Исследование твердых электролитов

Основные положения физики и химии суперионных материалов и теории дефектов в ионных кристаллах. Синтезы под высоким давлением, твёрдые полимерные электролиты: структура, свойства и применение. Твёрдые оксидные электролиты, материалы ионики твердого тела.

Рубрика Химия
Вид дипломная работа
Язык русский
Дата добавления 21.10.2010
Размер файла 2,2 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Рис.1. Подвижные положительные ионы серебра, как аквалангисты, легко перемещаются в пространстве между рифами - атомами иода (сферы) - в кристалле AgI.

Хорошим примером служит структура модельного кристалла AgI (рис.1). Кристаллический каркас "держат" анионы иода, а два катиона серебра могут размещаться по 12 тетраэдрическим позициям элементарной ячейки. Именно для такой ажурной структуры, в которой нарушен дальний порядок для атомов одного типа, было введено наглядное (может быть, не совсем удачное) понятие "квазирасплавленная подрешетка", и считалось, что жесткая анионная подрешетка находится в "катионном расплаве".

Подвижные частицы относительно свободно перемещаются по всему объему кристалла, за исключением той его части, которая занята ионами неподвижного остова. Поэтому здесь более разумно говорить не об "ионном расплаве", а о существовании в матрице кристалла "проводящего пространства". Такое качественное рассмотрение находит подтверждение в полиэдрическом представлении одной из подрешеток кристалла (см., например, рис.2).

Рис.2. Кристаллическая структура Na2TiGeO5: выделены слои из жестко связанных тетраэдров [GeO4] и пирамид [TiO5]. В пространстве между слоями могут свободно перемещаться подвижные ионы.

Растущую потребность в суперионных материалах - как новых соединений, так и известных в ином качестве (газоплотная керамика, пленочные покрытия, наноструктурные системы) - нельзя удовлетворить, ограничиваясь лишь полуэмпирическими подходами и классическими методами синтеза. Решение этой сложной проблемы возможно лишь в случае, если опираться на фундаментальные закономерности, установленные при изучении синтеза новых материалов и процессов ионного транспорта в них. В чистом виде такие закономерности наиболее четко прослеживаются при исследовании монокристаллических твердых электролитов. В то же время при использовании твердых электролитов в качестве рабочих сред функциональных элементов необходимо учитывать, что нужны материалы заданного вида и формы, например в виде плотной керамики или пленочного покрытия. И здесь на помощь могут прийти наноматериалы, которые зачастую либо обладают улучшенными характеристиками по сравнению с объемными монокристаллами, либо даже дополнительно приобретают новые свойства. Основная особенность всех типов наноматериалов (нанопористых, нанокристаллических, нанокомпозитных систем) заключается в преобладающей роли поверхности, а не объема. Поскольку структура поверхности как границы раздела твердое тело-окружающая среда значительно отличается от структуры объема, можно говорить о существенно дефектной (по отношению к объему) структуре поверхности и ожидать заметного изменения характеристик материала.

5.3 Некоторые аспекты поиска, создания и изучения объектов ионики твердого тела на примере работ, выполненных в Институте кристаллографии РАН

Целенаправленные исследования в этой области были начаты в 1980 г. Ионная проводимость твердых электролитов обеспечивается переносом самых различных ионов - одно-, двух-, трехзарядных катионов (Ag+, Cu+, Li+, Na+, K+, Rb+, Tl+, Cs+, Ca2+, Zn2+, Mg2+, Pb2+, Al3+, Sc3+, Ce3+, Eu3+) и анионов (F-, Cl-, Br-, O2-, S2-). Существуют материалы, где носителями заряда служат ионы двух или даже трех сортов, и вещества со смешанной ионно-электронной проводимостью. Особый интерес представляют суперионные проводники с Li+- и Na+- ионной проводимостью, поскольку именно они дают максимальный выигрыш в энергии, что гарантирует им будущее в производстве миниатюрных литиевых батареек и тяговых аккумуляторов для электромобилей. Поэтому все стремятся улучшить характеристики известных соединений или найти для этих ионов принципиально новые проводящие матрицы. Целенаправленное изменение характеристик соединений возможно только в случае, если нам удастся заглянуть в глубь кристалла, чтобы узнать, как и насколько эффективно способны перемещаться ионы в кристаллической решетке. Иначе говоря, нужно оценить потенциальные каналы проводимости и найти способы увеличения скорости движения заряженных частиц по ним. Рассмотрим в этом плане как достаточно известное соединение - ортофосфат лития Li3PO4, так и сравнительно новое - литий-замещенный титанат лантана La2/3-xLi3x}1/3-2xTiO3 (? - вакансия в позиции крупного катиона).

С середины 70-х годов ортофосфат лития известен как ионный проводник, в структуре которого пустоты кристаллического каркаса формируют сквозные прямые каналы вдоль осей а и с и зигзагообразные вдоль оси b (рис.3). Однако величина электропроводности не очень высока, поскольку, несмотря на "рыхлость" структуры, все катионы лития участвуют в постройке жесткого каркаса и не способны свободно перемещаться по каналам. Решение задачи увеличения ионной проводимости напрашивается само собой: необходимо поместить в каналы дополнительные катионы Li. Это достигается специальным введением в базовый материал гетеровалентных примесей, что и наблюдается в твердых растворах со структурой высокотемпературной модификации Li3PO4.

Рис.3. Каналы проводимости в структуре Li3PO4 образуются при формировании каркаса из связанных общими вершинами тетраэдров [Li1O4], [Li2O4] и [PO4]. а - проекция bc, б - проекция аb.

Получаемые нестехиометрические фазы систем Li4GeO4-Li3VO4 и Li4GeO4-Li3PO4 обладают ионной проводимостью, значения которой составляют 10-4-10-5 Ом-1·см-1 уже при комнатной температуре. Чтобы понять механизм ионного транспорта, потребовалось провести экспериментальные исследования на монокристаллах больших размеров и хорошего качества. Монокристаллы Li3+xP1-xGexO4 (x=0.34) были выращены в Институте кристаллографии методом кристаллизации из раствора в расплаве. Величины удельной проводимости кристалла Li3.34P0.66Ge0.34O4 составляют 1.8·10-6 и 3.7·10-2 Ом-1·см-1 при 40° и 400°С соответственно - что, как видно из рис.4, на несколько порядков выше проводимости номинально чистого ?-Li3PO4.

Рис.4. Ионная проводимость монокристаллов Li3PO4 и Li3+xP1-xGexO4. Разными значками изображены величины проводимости в различных кристаллографических направлениях.

Миграция ионов лития в твердом растворе Li3+xP1-xGexO4 связана с внедрением дополнительных катионов Li+ в пустоты кристаллического каркаса, что приводит к разупорядочению литиевой подрешетки не только в каналах проводимости, но и в жестком каркасе (рис.5), и число доступных для миграции лития позиций существенно возрастает. Кристаллическая структура при этом становится приблизительно одинаково "прозрачной" для ионного транспорта во всех направлениях, благодаря чему значения проводимости по трем главным кристаллографическим направлениям почти выравниваются (анизотропия проводимости в твердом растворе Li3+xP1-xGexO4 по сравнению с Li3PO4 понижается).

Рис.5. Фрагмент кристаллической структуры твердого раствора Li3+xP1-xGexO4. Зеленым цветом показаны тетраэдры PO4, желтым и коричневым - тетраэдры LiO4. Дополнительные ионы лития (темные кружки) при образовании твердого раствора смещаются в направлении, показанном стрелками. Собственные ионы лития переходят в тетраэдры, ребра которых выделены жирными линиями (в чистом ?-Li3PO4 эти тетраэдры незаняты).

Литий-замещенный титанат лантана Li0.255La0.582TiO3 может служить еще одним примером целенаправленного конструирования твердого электролита. Внедрение достаточно большого количества посторонних атомов, в том числе и лития, в кристаллическую матрицу перовскито-подобной фазы La2/3TiO3 приводит к образованию нестехиометрических фаз La2/3-xLi3x}1/3-2xTiO3. Ионный перенос осуществляется за счет перескока внедренных ионов лития по вакантным позициям. Создание монокристаллов таких сложных фаз сродни искусству, и это в полной мере относится к синтезу литий-замещенного титаната лантана методом бестигельной зонной плавки (блок-схема установки показана на рис.6). В полученных кристаллах высокая ионная проводимость при комнатной температуре (около 5·10-4 Ом-1·см-1) соседствует с пренебрежимо малой величиной электронной проводимости.

Рис.6. Схема установки для выращивания кристаллов методом бестигельной зонной плавки.

Чтобы вырастить монокристаллы, керамический стержень плавят направленным световым пучком мощной лампы. При опускании стержня в печь, имеющую температурный градиент, происходит кристаллизация расплава с формированием массивного монокристалла. Позвольте пройти, или "Окно проводимости". На первый взгляд кристаллическая структура Li0.255La0.582TiO3 не должна допускать высокой ионной проводимости, поскольку размеры "окна проводимости" (рис.7) недостаточны для беспрепятственного перемещения ионов Li+ по каналам. Наблюдаемое противоречие можно объяснить особой ролью тепловых колебаний атомов кристаллического каркаса, из-за которых размер "окна проводимости" постоянно меняется - каналы "дышат". Перескок ионов в соседнюю позицию может происходить в момент наибольшей открытости "окна".

Рис.7. "Окно проводимости" в Li0.255La0.582TiO3 - наиболее узкий участок канала проводимости (выделен красным цветом) для перескока иона лития из одной позиции в другую (соседнюю).

Получить новые структурные матрицы с ажурной структурой, пригодной для заполнения "ионным расплавом", не так просто, поэтому ученые обращаются за помощью к природе и исследуют известные минералы, создавая искусственные кристаллические матрицы на их основе. Так были найдены катионные проводники в семействе сложных оксидов (?-глинозем), силикатов (цирконосиликаты - насикон, лисикон, алюмосиликаты - сподумен, эвкриптит), фторионные проводники на основе флюорита. Наше внимание привлек силикат натрия-титана - натисит Na2TiSiO5. В его структуре между слоями, составленными Ti-полуоктаэдрами и Si-тетраэдрами (рис.2), можно увидеть "прослойки" из катионов натрия, что позволяло надеяться на достаточно высокую подвижность щелочных ионов. Нам удалось синтезировать и изучить электрические свойства массивных монокристаллов двух членов семейства A2TiGeO5 со структурой типа натисита: Na2TiGeO5 и Li2TiGeO5. Ярко выраженный слоистый характер кристаллической структуры этих соединений обусловливает высокую спайность в направлении, перпендикулярном оси с, и объясняет высокую анизотропию проводимости: отношение проводимостей в направлениях, параллельном и перпендикулярном слоям, достигает 104 (рис.8).

Рис.8. Температурные зависимости проводимости кристаллов Na2TiGeO5 и Li2TiGeO5 вдоль осей a и c.

Подвижными в кристаллах могут быть не только катионы, но и анионы, например фтора в нестехиометрических фазах М1-xRxF2+x со структурой флюорита (М=Ва, Sr, Ca; R=La-Lu,Y). Здесь надо отметить, что электропроводность чистых и слаболегированных дифторидов MF2 со структурой флюорита не очень велика и не превышает 10-6-10-5 Ом-1·см-1 при 500-600 К. Твердые растворы на основе МF2 с большой концентрацией примеси, являясь однофазными, имеют переменный состав и повышенную концентрацию анионов фтора. Ионный перенос трактуется в рамках предложенной нами модели дефектных областей, характеристики которых зависят как от типа катиона матрицы, так и от сорта ионов R3+, изоморфно замещающих ионы М2+ в матрице. В ядре дефектной области располагаются редкоземельные ионы и "замороженные" комплексообразованием атомы фтора в виде кластеров различного типа, а в периферийной части, т.е. прилегающей к ядру искаженной флюоритовой матрице, могут находиться слабо связанные, а потому подвижные анионы фтора, которые и переносят ток. Поэтому характеристики ионного переноса в сильнонестехиометрических фазах определяются главным образом атомным строением дефектных областей, так как подвижность междоузельных анионов F- зависит от типа катиона матрицы (Ca2+, Sr2+, Ba2+) и сорта редкоземельных ионов R3+. Совместный анализ электрофизических и структурных характеристик нестехиометрических фаз позволил предложить конкретный механизм ионного переноса, связанный со строением ядер дефектных областей.

Монокристаллы твердых электролитов хороши и необходимы как объекты для выяснения фундаментальных аспектов быстрого ионного переноса в твердых телах. Так выбираются оптимальные материалы, которые находят практическое применение уже в виде поликристаллов (керамика, порошки, покрытия).

Поликристаллические образцы обычно изготавливают классическим методом твердофазных реакций, который обладает рядом существенных недостатков: сложно получить полностью однофазные продукты из-за плохой гомогенизации исходных реагентов, нужна высокая температура отжига, синтез длителен и трудоемок. К одним из лучших литийпроводящих материалов относятся соединения семейства сложных литиевых фосфатов Li3M2(PO4)3, характеризующиеся (для монокристаллов и стандартной керамики) рабочими температурами выше 300°С. Чтобы понизить эти температуры, мы попытались приготовить сложные фосфаты в наноструктурном виде. Нанопорошки Li3M2(PO4)3 были синтезированы путем пиролиза ультрадисперсных растворов (рис.9), в котором гомогенизация исходных реагентов осуществляется на молекулярном (нано-)уровне, что значительно облегчает получение полностью однофазных материалов.

Рис.9. Схема получения кристаллического материала при ультразвуковом диспергировании и термической обработке растворов.

Суть метода заключается в следующем: в раствор, содержащий исходные реагенты, помещается мембрана, колеблющаяся с ультразвуковой частотой (рис.10). Над поверхностью раствора образуется "туман", состоящий из ультрадисперсных капель размером от сотен нанометров до микрометров. При быстром нагреве "тумана" происходит испарение растворителя, а затем химическое взаимодействие между реагентами. Этим методом были изготовлены сплошные гладкие пленки твердых растворов Li3FexSc2-x(PO4)3 толщиной 3-5 мкм. Снимки поверхности образцов, сделанные методом атомно-силовой микроскопии (рис.11), показывают столбчатую структуру пленок с диаметром зерен от 1 до 5 мкм. Каждое зерно состоит из множества кристаллитов размером 10-20 нм для х=2 и 50-100 нм для пленки состава х=0.5. Значения объемной ионной проводимости плотных керамических образцов Li3Fe2(PO4)3 из нанокристаллитов и нанокристаллических пленок близки и составляют 2·10-6 Ом-1·см-1 при комнатной температуре. Измеренные величины электропроводности более чем на порядок выше по сравнению с таковыми монокристаллов (рис.12).

Рис.11. Структура поверхности пленок Li3Sc2-хFeх(PO4)3 (данные атомно-силовой микроскопии): а - х=2; б - х=0.5.

Рис.12. Температурные зависимости объемной ионной проводимости пленок и порошков Li3Sc2-хFex(PO4)3, полученных методом пиролиза диспергированных растворов.

"Интервенция" в кристаллические матрицы

Литийсодержащие фазы привлекательны не только как потенциальные твердые электролиты, но и как электродные материалы для литиевых источников тока - литий-ионных аккумуляторов (рис.13). При наложении электрического поля ионы лития выходят из анода и внедряются в материал катода, создавая эдс. При включении нагрузки происходит разрядка аккумулятора, и концентрации ионов лития на аноде и катоде выравниваются. После этого цикла требуется повторная зарядка системы. Напомним, что электродные материалы должны обладать смешанным, ионно-электронным, типом проводимости. Такому условию отвечают нестехиометрические ванадаты лития. Литий-ванадиевая бронза представляет собой фазу переменного состава, которая образуется при внедрении лития в "туннели" кристаллической структуры оксида ванадия. Сравнение структур бронз различных типов показывает, что наибольшей емкостью по литию обладает бронза типа Li1+xV+4xV+53-xO8.

Рис.13. Принцип работы литиевого аккумулятора.

Оксидная ванадиевая бронза Li1+xV3O8 служит как анодом, так и катодом.

Наиболее эффективно источники тока будут работать при максимально большой емкости материала по проводящему иону (литию) и при высокой устойчивости материалов при циклическом чередовании заряда и разряда ячейки (циклировании). Улучшить характеристики материала можно разными способами, например, модифицируя состав введением примесей (легирование) либо изменяя микроструктуру материала (варьирование форм-фактора).

Мы синтезировали фазы внедрения со структурой Li1+xV3O8 и изучили их свойства. Полное заполнение всех вакантных позиций соответствует составу Li5V3O8, т.е. максимальная (теоретическая) емкость этого материала по литию достигается при х=4. Но все попытки разных исследователей добиться полного заполнения литиевых позиций в чистом ванадате лития LiV3O8 окончились неудачей: максимальное значение х достигло лишь 2.85. Мы попытались решить проблему, варьируя геометрические размеры элементарной ячейки кристалла путем легирования. Оказалось, что гетеровалентное замещение части ванадия на крупные катионы молибдена Mo6+ несколько улучшает ситуацию - для Li1+xMo0.25V2.75O8 емкость увеличивается, однако только до х=2.9.

Таким образом, легирование материала не позволило заполнить литием все доступные позиции в структуре. Здесь затруднения создают кинетические факторы, связанные с микроструктурой поликристаллического объекта, т.е. необходимо учитывать размер частиц, их взаимную ориентацию, наличие текстуры и т.п. Поэтому нами был применен новый способ синтеза исследуемого материала с наноразмерными кристаллитами на основе методов "мягкой химии" (низкие температуры синтеза, средние значения рН, органические прекурсоры и т.д.).

Для оптимизации форм-фактора материалов на основе Li1+xMoyV3-yO8 был использован золь-гель синтез этих фаз из растворов алкоголятов соответствующих металлов (рис.14)

Рис.14. Золь-гель синтез Li1+xMoyV3-yO8 из растворов алкоголятов соответствующих металлов.

Самые интересные результаты были получены для тонких пленок Li1+xMoyV3-yO8 с использованием капельного нанесения растворов-прекурсоров на вращающуюся подложку. В этом случае удалось избежать нежелательного текстурирования покрытий и сформировать пленки субмикронной толщины из изотропных частиц с размерами от десятков до сотен нанометров. Такое направленное изменение форм-фактора привело к существенному улучшению разрядных характеристик пленок с высоким уровнем легирования молибденом: удалось практически полностью заполнить литиевую подрешетку (х=3.9).

4.Обобщающие сведенья

Мы рассмотрели только несколько примеров поиска и создания новых материалов, но они наглядно показывают, что ионика твердого тела - интенсивно развивающаяся отрасль науки, открывающая широкие возможности получения новых интересных результатов в области и фундаментальных, и прикладных исследований. Главный вопрос - как найти эффективные суперионные проводники, как повысить ионную проводимость соединений при относительно невысоких температурах - остается актуальным и решается на основе широкого спектра экспериментальных и теоретических данных.

Развитие современной энергетики выводит на передний план задачи конструирования нетрадиционных источников электрической энергии. Этот процесс будет определяться как миниатюризацией современных источников тока, так и развитием работ по созданию мощных аккумуляторных устройств. Успех здесь невозможен без развития молодых технологий (в частности, нанотехнологий) и способов получения твердых электролитов. Разнообразие областей применения твердотельных ионных материалов объясняет востребованность и возрастающий интерес к новым суперионным проводникам в виде монокристаллов, порошков, плотных керамик, пленочных покрытий.

Заключение

Ионика твердого тела -- очень быстро развивающееся направление современного материаловедения. Изложенный материал показывает перспективность использования физико-химических шэиндилов как основы систематического подхода к созданию СИП. Наряду с классическими, традиционными методами синтеза продемонстрированы большие возможности новых методов синтеза, таких, как взрывное сжатие, ионное и молекулярное наслаивание, разнообразные методики СУГ технологии. Проведен анализ работ по исследованию разнообразных катнонных проводников. Широкий спектр ядерно-физических и физико-химических методов изучения дает возможность детально рассмотреть ионные и электродные процессы в СИП, процессы образования и подвижности ионных дефектов.

Несмотря на большой прогресс, достигнутый в ионике твердого тела в последние годы, несомненно, что в ближайшем будущем мы станем свидетелями появления новых методов синтеза, прежде всего в области "мягкой химии", получения новых материалов в различном агрегатном состоянии с уникальными электрофизическими характеристиками, а также привлечения новых экспериментальных и теоретических методов, которые позволят получить информацию о природе суперионной проводимости на атомном уровне.

Литература

1.Хауффе К Реакции в твердых телах и на поверхности / Пер с нем М, 1962

2.Крегер Ф. Химия несовершенных кристаллов / Пер с англ М, 1960

3.Третьяков ЮД Твердофазные реакции М, 1978

4.Третьяков Ю. Д, Лепис X Химия и технология твердофазных материалов М, 1985

5.Жуковский В М, ТкаченкоЕВ //Изв Сиб отд. АН СССР Сер ким наук 1982 Т 15, №6 С 35

6.БудниковП П., Гисшлинг А М Реакции в смесях твердых веществ М, 1971

7.Дубовик M Ф., Промоскаяъ А И, Смирнов И H //Изв АН СССР Неорг материалы 1968 Т 4,№9 С 1580

8.Мурчи И В Процессы образования и переноса дефектов в бинарных галидах элементов I--ГУ групп Докт дис Л,1983

9.Соболев. Б П. Нестехиометрия в системах из фторидов щелочноземельных и редкоземельных элементов Авто-реф докт дис M, 1978

10.Мурчи ИВ. Андреев A M', Амелин Ю. В //Вести Леиингр ун-та 1982 №10 С 39

11.МуринИВ, Черное С В //Вести Леиингр ун-та 1982 № 10 С 105

12.ИгуенДН, Глумов OB, Мурин HB //Вести С-Петерб ун-та Сер 4 Физика, химия 1994 Вып 2 <№ II) С 50

13.Москвин А Л Неорганические материалы со смешанной ионно-элекгронной проводимостью на основе фторидов олова (П) свинца (П) Канд. дис Л, 1990

14.Лялина M Ю., Андреев A M, Калинина Л А и др. //Вести С-Петерб ун-та Сер 4 Физика, химия 1994 Вып 1 (№4) С 99

15.Фоминых ЕГ, Калинина Л А, Мурин ИВ, Широкова Г И II Вести С - Петерб ун-та Сер 4 Физика, химия 1997 Вып 1 (№4) С 71

16.Ушакова ЮН, Калинина Л А, Мурин И В, Широкова Г И /I Там же С 64

17.ГрузикАА, Елисеев А А Телешова В A, Шмидт E В //Журн. неорг химии 1972 Т 17, вып 1 С 11

18.Кустова T H, Обжерина К Ф, Камарзин Е В идр //Жури струкг химии 1969 Т 10 С 609

19.Самсонов ГВ, Радзиковская С В II Успехи химии 1961 Т 30, № 1 С 60

20.Миронов К Е, Камарзин Л А СоколовВВ идр Редкоземельные полупроводники Баку, 1981

21.Препаративные методы в химии твердого тела / Пер с франц, Под ред П Хагенмюллера M, 1976

22.Бацанов С С, Лихова В Ф, Мороз Э M II Журн. неорг химии 1971 T 16 С 312

23.Бацанов С С. Мороз Э M II Физ. - хим. обработка материалов 1972. Т 6 С 127

24.Бацанов С С. Дерибас Л А, Кустова T H /I Жури неорг химии 1967 Т 12 С 2283

25.Бацанов С С, Доронин Г С, Мороз Э M идр //Физ. горен взрыва 1969 Т 5 С 283

26.Бацанов С С, Мороз ЭМ. РучкинЕД, Лазарева ЕВ //Изв АН СССР Сер хим наук 1973 Т 10 С 2323

27.МорозЭМ, Кетчик С В, Бацанов С С //Жури неорг химии 1972 Т 17 С 1775

28.Политое A A , Фусенко Б A, Простое И Ю //Докл РАН 1994 Т 334 С 194

29.Вольхин В И Ионный обмен и ионометрня Вып 9 /Под ред ФА. Белинской СПб, 1996 С 3

30.Уваров НФ Ионная проводимость твердофазных нанокомпознтов Докт дис Новосибирск, 1997

31.Немудрый А П. Порошина И A, Исупов В Л и др //Изв Сиб отд АН СССР Сер хим наук 1987 Выл 2, №5 С 48

32.Хауффе К Реакции в твердых телах и на поверхности / Пер с нем М, 1962

33.Крегер Ф Химия несовершенных кристаллов / Пер с англ М, 1960

34.Третьяков ЮД Твердофазные реакции М, 1978

35.Третьяков Ю Д, Лепис X Химия и технология твердофазных материалов М, 1985

36.Жуковский В М, ТкаченкоЕВ //Изв Сиб отд АН СССР Сер ким наук 1982 Т 15, №6 С 35

37.БудниковП П, Гисшлинг А М Реакции в смесях твердых веществ М, 1971

38.Дубовик M Ф, Промоскаяъ А И, Смирнов И H //Изв АН СССР Неорг материалы 1968 Т 4,№9 С 1580

39.Мурчи И В Процессы образования и переноса дефектов в бинарных галидах элементов I--ГУ групп Докт дис Л,1983

40.Соболев Б П Нестехиометрия в системах из фторидов щелочноземельных и редкоземельных элементов Авто-реф докт дис M, 1978

41.Мурчи ИВ. Андреев A M', Амелин Ю В //Вести Леиингр ун-та 1982 №10 С 39

42.МуринИВ, Черное С В //Вести Леиингр ун-та 1982 № 10 С 105

43.ИгуенДН, Глумов OB, Мурин HB //Вести С-Петерб ун-та Сер 4 Физика, химия 1994 Вып 2 <№ II) С 50

44.Москвин А Л Неорганические материалы со смешанной ионно-элекгронной проводимостью на основе фторидов олова(П)свинца(П) Канд дис Л, 1990

45.Лялина M Ю, Андреев A M, Калинина Л А и др //Вести С-Петерб ун-та Сер 4 Физика, химия 1994 Вып 1 (№4) С 99

46.Фоминых ЕГ, Калинина Л А, Мурин ИВ, Широкова Г И II Вести С -Петерб ун-та Сер 4 Физика, химия 1997 Вып 1 (№4) С 71

47.Ушакова ЮН, Калинина Л А, Мурин И В, Широкова Г И /I Там же С 64

48.ГрузикАА, Елисеев А А Телешова В A, Шмидт E В //Журн неорг химии 1972 Т 17, вып 1 С 11

49.Кустова T H, Обжерина К Ф, Камарзин Е В идр //Жури струкг химии 1969 Т 10 С 609

50.Самсонов ГВ, Радзиковская. С В II Успехи химии 1961. Т 30, № 1. С 60

51.Миронов К Е, Камарзин Л А СоколовВВ идр Редкоземельные полупроводники Баку, 1981

52.Препаративные методы в химии твердого тела / Пер с франц, Под ред П. Хагенмюллера M, 1976 - 1983 P 332

53.Уваров НФ Ионная проводимость твердофазных нанокомпознтов Докт дис Новосибирск, 1997

54.Немудрый А П. Порошина И A, Исупов В Л и др. //Изв Сиб отд. АН СССР Сер хим. наук 1987 Выл 2, №5 С 48

55. Иванов-Шиц А.К., Мурин И.В. Ионика твердого тела. СПб., 2000.

56. Иванов-Шиц А.К. Электрофизические свойства твердых электролитов Li3M2(PO4)3 (M=Fe, Sc) // Электроника твердотельных систем / Под ред. М.В.Перфильева. Свердловск, 1991. С.70-88.

57. Иванов-Шиц А.К. Особенности ионного переноса в сильнонестехиометрических фазах M1-xRxF2+x (M=Ba, Sr, Ca; R=La-Lu, Y) со структурой флюорита // Электроника твердоэлектролитных систем / Под ред. М.В.Перфильева. Свердловск, 1991. С.89-105.

58. Иванов-Шиц А.К., Демьянец Л.Н. // Кристаллография. 1995. Т.40. №6. С.1077-1112


Подобные документы

  • Рассмотрение особенностей литий-ионных аккумуляторов как относительно нового вида химических источников тока. Материалы положительного электрода. Твёрдые материалы с подвижными ионами для электродов и электролитов - основной объект ионики твёрдого тела.

    курсовая работа [532,5 K], добавлен 16.08.2015

  • Свойство водных растворов солей, кислот и оснований в свете теории электролитической диссоциации. Слабые и сильные электролиты. Константа и степень диссоциации, активность ионов. Диссоциация воды, водородный показатель. Смещение ионных равновесий.

    курсовая работа [157,0 K], добавлен 23.11.2009

  • Ионная проводимость электролитов. Свойства кислот, оснований и солей с точки зрения теории электролитической диссоциации. Ионно-молекулярные уравнения. Диссоциация воды, водородный показатель. Смещение ионных равновесий. Константа и степень диссоциации.

    курсовая работа [139,5 K], добавлен 18.11.2010

  • Природа ионной проводимости в твердых телах. Виды твердых оксидных электролитов, их применение в разных устройствах. Структура и свойства оксида висмута, его совместное химическое осаждение с оксидом лантана. Анализ синтезированного твердого электролита.

    курсовая работа [1,5 M], добавлен 06.12.2013

  • Предмет химии твердого тела. Эмпирический подход в химии твердого тела. Структура минерала перовскита. Три семейства слоистых перовскитов. Взаимосвязь структуры и свойств твердофазных материалов. Термодинамика и кинетика реакций в твердой фазе.

    реферат [802,4 K], добавлен 16.05.2017

  • Классификация реакций твердых тел. Радиационно-химическое разложение ионных и ионно-молекулярных кристаллов. Действие ионизирующего излучения на твердые тела. Возбуждение электронной подсистемы твердого тела. Рекомбинация свободных носителей заряда.

    презентация [707,9 K], добавлен 15.10.2013

  • Анализ путей образования электронных дефектов в электролитах и оценка их концентрации. Оценка величины электронной проводимости медьпроводящих электролитов. Разработка методики выращивания из растворов монокристаллов медьпроводящих твердых электролитов.

    автореферат [34,0 K], добавлен 16.10.2009

  • Электролитическая диссоциация в растворах. Сильные и слабые электролиты. Условия протекания ионных реакций. Кислоты и основания Брёнстеда-Лоури. Ионное произведение воды. Кислотно-основные равновесия. Кислоты и основания Льюиса. Гидролиз солей по аниону.

    лекция [941,2 K], добавлен 18.10.2013

  • Газообразные, конденсированные, жидкие и аморфные фазы веществ. Описание строения кристаллических фаз. Пределы устойчивости кристаллических структур. Дефекты твёрдого тела. Взаимодействие точечных дефектов. Способы получения некристаллических твердых фаз.

    контрольная работа [3,6 M], добавлен 20.08.2015

  • Твёрдые кристаллы: структура, рост, свойства. "Наличие порядка" пространственной ориентации молекул как свойство жидких кристаллов. Линейно поляризованный свет. Нематические, смектические и холестерические кристаллы. Общее понятие о сегнетоэлектриках.

    курсовая работа [55,4 K], добавлен 17.11.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.