2,790

2,520

2,362

2,215

3,259

3,188

3,081

2,932

2,719

2,463

2,312

2,170

3,142

3,106

3,019

2,884

2,682

2,436

2,287

2,148

2,972

3,010

2,953

2,835

2,646

2,408

2,263

2,126

2,178

2,893

2,879

2,784

2,609

2,380

2,239

2,105

1,391

2,736

2,798

2,730

2,571

2,352

2,215

2,083

1,225

2,495

2,706

2,673

2,533

2,325

2,191

2,062

0,965

1,523

2,328

2,483

2,415

2,242

2,121

2,001

0,742

1,012

1,557

2,081

2,202

2,104

2,007

1,903

0,607

0,790

1,126

1,649

1,968

1,966

1,897

1,810

0,512

0,651

0,890

1,308

1,727

1,827

1,789

1,722

0,385

0,478

0,628

0,891

1,299

1,554

1,581

1,556

0,303

0,372

0,478

0,663

0,990

1,303

1,386

1,402

0,246

0,299

0,381

0,520

0,777

1,088

1,208

1,260

0,204

0,247

0,312

0,421

0,628

0,913

1,050

1,130

0,172

0,208

0,261

0,350

0,519

0,773

0,915

1,013

0,147

0,177

0,222

0,296

0,438

0,661

0,799

0,908

0,127

0,153

0,191

0,255

0,375

0,570

0,702

0,815

0,111

0,134

0,167

0,221

0,325

0,497

0,620

0,733

0,087

0,105

0,130

0,172

0,251

0,388

0,492

0,599

0,070

0,084

0,104

0,138

0,201

0,311

0,399

0,496

0,058

0,069

0,086

0,113

0,164

0,255

0,329

0,416

0,048

0,580

0,072

0,094

0,137

0,213

0,277

0,353

0,041

0,049

0,061

0,080

0,116

0,181

0,236

0,303

0,029

0,034

0,042

0,056

0,081

0,126

0,166

0,216

0,021

0,025

0,031

0,041

0,059

0,093

0,123

0,162

Изотермические изменения энтропии, рассчитанные по уравнению

Значения для простого вещества

Tr

Pr

0,010

0,050

0,100

0,200

0,400

0,600

0,800

0,30

16,782

16,774

16,764

16,744

16,705

16,665

16,626

0,35

15,413

15,408

15,401

15,387

15,359

15,333

15,305

0,40

13,990

13,986

13,981

13,972

13,953

13,934

13,915

0,45

12,564

12,561

12,558

12,551

12,537

12,523

12,509

0,50

11,202

11,200

11,197

11,192

11,182

11,172

11,162

0,55

0,115

9,948

9,946

9,942

9,935

9,928

9,921

0,60

0,078

8,828

8,826

8,823

8,817

8,811

8,806

0,65

0,055

0,309

7,832

7,829

7,824

7,819

7,815

0,70

0,040

0,216

0,491

6,951

6,945

6,941

6,937

0,75

0,029

0,156

0,340

6,173

6,167

6,162

6,158

0,80

0,022

0,116

0,246

0,578

5,475

5,468

5,462

0,85

0,017

0,088

0,183

0,408

4,853

4,841

4,832

0,90

0,013

0,068

0,140

0,301

0,744

4,269

4,249

0,93

0,011

0,058

0,120

0,254

0,593

1,219

3,914

0,95

0,010

0,053

0,109

0,228

0,517

0,961

3,697

0,97

0,010

0,048

0,099

0,206

0,456

0,797

1,570

0,98

0,009

0,046

0,094

0,196

0,429

0,734

1,270

0,99

0,009

0,044

0,090

0,186

0,405

0,680

1,098

1,00

0,008

0,042

0,086

0,177

0,382

0,632

0,977

1,01

0,008

0,040

0,082

0,169

0,361

0,590

0,883

1,02

0,008

0,039

0,078

0,161

0,342

0,552

0,807

1,05

0,007

0,034

0,069

0,140

0,292

0,460

0,642

1,10

0,005

0,028

0,055

0,112

0,229

0,350

0,470

1,15

0,005

0,023

0,045

0,091

0,183

0,275

0,361

1,20

0,004

0,019

0,037

0,075

0,149

0,220

0,286

1,30

0,003

0,013

0,026

0,052

0,102

0,148

0,190

1,40

0,002

0,010

0,019

0,037

0,072

0,104

0,133

1,50

0,001

0,007

0,014

0,027

0,053

0,076

0,097

1,60

0,001

0,005

0,011

0,021

0,040

0,057

0,073

1,70

0,001

0,004

0,008

0,016

0,031

0,044

0,056

1,80

0,001

0,003

0,006

0,013

0,024

0,035

0,044

1,90

0,001

0,003

0,005

0,010

0,019

0,028

0,036

2,00

0,000

0,002

0,004

0,008

0,016

0,023

0,029

2,20

0,000

0,001

0,003

0,006

0,011

0,016

0,021

2,40

0,000

0,001

0,002

0,004

0,008

0,012

0,015

2,60

0,000

0,001

0,002

0,003

0,006

0,009

0,012

2,80

0,000

0,001

0,001

0,003

0,005

0,008

0,010

3,00

0,000

0,001

0,001

0,002

0,004

0,006

0,008

3,50

0,000

0,000

0,001

0,001

0,003

0,004

0,006

4,00

0,000

0,000

0,001

0,001

0,002

0,003

0,005

Таблица 2.8

Состояния Ли-Кеслера

Pr

1,000

1,200

1,500

2,000

3,000

5,000

7,000

10,000

16,586

16,547

16,488

16,390

16,195

15,837

15,468

14,925

15,278

15,251

15,211

15,144

15,011

14,751

14,496

14,153

13,896

13,877

13,849

13,803

13,714

13,541

13,376

13,144

12,496

12,482

12,462

12,430

12,367

12,248

12,145

11,999

11,153

11,143

11,129

11,107

11,063

10,985

10,920

10,836

9,914

9,907

9,897

9,882

9,853

9,806

9,769

9,732

8,799

8,794

8,787

8,777

8,760

8,736

8,723

8,720

7,810

7,807

7,801

7,794

7,784

7,779

7,785

7,811

6,933

6,930

6,926

6,922

6,919

6,929

6,952

7,002

6,155

6,152

6,149

6,147

6,149

6,174

6,213

6,285

5,458

5,455

5,453

5,452

5,461

5,501

5,555

5,648

4,826

4,822

4,820

4,822

4,839

4,898

4,969

5,082

4,238

4,232

4,230

4,236

4,267

4,351

4,442

4,578

3,894

3,885

3,884

3,896

3,941

4,046

4,151

4,300

3,658

3,647

3,648

3,669

3,728

3,851

3,966

4,125

3,406

3,391

3,401

3,437

3,517

3,661

3,788

3,957

3,264

3,247

3,268

3,318

3,412

3,569

3,701

3,875

3,093

3,082

3,126

3,195

3,306

3,477

3,616

3,796

2,399

2,868

2,967

3,067

3,200

3,387

3,532

3,717

1,306

2,513

2,784

2,933

3,094

3,297

3,450

3,640

1,113

1,655

2,557

2,790

2,986

3,209

3,369

3,565

0,820

0,831

1,443

2,283

2,655

2,949

3,134

3,348

0,577

0,640

0,618

1,241

2,067

2,534

2,767

3,013

0,437

0,489

0,502

0,654

1,471

2,138

2,428

2,708

0,343

0,385

0,412

0,447

0,991

1,767

2,115

2,430

0,226

0,254

0,282

0,300

0,481

1,147

1,569

1,944

0,158

0,178

0,200

0,220

0,290

0,730

1,138

1,544

0,115

0,130

0,147

0,166

0,206

0,479

0,823

1,222

0,086

0,098

0,112

0,129

0,159

0,334

0,604

0,969

0,067

0,076

0,087

0,102

0,127

0,248

0,456

0,775

0,053

0,060

0,070

0,083

0,105

0,195

0,355

0,628

0,043

0,049

0,057

0,069

0,089

0,160

0,286

0,518

0,035

0,040

0,048

0,058

0,077

0,136

0,238

0,434

0,025

0,029

0,035

0,043

0,060

0,105

0,178

0,322

0,019

0,022

0,027

0,034

0,048

0,086

0,143

0,254

0,015

0,018

0,021

0,028

0,041

0,074

0,120

0,210

0,012

0,014

0,018

0,023

0,035

0,065

0,104

0,180

0,010

0,012

0,015

0,020

0,031

0,058

0,093

0,158

0,007

0,009

0,011

0,015

0,024

0,046

0,073

0,122

0,006

0,007

0,009

0,012

0,020

0,038

0,060

0,100

Одной из статистических поправок, которые необходимо учитывать при расчете энтропии вещества методом Бенсона, является поправка к вращательной энтропии на симметрию молекул. При этом полное число симметрии молекулы (total - общий) разбивают на два слагаемых:

на число симметрии наружного вращения молекулы в целом - (наружное - external) и

число симметрии вращающейся части молекулы или число симметрии внутреннего вращения (внутреннее - internal). Полное число симметрии () является произведением всех чисел симметрии молекулы:

. (2.7)

Число симметрии наружного вращения можно определить как число положений, которые может занимать жесткая многоатомная молекула (“жесткий ротатор”), совпадая при вращении со своей первоначальной конфигурацией.

Например, в двухатомных молекулах, состоящих из двух одинаковых атомов, последние могут поменяться местами при повороте молекулы на 180 градусов. Число симметрии наружного вращения таких молекул равно 2. Молекула CH4 представляет собой тетраэдр с атомами водорода в вершинах. Простым вращением молекулы вокруг каждой из связей “углерод-водород” можно получить 12 идентичных конфигураций, т.е. число симметрии наружного вращения молекулы метана равно 12.

Простой способ расчета числа симметрии для наружного вращения молекулы состоит в перемножении чисел, определяющих степень симметрии всех независимых осей, на количество этих осей. Так, для рассмотренной молекулы метана имеем четыре независимые оси третьего порядка, каждая из которых совпадает со связью С-Н. Вокруг этих осей происходит вращение молекулы. Таким образом, число симметрии наружного вращения молекулы метана равно 12 ( = 4?3 = 12). Молекула бензола имеет шесть осей второго порядка: три из них проходят через углеродные атомы, расположенные напротив друг друга

а три делят пополам углерод-углеродные связи. Все оси симметрии проходят через центр симметрии молекулы бензола. Таким образом, число симметрии наружного вращения молекулы бензола равно 12 (= 6·2 = 12).

Если часть молекулы способна вращаться относительно остальной ее части, то симметрия вращающейся части вносит дополнительные нефиксированные положения. Это приводит к необходимости введения второго числа симметрии - .

Так, полное число симметрии молекул нормальных алканов равно 18 ( = = 2·9 = 18), где 2 - число симметрии наружного вращения молекулы по оси второго порядка, перпендикулярной основной цепи углерод-углеродных связей, а 9 - произведение чисел симметрии двух концевых метильных групп, каждая из которых имеет ось вращения третьего порядка.

Для молекул разветвленных углеводородов с количеством метильных групп, равным “n”, число симметрии внутреннего вращения составляет , а общее число симметрии будет равно и может принимать весьма большие значения. Например, для неопентана (2,2-диметилпропана) где 12 - число симметрии наружного вращения молекулы, 3 - ось симметрии третьего порядка в метильных группах, 4 - количество метильных групп в молекуле.

При расчете энтропии органических соединений других классов необходимо учитывать возможность заторможенного вращения прочих структурных фрагментов. Например, в молекулах ароматических углеводородов ось симметрии второго порядка имеют незамещенный фенил (C6H5 -) и пара-фенилен (-С6H4-).

Дать графическую зависимость изотерм и выполнить их анализ. Указать фазовые состояния окиси этилена при рассматриваемых параметрах. Критические температура, давление и ацентрический фактор окиси этилена соответственно равны 469 К, 71 атм и 0,200.

Решение

1. Рассчитываются при интересующих температурах. Поскольку последние попадают в интервал, рассмотренный в примере 2.4, и на каждом из участков возможна линейная интерполяция теплоемкостей окиси этилена, то корректной будет и линейная интерполяция вычисленных в примере 2.4 значений . Таким образом, имеем

= (288,86-274,12)/10062,8+274,12 = 283,38 Дж/(мольК).

Аналогично при температурах 304,85, 422,10 и 492,45 К имеем соответственно 243,52, 262,13 и 272,96 Дж/(мольК).

2. Рассчитываются приведенные температуры:

= 304,85/469 = 0,65; = 422,10/469 =0,90; = 492,45/469 =1,05;  = 562,80/469 = 1,20.

3. При полученных приведенных температурах и значениях приведенных давлений вычисляются значения c помощью таблиц Ли-Кеслера и рассчитанных величин .

Для и = 3,55 атм имеем

= 243,52 - ( -ln(1/3,55)+(0,122+0,20,309))8,31441 = 231,5 Дж/(мольК).

Фрагмент результатов расчета приведен в табл. 2.9 и 2.10, где жирным шрифтом выделены сведения, относящиеся к жидкому состоянию окиси этилена.

Рис. 2.2. Зависимость энтропии окиси этилена от давления

4. Зависимость от давления при избранных температурах приведена на рис. 2.2. Характер полученных графических зависимостей различен для изотерм, принадлежащих жидкому и газообразному состояниям вещества. Энтропия жидкости в меньшей степени зависит от давления, чем энтропия газа, что очевидно. Для докритической изотермы резкое изменение энтропии сопряжено с изменением фазового состояния вещества.

Таблица 2.9

при приведенном давлении,

при приведенном давлении,

0,010

0,050

0,100

0,200

0,400

0,010

0,050

0,100

0,200

0,400

0,65

0,023

0,122

7,052

6,368

5,694

0,055

0,309

7,832

7,829

7,824

0,90

0,009

0,046

0,094

0,199

0,463

0,013

0,068

0,14

0,301

0,744

1,05

0,006

0,030

0,060

0,124

0,267

0,007

0,034

0,069

0,140

0,292

1,20

0,004

0,021

0,042

0,085

0,177

0,004

0,019

0,037

0,075

0,149

Таблица 2.10

, Дж/(мольК), при давлении, атм

T, K

0,71

3,55

7,1

14,2

28,4

42,6

56,8

71

85,2

106,5

304,85

246,1

231,5

155,6

155,5

155,3

155,2

155,1

154,9

154,8

154,6

422,10

264,9

251,1

244,8

237,9

229,2

189,4

188,9

188,6

188,2

187,7

492,45

275,7

262,1

256,0

249,6

242,4

237,3

232,8

228,1

222,0

212,4

562,80

286,2

272,6

266,7

260,5

253,8

249,5

246,1

243,1

240,4

236,5

Таким образом, при увеличении давления энтропия веществ, находящихся в газообразном состоянии, уменьшается, поскольку возрастает упорядоченность системы.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.