Методы анализа растворов и солей

Анализ фильтрата, полученного путем выщелачивания серпентинита двадцатипроцентной соляной кислотой. Определение содержания оксида магния, Fe3+ и кислотности. Анализ полученного кремеземистого остатка. Методика проведения анализа аморфного кремнезема.

Рубрика Химия
Вид лабораторная работа
Язык русский
Дата добавления 07.02.2011
Размер файла 19,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Исходное сырье и материалы

В эксперименте использовалась соляная кислота концентрацией 36% и плотностью 1,178 г/см3 марки «х. ч.» и серпентинит Киембаевского месторождения с технологического потока ПО «Оренбургасбест», имеющий следующий химический состав (% масс): MgO - 40,62; SiO2 - 35,20; Fe2O3 - 9,49; ППП - 13,57; Al2O3 - 0,68; СaO - 0,57; Cr2O3 - 0,21; NiO - 0,19; MnO - 0,10; CoO - 0,01.

Химический анализ выполнен лабораторией ЦНИИ Геолнеруда.

Минералогический состав представлен следующими минералами (% масс): хризотил - 60,0; лизардит - 10,0-13,0; антигорит - 2,0-3,0; немалит - 9,0; магнезит ~ 2,5; магнетит - 4-5.

В ходе данного эксперимента использовался серпентинит фракцией -0,63+0,14 мм.

При проведении экспериментов и анализов исходного сырья и продуктов использовались растворы, приготовленные из реактивов, приведенных в таблице 3.1.

Все растворы приготавливались с использованием дистиллированной воды ГОСТ 6709 - 72.

Таблица 1 - Реактивы, используемые для приготовления растворов.

Название

Хим. формула

ГОСТ

Сульфосалициловая кислота

C7H6O6S*2H2O

4478-68

Двунатриевая соль этилендиаминтетрауксусной кислоты, комплексона ІІІ

( Трилон Б )

C10H14O8N2Na2*2H 2O

10652-73

Парадиметиламинобензол сульфокислый Na

(Метиловый оранжевый)

C14H14N3O3SNa

10816-64

Натр едкий

NaOH

4328-77

Аммиачно-буферный раствор

NH4Cl

NH4OH

3773-72

3760-79

Mетодика проведения эксперимента [1,2]

Перед началом опыта в реактор, который представляет собой цилиндрический стакан с эллиптическим днищем (V=450 мл), вносили рассчитанное количество необожженного серпентинита, заливали рассчитанным количеством дистиллированной воды и добавляли концентрированную кислоту небольшими порциями при постоянном перемешивании стеклянной палочкой. Затем раствор герметизировали и помещали в нагретый до 90° термостат. Далее устанавливали частоту вращения мешалки такую, чтобы суспензия находилась во взвешенном состоянии (мешалка 4-х лопастная с наклонными лопастями).

Через 2,5 часа эксперимент прекращали, суспензию фильтровали на вакуум-фильтре. Фильтрат переносили в бюкс, взвешивали и анализировали в нем содержание MgCl2, FeCl3, HCI. Осадок промывали горячей дистиллированной водой (порциями по 100 мл) до отрицательной пробы на Cl- - ионы по AgNO3 (800-1000 см3).

Промытый осадок высушивали в сушильном шкафу при температуре 110-120°С в течение 2 часов, взвешивали и анализировали на содержание в нем SiO2, влажность и ППП.

Методика проведения анализа фильтрата [3]

Взвешивали бюкс, бюкс с фильтратом (10 мл), переливали в стакан и добавляли 20-30 мл дистиллированной воды и 1 мл HNO3 (конц) (для перевода Fe2+ в Fe3+). Нагревали до 100°С и держали 10-15 минут. По каплям добавляли NH3 (1:1), перемешивая до появления бурых оксидов Fe(OH)3, до легкого неисчезающего запаха аммиака. Осадок отстаивался на водяной бане при 70-80°С не менее получаса.

Раствор из стакана декантировали на беззольный фильтр и фильтровали в мерную колбу. Остаток раствора вместе с осадком переносили на фильтр. Стакан и палочку несколько раз промывали горячей водой (не менее 5-6 раз). Объем раствора в мерной колбе после охлаждения доводили до метки.

Определение содержания MgO

Из мерной колбы отбирали пипеткой 10 мл раствора и помещали в коническую колбу, приливали 10 мл аммиачно-буферного раствора, 100 мл дистиллированной воды (~70°С), добавляли индикатор кислотный хром синий и титровали 0,05 М раствором трилона Б при сильном перемешивании до голубой окраски.

Расчет вели по формуле:

СMg2+=[V*(N*K)*Э*VK/m*Vn*1000]*100,% (1)

где V - объем трилона Б, пошедшего на титрование анализируемого раствора, мл;

Э - эквивалент MgCl2 (Э=47,6052);

N - нормальность трилона Б;

К - поправочный коэффициент трилона Б;

VК - объем мерной колбы, см3;

Vn - объем пипетки, см3;

m - масса навески фильтрата, г.

Определение содержания Fe3+

Осадок с фильтром смывали водой в стакан, в котором велось осаждение. Частицы осадка на фильтре растворяли 20 мл HCl (1:1). Раствор из стакана фильтровали и количественно переносили в мерную колбу на 250 мл и доводили водой до метки.

Из мерной колбы пипеткой отбирали 50 мл раствора и переносили в коническую колбу. Доливали 50 мл дистиллированной воды и нейтрализовали NH3 (1:1) до pH=4ч5 по универсальной индикаторной бумаге. Раствор подогревали до 40-60°С. Добавляли 5 мл HCl (1:4) и индикатор - 5 капель 10%-го раствора сульфосалициловой кислоты, и титровали 0,05 М трилоном Б до зеленовато-желтой окраски.

Расчет вели по формуле:

СFe3+= [V*(N*K)*Э*VK/m*Vn*1000]*100,% (2)

где V - объем трилона Б, пошедшего на титрование анализируемого раствора, мл;

Э - эквивалент FeCl3 (Э=54,0677);

N - нормальность трилона Б;

К - поправочный коэффициент трилона Б;

VК - объем мерной колбы, см3;

Vn - объем пипетки, см3;

m - масса навески фильтрата, г.

Определение кислотности

Из мерной колбы отбирали пипеткой 10 мл раствора, добавляли индикатор метил-оранжевый и титровали 0,1 М NaOH до перехода окраски из красной в оранжевую.

Расчет вели по формуле:

фильтрат выщелачивание серпентинит кремнезем аморфный

СH+=[V*(M*K)*Э*VK/m*Vn*1000]*100,% (3)

где где V - объем NaOH, пошедшего на титрование анализируемого раствора, мл;

Э - эквивалент HCl (Э=36,4606);

M - молярность раствора NaOH, М;

К -коэффициент молярности NaOH;

VК - объем мерной колбы, см3;

Vn - объем пипетки, см3;

m - масса навески фильтрата, г.

Методика проведения анализа аморфного кремнезема [1]

Oпределение нерастворимого в HCl остатка ( SiO2)

Взвешивали навеску промытого и высушенного осадка 1 г с точностью 0,2 мг и переносили в стакан. Добавляли 150 см3 5%-ного раствора HCl и нагревали при температуре 90 - 100°С в течение 3 часов при постоянном перемешивании. Стеклянную палочку постоянно держали в стакане, который накрывали часовым стеклом.

После 3-х часов и уменьшения объема раствора до 30 - 40 см3 суспензию количественно переносили в выпарную чашку и упаривали досуха (~2 часа). После этого чашку с сухим остатком накрывали часовым стеклом, через носик чашки по каплям вводили 15 см3 концентрированной HCl и оставляли на 10-15 минут на водяной бане, затем горячий раствор фильтровали через беззольный фильтр в стакан. Чашку обмывали на фильтр и осадок промывали до исчезновения реакции на Cl- ион (7 ступеней).

Фильтр с осадком помещали в предварительно прокаленный и взвешенный тигель и прокаливали при 800°С в течении не менее 2-х часов. После прокаливания тигель с навеской охлаждали в эксикаторе. Осажденный осадок взвешивали с точностью 0,2 мг.

Содержание нерастворимого в HCl остатка считали по формуле:

Х=(mост/mнав)*100,% (4)

где Х - содержание нерастворимого в HCl остатка, %;

mост - масса нерастворимого остатка после прокаливания, г;

mнав - масса навески, г.

ППП (потери при прокаливании)

Форфоровый тигель предварительно прокаливали до постоянной массы при температуре 900°С , не менее 2-х часов, остужали в эксикаторе и взвешивали. Взвешивали с 1 г серпентинита с точностью 0,2 мг и прокаливали при 900°С в течении 3-х часов.

Расчет вели по формуле:

ППП=[(mт1)-(mт2)]/[(mт1)-mт]*100,% (5)

где mт - масса тигеля, г;

н1 - масса серпентинита до прокаливания, г;

н2 - масса серпентинита после прокаливания, г.

Результаты экспериментов и их обсуждение

Результаты экспериментов приведены в таблицах 2-4.

Таблица 2 - Результаты анализа фильтрата, полученного путем выщелачивания серпентинита 20-ти %-ной соляной кислотой

Температура,?С

Время выщелачивания,мин

Промывные воды

Содержание

Mg2+,%

Степень извлечения

Mg2+ ,%

Содержание

Fe3+,%

Степень извлечения

Fe3+,%

Остаточная кислотность,

%

Температура,

Объем, мл

90

180

55-60

1000

2,01

58

5,56

90

180

60-65

900

2,06

58

5,03

95

210

+6 дней

60-65

900

17,52

95

2,98

85

4,65

95

210

70-75

800

17,79

96

1,39

38

4,49

90

180

80-85

750

17,86

97

1,38

38

4,67

Таблица 3 - Результаты анализа полученного кремеземистого остатка

Температура,

Промывные воды

Время выщелачивания,

мин

Нерастворимый в HCl

остаток,%

Потери при прокаливании,

%

Температура,

Объем,

мл

90

55-60

1000

180

82,19

39,69

90

60-65

900

180

70,89

36,37

95

60-65

900

210+6 дней

95

70-75

800

210

83,38

39,08

90

80-85

750

180

85,41

39,05

Для подбора оптимальных условий выщелачивания, при которых из серпентинита максимально извлекаются все ценные компоненты, необходимо изучить в отдельности действие всех факторов на процесс выщелачивания и установить их оптимальные пределы.

В ходе данной работы мы исследовали влияние температуры и времени выщелачивания на степень извлечения магния и железа. Как видно из полученных данных, повышение температуры на 5°С и времени выщелачивания на 30 минут не сильно влияют на степень извлечения магния и железа, поэтому можно проводить эксперименты при следующих условиях: температура 90°С, время выщелачивания 180 минут и концентрация HCl 20%. В ходе нашего эксперимента мы достигли высоких степеней извлечения Mg2+(97%), но не добились высоких степеней извлечения Fe3+(max 85%). Возможно, это связано с тем, что брусит, содержащий Mg2+, легко растворяется в HCl, а растворимость магнетита, в котором содержится железо, уменьшается в ряду H3PO4, H2SO4, HCl, HNO3. Вследствие этого Fe3+ плохо переходит в раствор, поэтому степень извлечения его низкая.

Что касается промывки полученного кремнеземистого остатка, то повышение температуры промывных вод сокращает число операций промывки и уменьшает количество промывных вод.

Если говорить о кремнеземистом остатке, то ППП исходного серпентинита составляют 13,57%, а ППП полученного кремнезема составляют, в среднем, 39%.

ППП для серпентинита - это потеря кристаллизационной воды из кристаллической решетки. Для исследуемого аморфного кремнезема ППП - это потеря адсорбированной в порах аморфного оксида кремния (SiO2) воды. Поскольку значения ППП получились очень высокими, то можно предположить, что полученный аморфный кремнезем очень крупнопористый. Исследуя таблицу 3 можно сделать вывод, что увеличение температуры и времени выщелачивания не влияет на ППП кремнеземистого остатка.

Список литературы

1. Методы анализа рассолов и солей / Под ред. Ю.В. Морачевского, Е.М. Петровой. - М.: Химия, 1964. - 406 с.

2. Перельман В.И. Краткий справочник химика / В.И. Перельман. - М.: Химия, 1964.- 295 с.

3. Коростелев П.П. Приготовление растворов для химико-аналитических работ / П.П. Коростелев. - М.: Наука, 1964. - 398с.

Размещено на http://www.allbest.ru/


Подобные документы

  • Понятие, состав и ключевые методы добычи нефти. Основные источники солей в нефти. Кондуктометрический метод определение количества солей в топливе. Спектральный метод анализа. Диэлькометрический и радиоизотопный методы измерения солесодержания в нефти.

    презентация [873,3 K], добавлен 19.02.2016

  • Порядок и этапы проведения анализа четырех неизвестных растворов на основе характерных реакций. Определение роли и значения в организме химических элементов: натрия, бария, кальция, свинца, магния, хрома, марганца и ртути, характер влияния на человека.

    практическая работа [105,3 K], добавлен 11.04.2012

  • Хроматографический и оптический методы анализа. Определение состава смеси органических спиртов, содержания ионов металлов в растворе, содержания лактозы (сахарозы). Определение содержания карбоната и гидрокарбоната в смеси методом прямого титрования.

    методичка [418,5 K], добавлен 13.11.2009

  • Зависимость аналитического сигнала от содержания определяемого вещества. Примеры инструментальных методов анализа. Типичные градуировочные графики для инструментальных методов кондуктометрического анализа. Электропроводность растворов электролитов.

    методичка [348,5 K], добавлен 19.03.2012

  • Особенности строения и модификации оксида кремния (IV), нахождение в природе, физические и химические свойства, а также методы синтеза. Поликонденсация как современный способ получения коллоидного кремнезема. Агрегативная устойчивость данного соединения.

    дипломная работа [987,2 K], добавлен 25.05.2019

  • Определение относительного содержания изотопов плутония путем анализа спектров, количественного соотношения содержания изотопов по идентифицированным линиям. Оценка нахождения провалов и линейных участков спектра. Расчет погрешности содержания.

    курсовая работа [295,7 K], добавлен 23.08.2016

  • Классификация методов титриметрического анализа. Посуда в титриметрическом анализе и техника работы с ней. Способы выражения концентрации растворов. Взаимосвязь различных способов выражения концентрации растворов. Молярная концентрация эквивалента.

    реферат [40,8 K], добавлен 23.02.2011

  • Использование новых методов определения содержания элементов. Пламенно-фотометрический, атомно-абсорбционный, спектральный, активационный, радиохимический и рентгенофлуоресцентый методы анализа. Проведение качественного анализа образца минерала.

    курсовая работа [1,4 M], добавлен 03.05.2012

  • Сбор и сушка лекарственных растений, сохранение полученного из них сырья и приготовление лекарственных форм. Методы анализа лекарственных средств. Получение водного экстракта силибина субкритической водой и оценка растворимости его сухого экстракта.

    курсовая работа [296,6 K], добавлен 05.06.2011

  • Органолептические методы анализа вкуса и запаха питьевой воды. Расчет массы сухого остатка и водородного показателя. Изучение концентрации нитратов, фторидов, хлоридов. Определение цветности, содержания железа, щелочности, жесткости и окисляемости воды.

    курсовая работа [93,0 K], добавлен 26.01.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.