Определение свинца в растительности городской зоны
Содержание свинца в природных объектах, источники загрязнения, оценка токсичности соединений. Количественное определение металла, осадительные и титриметрические методы. Используемые инструменты и реактивы, проведение эксперимента и анализ результатов.
Рубрика | Химия |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 24.06.2015 |
Размер файла | 86,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
Размещено на http://www.allbest.ru/
Курсовая работа
Определение свинца в растительности городской зоны
Введение
свинец титриметрический металл реактив
Свинец является отравляющим веществом, накопление которого влияет на целый ряд систем организма и которое особенно вредно для детей младшего возраста.
По оценкам, воздействие свинца в детском возрасте является одним из факторов, вызывающих ежегодно порядка 600 000 новых случаев развития у детей нарушений умственной деятельности.
По оценкам, воздействие свинца вызывает 143 000 смертей в год, причем самое тяжелое бремя отмечается в развивающихся регионах.
В организме свинец попадает в мозг, печень, почки и кости. Со временем свинец накапливается в зубах и костях. Воздействие на людей, как правило, определяется при помощи определения содержания свинца в крови.
Не существует какого-либо известного уровня воздействия свинца, который считается безопасным.
Основными источниками загрязнения свинцом являются автомобильный транспорт, использующий свинец - содержащий бензин, металлургические предприятия, источники дыма, такие как тепловые электростанции и прочее.
Растения поглощают свинец из почв и воздуха.
Они выполняют полезную для человека роль, выступая адсорбентами свинца, находящегося в почве и в воздухе. Пыль, содержащая свинец, накапливается на растениях, не распространяясь.
Согласно данным содержания подвижных форм тяжелых металлов в растениях можно судить о загрязненности ими определенного пространства.
В данной курсовой работе исследуется содержание свинца в растительности городской зоны.
1. Литературный обзор
Литературный обзор выполнен на основе книги «Аналитическая химия элементов. Свинец».
1.1 Общие сведения о свинце
Свинемц (лат. Plumbum; обозначается символом Pb) - элемент 14-й группы (поустаревшей классификации - главной подгруппы IV группы), шестого периодической системы химических элементов Д.И. Менделеева, с атомным номером 82 и, таким образом, содержит магическое число протонов. Простое вещество свинец (CAS-номер: 7439-92-1) - ковкий, сравнительно легкоплавкий металл серебристо-белого цвета с синеватым отливом. Известен с глубокой древности.
Атом свинца имеет электронную структуру 1s2 2s2 p6 3s2 p6 d10 4s2 p6 d10 f14 5s2 p6 d10 6s2 p2. Атомная масса принимается равной 207,2, однако возможны ее колебания на 0,03 - 0,04 у.ч.
Свинец является составной частью более 200 минералов, но только три из них (галенит, англезит, церуссит) находятся в природе в виде промышленных залежей свинцовых руд. Самым важным из них является галенит PbS (86,5% Pb).
Под действием веществ, растворенных в природных водах, и при выветривании он переходит в англезит PbSO4 (63,3% Pb), который в результате двойного обмена с карбонатами кальция и магния образует церуссит PbCO3 (77,5% Pb).
По объему промышленного производства свинец занимает четвертое место в группе цветных металлов, уступая только алюминию, меди и цинку.
Для получения свинца наибольшее значение имеют полиметаллические сульфидные и смешанны руды, так как чисто свинцовые руды встречаются редко.
Он применяется в целях радиационной защиты, в качестве конструкционного материала в химической промышленности, для изготовления защитных покрытий электрических кабелей и электродов аккумуляторов. Большие количества свинца идут на изготовление разнообразных сплавов: с висмутом (теплоноситель в ядерной технологии), с оловом и небольшими добавками золота и меди (припои для изготовления печатных схем), с сурьмой, оловом и другими металлами (припои и сплавы типографского и антифрикционногоназначения). Способность к образованию интерметаллических соединений используют для получения теллурида свинца, из которого готовят детекторы ИК-лучей и преобразователи тепловой энергии излучения в электрическую. Большая доля свинца идет на синтез металлоорганических соединений.
Многие свинец - содержащие органические соединения являются продуктами «малой» химии, но имеют большое практическое значение. К их числу относятся стеарат и фталат свинца (термо- и светостабилизаторы пластмасс), основной фумарат свинца (термостабилизатор для электрических изоляторов и вулканизирующий агент для хлорсульфополиэтилена), диамилдитиокарбамат свинца (многофункциональная добавка к смазочным маслам), этилендиаминтетраацетат свинца (рентгеноконтрастный препарат), тетраацетат свинца (окислитель в органической химии). Из числа практически важных неорганических соединений можно назвать оксид свинца (идущий на производство стекол с высоким показателем преломления, эмалей, аккумуляторных батарей и высокотемпературных смазок); хлорид свинца (изготовление источников тока); основной карбонат, сульфат и хромат свинца, сурик (компоненты красок); титанат - цирконат. свинца (производство пьезоэлектрической керамики). Нитрат свинца применяют в качестве титранта.
Исключительное разнообразие и важность упомянутых областей применения свинца стимулировали разработку многочисленных методов количественного анализа различных объектов. 1.2. Содержание свинца в природных объектах
Земная кора содержит 1,6*10-3% по массе РЬ. Космическая распространенность этого элемента, согласно данным различных авторов, варьирует от 0,47 до 2,9 атомов на 106 атомов кремния. Для Солнечной системы соответствующая величина составляет 1,3 атома на 106 атомов кремния.
В высокой концентрации свинец содержится во многих минералах и рудах, в микро- и ультрамикроколичествах - практически во всех объектах окружающего мира.
Содержание свинца в атмосфере зависит от места и времени отбора проб, а также от условий погоды. В среднем в воздухе промышленных городов содержится 2,5-4,5 мкг Pb/м3, в воздухе сел - 0,5 мкг/м3.
Прочие объекты содержат свинца (% массе); дождевая вода - (6-29) *10-27, воды открытых источников - 2 * 10-8, морские воды - 1,3 воды открытого океана на поверхности - 1,4*10-9, на глубине 0,5 и 2 км - соответственно 1,2*10-9 и 2* 10-10, граниты, черный сланец, базальты - (1 - 30)*10-4, осадочные глинистые минералы - 2*10-3, вулканические породы Тихоокеанского пояса - 0,9*10-4, фосфориты - от 5*10-4 до 3*10-2.
Бурый уголь - от 10-4 до 1,75*10-2, нефть - 0,4 4 *10-4, метеориты - от 1,4*10-4 до 5,15*10-2.
Растения: среднее содержание - 1*10-4, в районах свинцовых оруднений - 10-3, продукты питания 16*10-6, грибы-дождевики, собранные вблизи автострады - 5,3*10-4, зола: лишайников - 10-1, хвойных деревьев - 5*10-3, лиственных деревьев и кустарников - до3*10-3. Общее содержание свинца (в тоннах): в атмосфере - 1,8*104, в почвах - 4,8*109, в осадочных отложениях -48*1012, в водах океанов - 2,7*107, в водах рек и озер - 6,1*10-4, в подпочвенных водах - 8,2*104, в организмах воды и суши: живущих - 8,4*104, отмерших - 4,6*106.
1.2 Источники загрязнения свинцом
Источники поступления свинца в различные сферы обитания человека и животных подразделяются на природные (извержения вулканов, пожары, разложение умерших организмов, морская и ветровая пыль) и антропогенные (деятельность свинец производящих и перерабатывающих предприятий, сжигание ископаемого топлива и отходов его переработки).
По масштабам выброса в атмосферу свинец занимает первое место среди микроэлементов.
Значительная часть свинца, содержащегося в каменном угле, при сжигании вместе с дымовыми газами поступает в атмосферу. Деятельность только одной ТЭЦ, потребляющей в сутки 5000 т угля, ежегодно направляет в воздух 21т свинца и соизмеримые количества других вредных элементов. Немалый вклад в загрязнение атмосферы свинцом вносят производства металлов, цемента и т.д.
Атмосфера загрязняется не только стабильными, но и радиоактивными изотопами свинца. Их источником являются радиоактивные инертные газы, из которых наиболее долгоживущий - радон достигает даже стратосферы. Образующийся свинец частично возвращается на землю с атмосферными осадками и аэрозолями, загрязняя поверхность почвы и водоемы.
1.3 Токсичность свинца и его соединений
Свинец является ядом, действующим на все живое. Он и его соединения опасны не только болезнетворным действием, но также кумулятивностью терапевтического эффекта, высоким коэффициентом накопления в организме, малой скоростью и неполнотой выделения с продуктами жизнедеятельности. Факты о опасности свинца:
1. Уже при концентрации 10-4% в почве свинец угнетает активность ферментов, причем особенно вредны в этом отношении хорошо растворимые соединения.
2. Присутствие в воде 2*10-5% свинца вредно для рыб.
3. Даже низкие концентрации свинца в воде уменьшают количество каротиноида и хлорофилла у водорослей.
4. Зарегистрировано множество случаев профессиональных заболеваний у работающих со свинцом.
5. По результатам 10-летней статистики установлена корреляция между числом смертельных исходов от заболевания раком легких и повышенным содержанием свинца и других металлов в воздухе районов промышленных предприятий, потребляющих уголь и нефтепродукты.
Степень токсичности зависит от концентрации, физико-химического состояния и природы соединений свинца. Особенно опасен свинец в состоянии молекулярно-ионной дисперсности; он проникает из легких в кровеносную систему и оттуда транспортируется по всему организму. Хотя качественно свинец и его неорганические соединения действуют сходно, токсичность растет симбатно их растворимости в биологических жидкостях организма. Это не умаляет опасность труднорастворимых соединений, изменяющихся в кишечнике с последующим повышением их всасываемости.
Свинец подавляет многие ферментативные процессы в организме. При свинцовой интоксикации наступают серьезные изменения в нервной системе, нарушаются терморегуляция, кровообращение и трофические процессы, изменяются иммунобиологические свойства организма и его генетический аппарат.
1.4 Осадительные и титриметрические методы
1. Гравиметрический метод- используется образование весовых форм свинца с органическими и неорганическими реагентами. Среди неорганических предпочтение отдается сульфату и хромату свинца. Методы, основанные на их осаждении, сравнимы по селективности и величине фактора пересчета, но определение РЬ в виде хромата требует меньшего расхода времени. Оба осадка рекомендуется получать методами «гомогенного» осаждения
Органические реагенты дают весовые формы, пригодные для определения меньших количеств РЬ, с более благоприятными факторами пересчета, чем у хромата или сульфата свинца.
Преимущества метода: кристалличность осадка и высокая точность результатов при отсутствии мешающих примесей. Относительная погрешность определения 0,0554-0,2015 г. Рb < 0,3%. С применением микроаппаратуры выполнены определения 0,125-4,528 мг РЬ с относительной погрешностью < 0,8%. Однако присутствие свободной HN03 недопустимо, а содержание солей щелочных металлов и аммония должно быть возможно малым.
2. Осадительное титрование с визуальными индикаторами. Используется титрование органическими и неорганическими реагентами. При отсутствии примесных ионов, осаждаемых хроматом, наиболее удобны прямые титриметрические методы с индикацией конечной точки титрования (КТТ) по изменению окраски метилового красного или адсорбционных индикаторов. Лучшим вариантом титриметрического определения Рb хроматным методом считается осаждение РbСг04 из уксуснокислого раствора с последующим растворением осадка в 2 М НС1 или 2 М НС104, добавлением избытка иодида калия и титрованием выделившегося йода Na2 S2 03.
3. Титрование растворами ЭДТА. Ввиду универсальности ЭДТА как аналитического реагента на большинство катионов встает вопрос о повышении селективности определения Рb. Для этого прибегают к предварительному разделению смесей, введению маскирующих реагентов и регулированию реакции среды до значений рН > 3. Обычно же титруют в слабокислой или в щелочной среде.
Конечную точку титрования чаще всего индицируют с помощью металлохромных индикаторов из группы азо- и трифенилметановых красителей, производных двухатомных фенолов и некоторых других веществ, окрашенные комплексы Рb которых менее устойчивы, чем этилендиаминтетраацетат свинца. В слабокислых средах титруют по 4 - (2-пиридилазо) - резорцину, тиазолил-азо-и-крезолу, 2 - (5-бром-2-пиридилазо) - 5-диэтиламинофенолу, 1 - (2-пиридилазо) - 2-нафтолу, 2 - (2-тиазолилазо) - резорцину, азопроизводным 1-нафтол4-сульфоновой кислоты, ксиленоловому оранжевому, пирокатехиновомуфиолетовому, метилксиленоловому синему, пирогаллоловому и бромпирогаллоловому красному, метилтимоловому синему, гематоксилину, родизонату натрия, ализарину S и дитизону.
В щелочных средах применяют эриохром черный Т, сульфарсазен, 4 - (4,5 - димегил-2-тиазолилазо) - 2-метилрезорцин, смесь кислотного ализаринового черного SN и эриохром красного В, пирокатехинфталеин, солохром прочный 2 RS, метилтимоловый синий и мурексид (титрование суммарных количеств Pb и Cu).
4. Титрование другими комлексообразующими веществами. Используется образование хелатов с ДЦТА, ТТГА, серосодержащие комплексообразующие вещества.
1.5 Фотометрические методы анализа по светопоглощению и рассеиванию
1. Определение в виде сульфида. Истоки этого метода и его первой критической оценки приходятся на начало нашего 20 века. Окраска и устойчивость золя PbS зависят от размера частиц дисперсной фазы, на который влияют природа и концентрация растворенных электролитов, реакция среды и способ приготовления. Поэтому необходимо строго соблюдать эти условия.
Метод малоспецифичен, особенно в щелочной среде, но сходимость результатов в щелочных растворах лучше. В кислых растворах чувствительность определения меньше, но ее можно несколько увеличить добавлением электролитов, например NH4C1, в анализируемую пробу. Улучшить селективность определения в щелочной среде можно введением маскирующих комплексообразователей.
2. Определение в виде комплексных хлоридов. Уже было указано, что хлоркомплексы РЬ поглощают свет в УФ-области, причем молярный коэффициент погашения зависит от концентрации ионов Cl- В 6 М растворе НС1 максимумы поглощения Bi, Рb и Тl достаточно удалены друг от друга, что дает возможность их одновременного определения по светопоглощению соответственно при 323, 271 и 245 нм. Оптимальный интервал концентраций для определения Pb равен от 4-10*10-4%.
3. Определение примесей Рb в концентрированной серной кислоте основано на использовании характеристического поглощения при 195 нм по отношению к стандартному раствору, который готовят растворением свинца в H2S04 (ос. ч).
Определение с применением органических реагентов.
4. В анализе различных природных и промышленных объектов фотометрическое определение РЬ с применением дитизона благодаря его высокой чувствительности и селективности занимает ведущее место. В различных вариантах существующих методов фотометрическое определение РЬ выполняют при длине волны максимума поглощения дитизона или дитизоната свинца. Описаны другие варианты дитизонового метода: фотометрическое титрование без разделения фаз и безэкстракционный способ для определения свинца в полимерах, в котором в качестве реагента применяют раствор дитизона в ацетоне, перед использованием разбавляемый водой до концентрации органического компонента 70%.
5. Определение свинца по реакции с диэтилдитиокарбаматом натрия. Свинец хорошо экстрагируется CCl4 в виде бесцветного диэтилдитиокарбамата при различных значениях рН. Полученный экстракт используют в косвенном методе определения Рb, основанном на образовании эквивалентного количества желто-коричневого диэтилдитиокарбамата меди в результате обмена с CuS04.
6. Определение по реакции с 4 - (2-пиридилазо) - резорцином (ПАР). Высокая устойчивость красного комплекса Рb с ПАР и растворимость реагента в воде составляют достоинства метода. Для определения Рb в некоторых объектах, например в стали, латуни и бронзе, метод, основанный на образовании комплекса с этим азо-соединением, предпочтительнее дитизонового. Однако он менее селективен и потому в присутствии мешающих катионов требует предварительного разделения методом БХ или экстракции дибензилдитиокарбамата свинца четыреххлористым углеродом.
7. Определение по реакции с 2 - (5-хпорпиридип-2-азо) - 5-диэтиламинофенолом и 2 - (5-бромпиридил-2-азо) - 5-диэтиламинофенолом. Оба реагента образуют с Рb комплексы состава 1:1 с почти тождественными спектрофотометрическими характеристиками.
8. Определение по реакции с сульфарсазеном. В методе использовано образование красновато-коричневого водорастворимого комплекса состава 1: 1 с максимумом поглощения при 505-510 нм и молярным коэффициентом погашения 7,6*103 при этой длине волны и pH 9-10.
9. Определение по реакции с арсеназо 3. Этот реагент в интервале pH 4-8 образует со свинцом синий комплекс состава 1:1с двумя максимумами поглощения - при 605 и 665 нм.
10. Определение по реакции с дифенилкарбазоном. По чувствительности реакции, при экстракции хелата в присутствии KCN и по селективности он приближается к дитизону.
11. Косвенный метод определения Рb с применением дифенилкарбазида. Метод основан на осаждении хромата свинца, его растворении в 5%-ной НС1 и фотометрическом определении двухромовой кислоты по реакции с дифенилкарбазидом при использовании фильтра с максимумом пропускания при 536 нм. Метод длителен и не очень точен.
12. Определение по реакции с ксиленоловым оранжевым. Ксиленоловый оранжевый (КО) образует со свинцом комплекс состава 1:1, оптическая плотность которого достигает предела при рН 4,5-5,5.
13. Определение по реакции с бромпирогалполовым красным (БПК) в присутствии сенсибилизаторов. В качестве сенсибилизаторов, повышающих интенсивность окраски, но не влияющих на положение максимума поглощения при 630 нм, при рН 6,5 применяют хлориды дифе-нилгуанидиния, бензилтиурония и тетрафенилфосфония, а при рН 5,0 - бромиды цетилтриметиламмония и цетилпиридиния.
14. Определение по реакции с глицинтимоловым синим. Комплекс с глицинтимоловым синим (ГТС) состава 1: 2 имеет максимум поглощения при 574 нм и соответствующий ему молярный коэффициент погашения 21300 ± 600.
15. Определение с метилтимоловым синим выполняют в условиях, как для образования комплекса с ГТС. По чувствительности обе реакции приближаются друг к другу. Светопоглощение измеряют при рН 5,8-6,0 и длине волны 600 нм, которая отвечает положению максимума поглощения. Молярный коэффициент погашения равен 19 500. Помехи со стороны многих металлов устраняют маскированием.
16. Определение по реакции с ЭДТА. ЭДТА применяют в качестве титранта в безиндикаторном и в индикаторном фотометрическом титровании (ФТ). Как и в визуальной титриметрии, надежное ФТ растворами ЭДТА возможно при рН > 3 и концентрации титранта не менее 10-5 М.
Люминисцентный анализ
1. Определение РЬ с применением органических реагентов
Предложен метод, в котором измеряется интенсивность излучения хемилюминесценции в присутствии Рb за счет каталитического окисления люминола пероксидом водорода. Метод использован для определения от 0,02 до 2 мкг Рb в 1 мл воды с точностью 10%. Анализ длится 20 мин и не требует предварительной подготовки проб. Кроме Рb, реакцию окисления люминола катализируют следы меди. Значительно сложнее в аппаратурном оформлении метод, основанный на использовании эффекта тушения флуоресценции производных флуорес-132 ценна при образовании хелатов со свинцом. Более селективным в присутствии многих геохимических спутников Рb, хотя и менее чувствительным, является довольно простой метод, основанный на увеличении интенсивности флуоресценции люмогена водно-голубого в смеси диоксан-вода (1: 1) в присутствии Рb.
2. Методы низкотемпературной люминесценции в замороженных растворах. Замораживание раствора проще всего решено в методе определения свинца в НС1, основанном на фотоэлектрической регистрации зеленой флуоресценции хлоридных комплексов при -70°С.
3. Анализ по всплеску люминесценции при размораживании проб. Методы этой группы основаны на смещении спектров люминесценции при размораживании анализируемой пробы и измерении наблюдаемого при этом повышения интенсивности излучения. Длина волны максимума спектра люминесценции при -196 и - 70° С соответственно равна 385 и 490 нм.
4. Предложен метод, основанный на измерении аналитического сигнала при 365 нм в квазилинейчатом спектре люминесценции кристаллофосфора СаО-Рb, охлажденного до температуры жидкого азота. Это наиболее чувствительный из всех люминесцентных методов: если наносить активатор на поверхность таблеток (150 мг СаО, диаметр 10 мм, давление при прессовании 7-8 МН/м2), то предел определения на спектрографе ИСП-51 равен 0,00002 мкг. Метод характеризуется хорошей избирательностью: 100-кратный избыток Со, Cr(III), Fe (III), Mn(II), Ni, Sb (III) и T1 (I) не мешает определению Pb. Одновременно с Рb можно определять и Bi.
5. Определение свинца по люминесценции хлоридного комлекса, сорбированного на бумаге. В этом методе люминесцентный анализ комбинируют с отделением РЬ от мешающих элементов с помощью кольцевой бани. Определение ведется при обычной температуре.
1.6 Электрохимические методы
1. Потенциометрические методы. Используется прямое и косвенное определение свинца - титрованием с кислотно - основными, комплексонометрическими и осадительными реагентами.
2.В электрогравиметрических методах используется осаждение свинца на электродах, с последующим взвешиванием или растворением.
3. Кулонометрия и кулонометрическое титрование. В качестве титрантов используются электрогенерируемые сульфогидрильные реагенты.
4. Вольт-амперометрия. Классическая полярография, сочетающая экспрессность с довольно высокой чувствительностью, считается одним из наиболее удобных методов определения РЬ в интервале концентраций 10-s-10 М. В подавляющем большинстве работ свинец определяют по току восстановления РЬ2+ до РЬ° на ртутном капельном электроде (РКЭ), обычно протекающему обратимо и в диффузионном режиме. Как правило, катодные волны хорошо выражены, а полярографические максимумы особенно легко подавляются желатином и Тритоном Х-100.
5. Амперометрическое титрование
При амперометрическом титровании (AT) точку эквивалентности определяют по зависимости величины тока электрохимического превращения РЬ и (или) титранта при определенном значении потенциала электрода от объема титранта. Амперометрическое титрование точнее обычного полярографического метода, не требует обязательного термостатирования ячейки и в меньшей мере зависит от характеристик капилляра и индифферентного электролита. Следует отметить и большие возможности метода AT, поскольку анализ возможен по электрохимической реакции с участием как самого Рb, так и титранта. Хотя общий расход времени на выполнение AT больше, он вполне компенсируется тем, что отпадает надобность в калибровке. Используется титрование растворами дихромата калия, хлораниловой кислоты, 3,5 - диметилдимеркапто - тиопирона, 1,5-6 ис (бензилиден) - тио - карбогидразона, тиосалициламида.
1.7 Физические методы определения свинца
Свинец определяют методами атомной эмиссионной спектроскопии, атомно-флуоресцентной спектрометрии, атомно-абсорбционной спектрометрии, рентгеновскими методами, радиометрическими методами, радиохимическими и многими другими.
2. Экспериментальная часть
2.1 Метод определения
В работе используется определение свинца в виде дитизонатного комплекса.
Рисунок 1 - структура дитизона:
Максимум поглощения дитизонатных комплексов свинца-520 нм. Используется фотометрирование против раствора дитизона в CCl4.
Производится двойное озоление исследуемой пробы - сухим и «мокрым» методом.
Двойная экстракция и реакция со вспомогательными реагентами служит для отделения мешающих примесей и ионов, и повышения стабильности комплекса.
Метод обладает высокой точностью.
2.2 Приборы и реактивы
Спектрофотометр с кюветами.
Сушильный шкаф.
Муфельная печь.
Электрическая плита.
Электронные весы
Капельная воронка 100 мл.
Химическая посуда.
Навеска сухого растительного материала 3 шт. по 10 гр.
HCl.
HNO3.
0,01% раствор дитизона в CCl4.
0,02 н раствор HCl.
0,1% раствор гидроксиламина.
10% раствор желтой кровяной соли.
10% раствор лимоннокислого аммония.
10% раствор HCl.
Раствор аммиака.
Раствор соды.
Индикаторы-тимоловый синий и феноловый красный.
Стандартные растворы свинца, с его содержанием от 1,2,3,4,5,6 мкг/мл.
2.3 Приготовление растворов
1. 0,1% раствор гидроксиламина.
W=mв-ва/mр-ра=0,1%. Масса раствора - 100 гр. Тогда навеска - 0,1 гр. Растворил в 99,9 мл бидистиллированной воды.
2.10% раствор желтой кровяной соли. W=mв-ва/mр-ра=10%. Масса раствора - 100 гр. Тогда навеска - 10 гр. Растворена в 90 мл бидистиллированной воды.
3.10% раствор лимоннокислого аммония. W=mв-ва/mр-ра=10%. Масса раствора - 100 гр. Навеска - 10 гр. Растворена в 90 мл бидистиллированной воды.
4.10% раствор HCl. Приготовлен из концентрированной HCl:
Необходимо 100 мл раствора с W=10%. dконц HCl=1,19 г./мл. Следовательно, необходимо взять 26 гр концентрированной HCl, V= 26/ 1,19=21,84 мл. 21,84 мл концентрированной HCl развел до 100 мл бидистиллированной водой в мерной колбе на 100 мл до метки.
5. 0,01% раствор дитизона в CCl4. W=mв-ва/mр-ра=10%. Масса раствора - 100 гр. Тогда навеска - 0,01 гр. Растворена в 99,9 мл CCl4.
6. Раствор соды. Приготовлен из сухой Na2CO3.
7. 0,02 н раствор HCl. W=mв-ва/mр-ра=? Пересчет на массовую долю. 1 л 0,02 н раствора HCl содержит 0,02*36,5= 0,73 гр раствора HCl. dконц HCl=1,19 г./мл. Следовательно, необходимо взять 1,92 гр концентрированной HCl, объем = 1,61 мл. 1,61 мл концентрированной HCl развел до 100 мл бидистиллированной водой в мерной колбе на 100 мл до метки.
9. Раствор индикатора тимолового синего был приготовлен из сухого вещества растворением в этиловом спирте.
2.4 Мешающие влияния
В щелочной среде, содержащей цианид, дитизоном экстрагируются вместе со свинцом таллий, висмут и олово (II). Таллий не мешает колориметрическому определению. Олово и висмут удаляют экстрагированием в кислой среде.
Определению не мешают серебро, ртуть, медь, мышьяк, сурьма, алюминий, хром, никель, кобальт и цинк в концентрациях, не превышающих двенадцатикратную концентрацию свинца. Мешающее влияние некоторых из этих элементов, если они присутствуют в пятидесятикратной концентрации, устраняют двойной экстракцией.
Определению мешает марганец, который при экстрагировании в щелочной среде каталитически ускоряет окисление дитизона кислородом воздуха. Это мешающее влияние устраняется добавлением солянокислого гидроксиламина к экстрагируемой пробе.
Сильные окислители мешают определению, так как окисляют дитизон. Их восстановление гидроксиламином включено в ход определения.
2.5 Техника эксперимента
Растительный материал высушивался в сушильном шкафу в измельченном состоянии. Сушка велась при температуре 100 0C. После высушивания до абсолютно сухого состояния растительный материал тщательно измельчался.
Было взято три навески сухого материала по 10 гр. Они были помещены в тигль и помещены в муфельную печь, где озолялись 4 часа при температуре 450 0C.
После зола растений окапывалась азотной кислотой при нагревании и высушивалась (отсюда и далее - операции повторяются для всех образцов).
Затем зола снова обрабатывалась азотной кислотой, высушивалась на электрической плите и ставилась в муфельную печь на 15 минут при температуре 300 0C.
После осветленная зола окапывалась соляной кислотой, высушивалась, и снова окапывалась. Затем образцы были растворены в 10 мл 10% соляной кислоты.
Далее растворы были помещены в капельные воронки на 100 мл. Было прибавлено 10 мл 10% раствора лимоннокислого аммония, затем раствор нейтрализовывался аммиаком до перехода окраски тимолового синего в синюю.
После этого производилась экстракция. Было прилито 5 мл 0,01% раствора дитизона в CCl4. Раствор в капельной воронке интенсивно встряхивался в течении 5 минут. Дитизоновый слой после его отделения от основного раствора был слит отдельно. Операция экстракции повторялась до тех пор, пока исходная окраска каждой новой порции дитизона не перестала переходить в красную.
Далее к собранным дитизонатным экстрактам было прилито по 10 мл 0,02 н раствора HCl, эта смесь интенсивно встряхивалась, при этом свинец заново переходил в водную фазу.
Водная фаза была помещена в капельную воронку. Была произведена ее нейтрализация раствором соды до перехода окраски фенолового красного в ораньжевую. Затем было добавлено 2 мл 10% раствора желтой кровяной соли, 2 мл 10% раствора лимоннокислого аммония, 2 мл 1% раствора гидроксиламина.
Затем растворы нейтрализовывались раствором соды до перехода окраски индикатора (фенолового красного) в малиновую.
Далее прибавлялось 10 мл 0,01% раствора дитизона в CCl4, образец интенсивно встряхивался в течении 30 секунд, затем дитизоновый слой сливался в кювету и спектофотометрировался против раствора дитизона в CCl4 при 520 нм.
Были получены следующие значения оптических плотностей:
1) A= 0,031
2) A= 0,031
3) A= 0,030
Градуировочный график строился при таких - же условиях, использовались стандартные растворы свинца концентраций от 1 до 6 мкг/мл. Они были приготовлены из раствора свинца концентрации 1 мкг/мл.
2.6 Результаты эксперимента и статистическая обработка
Данные для построения градуировочного графика
С, мкг/мл |
1 |
2 |
3 |
4 |
5 |
6 |
|
А |
0,04 |
0,075 |
0,12 |
0,16 |
0,21 |
0,26 |
Градуировочный график
Согласно градуировочному графику, концентрация свинца в одном килограмме сухой растительной массы равна
1) 0,71 мг/кг
2) 0,71 мг/кг
3) 0,70 мг/кг
Что следует из условий определения - концентрация свинца в стандартах измеряются в мкг/мл, для анализа было измерено содержание свинца в 10 мл, пересчитано для одного килограмма сухого растительного материала.
Среднее значение массы: Xср= 0,707 гр.
Дисперсия =0,000035
Среднее квадратическое отклонение: = 0,005787
Выводы
1. По литературному обзору.
С помощью литературного обзора изучены общие сведения о элементе, его методах определения, выбран наиболее подходящий из них согласно его точности и соответствия используемым в повседневной практике.
2. По результатам эксперимента.
Эксперимент показал, что с помощью метода можно определять малые содержания свинца, результаты отличаются высокой точностью и сходимостью.
3. По соответствию с ПДК.
ПДК содержания повижных форм свинца имеет нижнюю и верхнюю границу от 0,21 мг/кг до 1,43 мг/кг. Следовательно, содержание свинца в исследуемом материале не превышает верхней границы ПДК.
Список использованных литературных источников
1. Полянский Н.Г. Свинец.-М.: Наука, 1986. - 357 с. (Аналитическая химия элементов).
2. Васильев В.П. Аналитическая химия. В 2 ч.Ч. 2. Физико - химические методы анализа: Учеб. Для химико-технол. Спец. Вузов.-М.: Высш. шк., 1989. - 384 с.
3. Основы аналитической химии. В 2 кн. Кн. 2. Методы химического анализа: Учеб. Для вузов/Ю.А. Золотов, Е.Н. Дорохова, В.И. Фадеева и др. Под ред. Ю.А. Золотова. - 2-е изд., перераб. И доп. - М.: Высш. шк., 2002. - 494 с.
Размещено на Allbest.ru
Подобные документы
Физико-химические оценки механизмов поглощения свинца. Почва как полифункциональный сорбент. Методы обнаружения и количественного определения соединений свинца в природных объектах. Пути поступления тяжелых металлов в почву. Реакции с компонентами почвы.
курсовая работа [484,5 K], добавлен 30.03.2015Контроль качества пищевых продуктов как основная задача аналитической химии. Особенности применения атомно-абсорбционного метода определения свинца в кофе. Химические свойства свинца, его физиологическая роль. Пробоподготовка, методики определения свинца.
курсовая работа [195,2 K], добавлен 25.11.2014Изучение химических и физических свойств оксидов свинца, их применение, способы синтеза. Нахождение самого рационального способа получения оксида свинца, являющегося одним из наиболее востребованных соединений, используемых в повседневной жизни.
реферат [27,5 K], добавлен 30.05.2016Области применения свинца. Его вред как экотоксиканта, который способен в различных формах загрязнять все три области биосферы. Источники свинцового загрязнения. Свойство свинца задерживать губительных для человека излучений. Свинцовые аккумуляторы.
презентация [833,3 K], добавлен 03.03.2016Основные свойства свинца и бензойной кислоты. Бензоаты - соли и эфиры бензойной кислоты. Первичные сведения о растворимости бензоата свинца в стационарных условиях. Характеристика кинетики растворения. Температурный ход растворимости бензоата свинца.
курсовая работа [541,3 K], добавлен 18.02.2011Методы отбора проб, область действия стандарта. Общие требования к подготовке реактивов и посуды к колориметрическим методам определения цинка, свинца и серебра. Суть плюмбонового метода определения свинца, дитизоновый метод определения цинка и серебра.
методичка [29,9 K], добавлен 12.10.2009Атомно-флуоресцентный анализ. Рентгеновская флуоресценция. Электрохимические методы анализа. Инверсионная вольтамперометрия. Полярографический метод. Определение содержание свинца и цинка в одной пробе. Определение содержания цинка дитизоновым методом.
курсовая работа [49,5 K], добавлен 05.11.2016Сущность метода измерений при определении содержания свинца, требования к средствам измерения и оборудованию, реактивам, подготовка лабораторной посуды. Методика расчета неопределенностей измерений, источники неопределенности и анализ корреляции.
курсовая работа [250,9 K], добавлен 28.12.2011Химический элемент IV группы. Химические свойства. Диоксид свинца - сильный окислитель. Органические производные свинца - бесцветные очень ядовитые жидкости. Компонент типографских и антифрикционных сплавов, полупроводниковых материалов.
реферат [10,5 K], добавлен 24.03.2007Титриметрические методы, основанные на реакциях образования растворимых комплексных соединений или комплексометрия. Методы с получением растворимых хелатов - хелатометрия. Определение ионов-комплексообразователей и ионов или молекул, служащих лигандами.
реферат [31,0 K], добавлен 23.01.2009