Назначение процесса сернокислотного алкилирования изопарафинов олефинами. Пиролиз

Технологические особенности процесса сернокислотного алкилирования изопарафинов олефинами. Выбор типа и конструкции реактора. Механизм пиролиза пентана. Катализаторы риформинга и уравнения протекающих реакций. Этерификация спиртов карбоновыми кислотами.

Рубрика Химия
Вид реферат
Язык русский
Дата добавления 28.02.2009
Размер файла 1,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Назначение процесса сернокислотного алкилирования изопарафинов олефинами. Основные и побочные реакции, приведите механизм. Условия проведения процесса. Технологические особенности процесса и связанные с ними технические решения, какими стадиями представлен процесс. Выбор типа и конструкции реактора

Этот процесс предназначен для синтеза высокооктановых компонентов авиационных и автомобильных бензинов. Для случая алкилирования изобутана изобутиленом реакция может быть представлена в следующем виде:

Реакция сернокислотного алкилирования изопарафинов олефинами протекает избирательно. Легче всего подвергаются алкилированию изобутан и изопентан, т.е. изопарафиновые углеводороды, содержащие один третичный атом углерода в молекуле. Парафиновые углеводороды с четвертичным атомом углерода в молекуле типа 2,2-диметилбутана алкилируются значительно труднее и при более жестких условиях. Парафины нормального или изостроения, содержащие в одновременно с третичным четвертичный атом углерода, в присутствии серной кислоты практически не алкилируются.

Олефины для алкилирования могут быть взяты различные. Однако этилен наименее эффективный алкилирующий агент. Алкилирование пропиленом и н-бутенами дает хорошие результаты, при алкилировании изоамиленами начинают в большом количестве образовываться продукты деструктивного алкилирования, а при алкилировании высшими олефинами эти реакции начинают преобладать.

Как правило, алкилируют изобутан н-бутенами, т.к. при этом образуются изомерные углеводороды C8H18 (триметилпентаны), по температуре кипения наиболее пригодные в качестве компонента моторных топлив. Углеводороды C8H18, но другого вида (диметилгексаны) получаются и при алкилировании изопентана пропиленом, кроме того, изопентан является ценным сырьем для получения изопрена, поэтому для алкилирования его используют редко (иногда добавляют к изобутану).

Строение продуктов, образующихся при каталитическом алкилировании изопарафинов олефинами, обычно не соответствует ожидаемому из структуры исходных веществ. При взаимодействии н-бутенов с изобутаном получается смесь 2,2,4-, 2,3,4- и 2,3,3-триметилпентаны.

Причина несоответствия строения продуктов состоит в особенностях механизма реакции, осложненной процессами изомеризации. Механизм алкилирования цепной карбоний-ионный:

небольшие порции олефина (бутен-2) взаимодействуют с протоном кислоты;

возникающий вторичный карбокатион, образовавшийся из н-бутена, менее стабилен, чем третичный, вследствие чего происходит быстрый обмен гидрид-иона с изобутаном;

образующийся трет-бутилкатион взаимодействует далее с исходным олефином, с образованием карбокатиона большего молекулярного веса;

получившийся карбокатион склонен к внутримолекулярным перегруппировкам, сопровождающимся миграцией водорода и метильных групп;

эти карбокатионы взаимодействуют с изобутаном, в результате чего получаются углеводород C8H18 и третбутилкатион, обеспечивающий протекание ионно-цепного процесса

Побочные реакции:

1. в условиях реакции алкилирования часть карбокатионов, образовавшихся из изопарафинов в присутствии катализатора теряет протон и образует соответствующий олефин, который взаимодействует с новым карбокатионом по обычной схеме и образует предельный углеводород, т.е. происходит автоалкилирование изопарафинов.

2. В случае недостатка олефина автоалкилирование приводит к избыточному расходу изопарафина.

3. Изооктилкатион также способен к реакции с олефинами. Так происходят последовательно-параллельные реакции алкилирования, причем, чтобы подавить образование высших углеводородов, необходим избыток изопарафина по отношению к олефину.

4. Реакция автоалкилирования осложняется, кроме того, деструкцией части образующихся углеводородов, в результате чего получаются более низкомолекулярные продукты. Этой реакции способствует повышение температуры.

5. Еще одна побочная реакция - это катионная полимеризация олефина, при которой получаются низкомолекулярные ненасыщенные полимеры, несколько ухудшающие качество алкилата и ведущие к повышенному расходу катализатора.

6. Часть олефинов взаимодействует с концентрированной серной кислотой с выделением двух молекул воды.

Обоснование условий сернокислотного алкилирования изобутана бутенами:

Реакция алкилирования изопарафинов олефинами экзотермична. При температуре ниже 1000С равновесие смещается вправо, реакция становится практически необратимой. Температуру алкилирования выбирают такой, чтобы максимально подавлялись побочные реакции деструкции и полимеризации, но сохранялась достаточно высокой скорость процесса. В данном случае температура поддерживается 5-130С.

Давление не оказывает существенного влияния на этот низкотемпературный жидкофазный процесс. Его выбирают по технологическим соображениям несколько большим, чем давление перерабатываемых углеводородов при температуре в реакторе, чтобы обеспечить поддержание их в жидкой фазе. При снятии тепла реакции за счет испарения части углеводородов увеличение давления нецелесообразно, т.к. затрудняет испарение. При алкилировании изобутана бутенами поддерживают давление 0,35-0,4 МПа.

Концентрация кислоты должна быть не менее 88-86%. в процессе работы она разбавляется высокомолекулярными соединениями (эфиры серной кислоты, ВМ углеводороды) и водой, приходящей с сырьем и выделяющейся в результате некоторых побочных реакций. Поэтому кислоту приходится укреплять.

Соотношение кислота : углеводороды поддерживают от 1 : 1 до 2 : 1.

Соотношение изобутан : олефин берут от 4 : 1 до 10 : 1. Чем выше концентрация изобутана в сырье, тем более благоприятны условия для протекания основной реакции алкилирования и подавления полимеризации и других побочных реакций.

Технологические особенности процесса:

необходимость создания стойкой эмульсии кислота - углеводороды - необходимо интенсивное перемешивание;

реакция идет при низких температурах и экзотермична - необходим интенсивный отвод тепла и поддержание изотермического режима;

использование большого избытка изобутана приводит к большой кратности циркуляции реакционной массы и необходимости отделять и возвращать непрореагировавший изобутан;

в процессе происходит разбавление серной кислоты - необходимо отводить часть ее на укрепление и добавлять свежую.

необходимо отстаивать серную кислоту и отмывать ее остатки из реакционной массы.

Стадии, из которых состоит процесс сернокислотного алкилирования:

подготовка сырья - очистка углеводородных потоков от примесей (сероводород, меркаптаны, вода) - щелочная и водная промывки, осушка от воды с помощью адсорбентов.

реакторное отделение;

обработка углеводородной смеси, выходящей из реакторов - отстаивание от кислоты, нейтрализация остатков кислоты щелочью, горячая водная промывка

фракционирование продуктов - сначала в первой колонне отделяются изобутан и пропан от остальных продуктов, затем пропан отделяется от изобутана, далее н-бутан отделяют от алкилата.

Для алкилирования применяются реакторы разных типов:

емкостные с применением выносных циркуляционных насосов для перемешивания реакционной смеси (в нижней части расположены тарелки или перегородки для интенсивного смешения компонентов);

контакторные с внутренними циркуляционными устройствами и охлаждающими элементами (вертикальные и горизонтальные - отличительная особенность последних - охлаждение с помощью потока продуктов, отходящих из реактора, а также инжекционный ввод сырья и кислоты);

каскадные с внутренним охлаждением и внутренними циркуляционными устройствами без охлаждающих элементов (горизонтальный аппарат, разделенный перегородками на реакционную и отстойную зоны)

В зависимости от системы охлаждения применяемые реакторы также делятся на три типа:

с замкнутым холодильным циклом и использованием хладагентов - аммиака, пропана, бутана (емкостные и контакторные реакторы);

с охлаждением отходящим потоком за счет его испарения при снижении давления в аппаратах, следующих за реактором, и дальнейшей конденсацией паров потока перед возвращением в реактор (контакторные реакторы);

с внутренним охлаждением путем испарения содержащихся в реакционной смеси пропана и изобутана при пониженном давлении внутри реактора (каскадные реакторы).

Пиролиз. Назначение процесса. Напишите механизм пиролиза на примере пентана. Ряд по возрастанию устойчивости соединений при пиролизе от метана до пентана, включая изомеры и непредельные соединения. Технологические приемы при пиролизе для увеличения выходов продукта.

Пиролиз - процесс получения низших олефинов.

Метан - Этилен - Этан - Пропан - Пропилен - Первичный - Вторичный - Третичный

Увеличение выхода обеспечивают паром или еще лучше водородом

Риформинг. Назначение процесса. Катализаторы риформинга. Какие возможны реакторные схемы риформинга. Объясните принцип их работы. Как изменяется температура в ходе процесса в зависимости от времени работы катализатора и от технологической схемы. Приведите уравнения протекающих реакций.

Основным назначение kt риформинга до настоящего времени остается повышение детонационной стойкости моторных топлив, однако не меньшее значение имеет и применение этого процесса для получения ароматических у/в - бензола, толуола и ксилолов.

В качестве катализаторов используют бифункциональные катализаторы, представляющие собой металлы платиновой группы, нанесенные на окись алюминия и промотированные галогеном. Катализаторы бывают монметалическими (платина на оксиде алюминия) и полиметалическими.

Полиметаллические kt риформинга наряду с Pt содержат несколько других металлов. Используемые для промотирования металлы можно разделить на 2 группы. К первой из них относятся иридий, рений, хорошо известные как kt гидро- и дегидрогенизации и гидрогенализа. Другая, более обширная группа промоторов, включает металлы, которые практически не активны в указанных реакциях. Такими металлами являются медь, кадмий, германий, олово, свинец и др. Большей частью также системы содержат, наряду с платиной, еще два элемента, из которых один принадлежит к первой группе, а другой - ко второй. Так, если Al - Pt kt промотируют репием, то в kt вводят еще один из следующих металлов: Cu, Ag, кадмий, цинк, индий, редкоземельные элементы - лантан, церий, неодим и др.

В качестве кислотного промотора в полиметаллических kt используется только хлор, массовое содержание его в kt 0,8-1,1%.

Технологически процесс осуществляется с неподвижным или движущимся слоем катализатора. При неподвижном слое сырье направляют в каскад из 3 адиабатических реакторов. На установке с движущемся слоем катализатора используют три реактора, выполненных в виде единой конструкции и расположенных один над другим.

В любом варианте исполнения отношение объемов катализатора в секциях составляет 1/2/4. Это связано с тем, что соотношение скоростей дегидрирования, изомеризации и дегидроциклизации составляет 4/2/1.

Основные реакции риформинга.

Основой процесса служат три типа реакций. Наиболее важны реакции, приводящие к образованию Ar у/в.

1. Дегидрирование шестичленных нафтенов:

2. Дегидроизомеризация пятичленных нафтенов:

3. Ароматизация (дегидроциклизация) парафинов:

Другой тип реакций, характерных для риформинга - изомеризация. Наряду с изомеризацией 5-ти членных и 6-ти членных нафтенов изомеризации подвергаются как парафины, так и ароматические у/в.

Способы получения сложных эфиров. Основные продукты и области их применения. Условия проведения реакции этерификации органических кислот со спиртами. Катализаторы процесса. Особенности технологического оформления реакционного узла этерификации.

1. Взаимодействие кислот со спиртами:

Это наиболее распространенный способ получения сложных эфиров.

2. Синтез сложных эфиров методом конденсации альдегидов:

Синтез сложных эфиров из альдегидов (реакция Тищенко) осуществляется в присутствии алкоголята алюминия, активированного хлоридом железа или, что лучше, хлоридом алюминия и окисью цинка. Данный метод имеет промышленное значение.

3. Присоединение органических кислот к алкенам:

4. Синтез сложных эфиров путем дегидрогенизации спиртов:

5. Получение сложных эфиров методом переэтерификации.

Данная реакция имеет две разновидности: реакция обмена между эфиром и спиртом спиртовыми радикалами (реакция алкоголиза):

и реакция обмена кислотными радикалами у спиртовой группы эфира:

6. Синтез эфиров из ангидридов кислот и спиртов:

7. Взаимодействие кетонов со спиртами:

8. Взаимодействие между галоидангидридами и спиртами:

9. Реакция между серебряными или калиевыми солями кислот и алифатическими галоидными производными:

10. Взаимодействие кислот с алифатическими диазосоединениями (в основном с диазометаном):

Основными продуктами реакции этерификации являются сложные эфиры, используемые в качестве растворителей, пластификаторов, синтетических смазочных масел и гидравлических жидкостей, душистых веществ, мономеров.

Этерификацию спиртов карбоновыми кислотами можно проводить в отсутствии катализатора, но в этом случае она протекает медленно и для достижения достаточной скорости требуется высокая температура (200-300ОС). Но когда примесь катализатора трудно отмывается, применяют именно некаталитический процесс. В присутствии кислотных катализаторов этерификация протекает при температуре 70-150ОС.

Наиболее распространенными катализаторами этерификации являются минеральные кислоты: серная, фосфорная. Могут использоваться бензолсульфокислота, толуолсульфокислота и т.д. Большую группу катализаторов составляют соли органических и неорганических кислот. Могут быть использованы в качестве катализаторов реакции этерификации: перекись титана, молибден на инертном носителе, активный этилат алюминия, алкоголяты титана и др. Все более широкое применение в качестве катализаторов получают ионообменные смолы.


Подобные документы

  • Характеристика промышленных способов алкилирования бензола пропиленом. Принципы алкилирования бензола олефинами в химической технологии. Проблемы проектирования технологических установок алкилирования бензола. Описание технологии процесса производства.

    дипломная работа [557,7 K], добавлен 15.11.2010

  • Зависимость показателей процесса сернокислотного алкилирования изобутана от состава алкенов. Влияние отношения изобутана к бутиленам на выходные показатели С-алкилирования. Свойства фтористоводородной кислоты. Технологический режим С-алкилирования.

    реферат [204,3 K], добавлен 22.02.2013

  • Материальные и энергетические потоки процесса. Этапы имитационного моделирования объекта в VisSim. Построение топологических и структурных схем подсистем. Моделирование работы системы управления при подаче возмущающего воздействия по потоку сырья.

    курсовая работа [1,3 M], добавлен 12.04.2015

  • Сырьё и катализаторы процесса алкилирования. Преимущества фтористоводородного алкилирования по сравнению с сернокислотным. Общая принципиальная технологическая схема установки фтористоводородного алкилирования. Промышленный процесс алкилирования.

    реферат [1,3 M], добавлен 23.11.2011

  • Процесс алкилирования фенола олефинами. Термодинамический анализ. Зависимость мольной доли компонентов от температуры. Адиабатический перепад температур в реакторе. Протонирование олефина с образованием карбкатиона. Окислительный аммонолиз пропилена.

    курсовая работа [159,9 K], добавлен 04.01.2009

  • Основы процесса пиролиза. Факторы, влияющие на процесс пиролиза. Техническая характеристика исходного сырья, материалов, реагентов, полуфабрикатов и изготовляемой продукции. Материальный баланс реактора гидрирования пропан–пропиленовой фракции.

    курсовая работа [285,7 K], добавлен 05.06.2014

  • Технические подробности каталитического риформинга: особенности и этапы, химизм данного процесса, кинетические схемы, платформинг. Ретроспектива совершенствования: оксидные, монометаллические и биметаллические катализаторы. Действие каталитических ядов.

    реферат [941,2 K], добавлен 16.05.2015

  • Теоретический анализ, химизм и механизм процесса получения изопропилбензола методом алкилирования бензола пропиленом в присутствии безводного хлористого алюминия. Кинетика и термодинамика процесса, технические и технологические приемы управления ним.

    дипломная работа [121,3 K], добавлен 18.05.2019

  • Реакция алкилирования фенола олефинами и области ее применения. Характеристика исходного сырья и получаемого продукта. Устройство и принцип действия основного аппарата. Технологический расчет основного аппарата и материальный баланс производства.

    дипломная работа [434,4 K], добавлен 14.04.2016

  • Кинетические закономерности каталитического процесса, их определение истинной кинетикой реакции на активной поверхности и условиями массопереноса и теплопереноса. Определение оптимальной температуры в каждом сечении реактора идеального вытеснения.

    реферат [693,0 K], добавлен 23.10.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.