Сернокислотное алкилиривание изобутана бутиленом
Зависимость показателей процесса сернокислотного алкилирования изобутана от состава алкенов. Влияние отношения изобутана к бутиленам на выходные показатели С-алкилирования. Свойства фтористоводородной кислоты. Технологический режим С-алкилирования.
Рубрика | Химия |
Вид | реферат |
Язык | русский |
Дата добавления | 22.02.2013 |
Размер файла | 204,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
ГОСУДАРСТВЕННОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ
ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ
«УФИМСКИЙ ГОСУДАРСТВЕННЫЙ НЕФТЯНОЙ
ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ»
Кафедра технологии нефти и газа
«Сернокислотное алкилиривание изобутана бутиленом»
Выполнил: ст. гр. БТП-07-01
Э.С. Даутов
К.О. Фазлыев
Проверил: доцент кафедры ТНГ,
О.Ю. Белоусова канд. техн. наук
Уфа 2010
Содержание
1 Назначение процесса
2 Сырье
3 Технологические параметры
4 Влияние серной кислоты
5 Технологический режим С-алкилирования
6 Катализаторы С-алкилирования
7 Механизм и стадии превращения
Список использованной литературы
1. Назначение процесса
Сернокислотное алкилирование для производства высокооктанового изокомпонента бензинов С- алкилированием изобутана бутиленами и пропиленом. Целевой продукт процесса -- алкилат, состоящий практически нацело из изопарафинов, имеет высокое октановое число (90…95 по моторному методу). Октановое число основного компонента алкилата -- изооктана (2,2,4-триметилпентана) -- принято, как известно, за 100.
В 1932 г. В. Н. Ипатьев показал возможность считавшегося до того инертным взаимодействия изобутана с олефинами. В качестве катализатора были использованы сначала АlСl3, затем серная и фтористоводородная кислоты. Первая промышленная установка сернокислотного С-алкилирования была введена в эксплуатацию в США в 1938 г., а фтористоводородного -- в 1942 г. Целевым продуктом вначале был исключительно компонент авиабензина, и лишь в послевоенные годы на базе газов каталитического крекинга алкилирование стали использовать для улучшения моторных качеств товарных автобензинов. Первая отечественная установка сернокислотного алкилирования была введена в 1942 г. на Грозненском НПЗ.
2. Сырье
С-алкилированию в нефтепереработке чаще всего подвергают изобутан и значительно реже изопентан (последний является ценным компонентом автобензина (его ОЧИМ = 93). Существенное влияние на показатели процесса оказывает состав алкенов. Этилен практически не алкилирует изобутан, но сульфатируется и полимеризуется. Пропилен легко вступает в реакцию с изобутаном, но октановое число мень-ше, чем при алкилировании бутиленами (табл. 6.6). Высшие алкены (С5 и выше) более склонны к реакциям деструктивного алкилирования с образованием низкомолекулярных и низкооктановых продуктов. Как видно из табл. 6.6, оптимальным сырьем для С-алкилирования изобутана являются бутилены. В нефтепереработке в качестве алкенового сырья обычно используют бутан-бутиленовую фракцию в смеси с пропан-пропиленовой с содержанием пропилена менее 50 % от суммы алкенов.
Алканы нормального строения С3-С5 в реакцию алкилирования не вступают и являются инертными примесями.
Диены, содержащиеся в сырье, образуют сложные продукты взаимодействия с серной кислотой и остаются в кислотной фазе, разбавляя кислоту, что увеличивает его расход. Поэтому диеновые углеводороды не должны содержаться в сырье. К сырью С-алкилирования предъявляются также повышенные требования по содержанию влаги и сернистых соединений. Если сырье каталитического крекинга не подвергалось предварительной гидроочистке, то бутан-бутиленовую фракцию крекинга -- сырье С-алкилирования -- обычно очищают щелочью или в процессах типа «Мерокс» от сернистых соединений.
Таблица 1 -- Зависимость показателей процесса сернокислотного алкилирования изобутана от состава алкенов
Показатель |
Сырье |
|||
Пропилен |
Пропилен |
Амилен |
||
Объемный выход алкилата, % на алкен |
175...187 |
170...172 |
155...160 |
|
Объемный расход изобутана, % на алкен |
127...135 |
111...117 |
96...114 |
|
Удельный расход кислоты на алкилат, кг/м3 |
216...240 |
48...72 |
120 |
|
Октановое число алкилата: |
||||
моторный метод |
88..90 |
92...94 |
91 |
|
исследовательский метод |
89...91 |
94...96 |
92...93 |
3. Технологические параметры
Основы управления процессом сернокислотного С-алкилирования. Важными оперативными параметрами, влияющими на материальный баланс и качество продуктов С-алкилирования, являются давление, температура, объемная скорость сырья, концентрация кислоты, соотношения изобутан : олефин, кислота : сырье и интенсивность перемешивания сырья с катализатором.
Давление. При сернокислотном жидкофазном С-алкилировании изменение давления не оказывает существенного влияния на процесс. Давление должно ненамного превышать упругость паров углеводородов сырья при температуре катализа. Обычно в реакторах с внутренней системой охлаждения при С-алкилировании изобутана бутиленами поддерживают давление 0,35…0,42 МПа. Если сырье содержит пропан-пропиленовую фракцию, то давление в реакторе несколько повышают.
Температура. При повышении температуры снижается вязкость кислоты и углеводородов и создаются более благоприятные условия для их перемешивания и диспергирования. Это обусловливает большую скорость сорбции углеводородов кислотой и, следовательно, большую скорость всех протекающих реакций. При этом снижаются затраты энергии на перемешивание сырья и катализатора, что улучшает экономические показатели процесса.
Рисунок 1- Влияние температуры на октановое число алкилата
Однако повышение температуры выше 15 °С интенсифицирует побочные реакции деструктивного алкилирования, полимеризации и сульфирования углеводородов в большей степени, чем целевую реакцию. При этом увеличивается содержание малоразветвленных алканов, снижается избирательность реакций С-алкилирования, возрастает расход кислоты и ухудшается качество алкилата (рис.1).
Снижение температуры в определенных пределах оказывает благоприятное влияние на селективность реакций, выход и качество алкилата. Лимитирующим фактором при снижении температуры реакции является чрезмерное повышение вязкости кислоты, что затрудняет создание эмульсий с высокой поверхностью раздела фаз. На практике оптимальный интервал температур при С-алкилировании изобутана бутиленами составляет 5…13 °С, а пропиленом -- 10…22 °С.
Соотношение изобутан: олефин является одним из важнейших параметров С-алкилирования. Избыток изобутана интенсифицирует целевую и подавляет побочные реакции С-алкилирования.
Таблица 2 - Влияние отношения изобутана к бутиленам на выходные показатели сернокислотного С-алкилирования
Соотношение изобутан : олефин |
7 : 1 |
5 : 1 |
3 : 1 |
|
Выход алкилата (н. к. - 177 °С), % об |
163 |
160 |
156 |
|
Октановое число алкилата (ОЧММ) |
93,5 |
92,5 |
91,5 |
Чрезмерное повышение этого соотношения увеличивает капитальные и эксплуатационные затраты, поэтому поддерживать его выше 10 : 1 нерентабельно.
4. Влияние серной кислоты
Концентрация кислоты. Для С-алкилирования бутан-бутиленовых углеводородов обычно используют серную кислоту, содержащую от 88 до 98 % моногидрата. Снижение ее концентрации в процессе работы происходит за счет накопления высокомолекулярных полимерных соединений и воды, попадающей в систему вместе с сырьем. Если концентрация кислоты становится ниже 88 %, усиливаются побочные реакции, приводящие к ухудшению качества алкилата (рис. 2).
Рисунок 2 - Влияние концентрации серной кислоты на октановое число алкилбензина
Кривая зависимости ОЧММ дебутанизированного алкилбензина, полученного из фракции С4, от концентрации H2SO4 имеет четко выраженный максимум при концентрации 95…96 %. При С-алкилировании пропиленом лучше использовать более концентрированную -- 100...101 %-ю кислоту. Разбавление H2SO4 водой более интенсивно снижает активность катализатора, чем разбавление высокомолекулярными соединениями. В этой связи рекомендуется тщательно осушать сырье и циркулирующие в системе углеводороды. Соотношение серная кислота : сырье характеризует концентрации катализатора и сырья в реакционной смеси. Скорость процесса С-алкилирования в соответствии с законом действующих поверхностей должна описываться как функция от произведения концентраций кислоты и углеводородов на границе раздела фаз (т. е. поверхностных концентраций). Соотношение катализатор : сырье должно быть в оптимальных пределах, при которых достигается максимальный выход алкилата высокого качества. Оптимальное значение этого отношения (объемного) составляет около 1,5. Объемная скорость подачи сырья выражается отношением объема сырья, подаваемого в единицу времени, к объему катализатора в реакторе. Влияние этого параметра на результаты С-алкилирования во многом зависит от конструкции реактора и, поскольку процесс диффузионный, от эффективности его перемешивающего устройства. Если перемешивание недостаточно эффективно, возможно, что не вся масса кислоты контактирует с углеводородным сырьем. Экспериментально установлено: при оптимальных значениях остальных оперативных параметров продолжительность пребывания сырья в реакторе -- 200…1200 с, что соответствует объемной скорости подачи олефинов 0,3...0,.
5. Технологический режим С-алкилирования
Таблица 3 - Технологический режим С-алкилирования
Секция С-алкилирования |
|||||
Температура, °С |
5…15 |
||||
Давление, МПа |
0,6…1,0 |
||||
Мольное соотношение иэобутан : бутилены |
(6…12) : 1 |
||||
Объемное соотношение кислота : сырье |
(1,1…1,5) : 1 |
||||
Объемная скорость подачи олефинов, |
0,3…0,5 |
||||
Концентрация H2SO4, по моногидрату |
88…99 |
||||
Секция ректификации |
|||||
К-1 |
К-2 |
К-3 |
К-4 |
||
Давление, МПа |
1,6…1,7 |
0,7 |
0,4 |
0,12…0,13 |
|
Температура, °С: |
|||||
верха |
40…45 |
45…50 |
45…50 |
100…110 |
|
низа |
85…100 |
95…100 |
130…140 |
200…220 |
|
Число тарелок |
40 |
80 |
40 |
20 |
6. Катализаторы С-алкилирования
Из всех возможных кислотных катализаторов в промышленных процессах алкилирования применение получили только серная и фтористоводородная кислоты
Таблица 4 - Свойства 100 % серной и 100 % фтористоводородных кислот
Показатель |
S |
HF |
|
Плотность, кг/м3 |
1830,5 (при 20 °С) |
955 (при 25 °С) |
|
Температура, °С: |
|||
плавления 10,4 -83,4 |
|||
кипения 296,2 19,4 |
|||
Вязкость, сП (мПа · с) |
33,0 (при 15 °С) |
0,53 (при 0 °С) |
|
Поверхностное натяжение, Н/м · |
55 (при 20 °С) |
8,6 (при 18 °С) |
|
Функция кислотности Гаммета |
-12,2 |
-10,2 |
|
Растворимость при 13,3 °С, % маcс: |
|||
изобутана в кислоте |
0,10 |
3,1 |
|
кислоты в изобутане |
?0,01 |
0,6 |
|
олефинов в кислоте |
значительная |
значительная |
Наиболее важным для жидкофазного катализа показателем кислот является растворимость в них изобутана и олефинов. Растворимость изобутана в H2SO4 невелика и приблизительно в 30 раз ниже, чем в HF. Олефины в этих кислотах растворяются достаточно хорошо и быстро. В этой связи концентрация изобутана на поверхности раздела фаз (эмульсии типа углеводород в кислоте) намного меньше концентрации олефинов, что обусловливает большую вероятность протекания реакций полимеризации олефинов. Это обстоятельство, а также высокие значения плотности, вязкости и поверхностного натяжения кислот, особенно H2SO4 обусловливает протекание реакций С-алкилирования в диффузионной области с лимитирующей стадией массопереноса реактантов к поверхности раздела фаз. Для ускорения химических реакций С-алкилирования в среде H2SO4 и HF необходимо интенсифицировать процессы перемешивания и диспергирования реакционной массы с целью увеличения поверхности раздела кислотной и углеводородной фаз.
По совокупности каталитических свойств HF более предпочтителен, чем H2SO4 Процессы фтористоводородного С-алкилирования характеризуются следующими основными преимуществами по сравнению с сернокислотным:
значительно меньший выход побочных продуктов, следовательно, более высокая селективность;
более высокие выход и качествоРазмещено на http://www.allbest.ru/
алкилата;
значительно меньший расход кислоты (всего 0,7 кг вместо 100--160 кг Размещено на http://www.allbest.ru/
H2SO4 на 1 т алкилата);
возможность проведения процесса при более высоких температурах (25…40 °С Размещено на http://www.allbest.ru/
вместо 7…10 °С при сернокислотном) с обычным водяным охлаждением;
возможность применения простых реакторных устройств без движущихся и трущихся частей, обусловленная повышенной взаимной растворимостью изобутана и HF;
небольшая металлоемРазмещено на http://www.allbest.ru/
кость реактора (в 10…15 раз меньше, чему сернокислотного контактора, и в 25…35 раз меньше, чем у каскадногореактора);
легкая регенеруемость катализатора, что является одной из причин меньшего его расхода, и др.
Размещено на http://www.allbest.ru/
Однако большая летучесть и высокая токсичность фтороводорода ограничивают его более широкое применение в процессах С-алкилирования. В отечественной нефтепереработке применяются только процессы сернокислотного С-алкилирования. На НПЗ США около половины от суммарной мощности установок приходится на долю фтористоводородного С-алкилирования.
7. Механизм и стадии превращения
С-алкилирование изоалканов олефинами в общем виде описывается уравнением
Реакции синтеза высокомолекулярных углеводородов С-алкилированием являются обратными по отношению к крекингу алканов и потому имеют сходные механизмы реагирования и относятся к одному классу катализа -- кислотному. Реакции С-алкилирования протекают с выделением 85…90 кДж/моль (20…22 ккал/ моль) тепла в зависимости от вида олефина и образующегося изопарафина, поэтому термодинамически предпочтительны низкие температуры, причем уже при 100 °С и ниже ее можно считать практически необратимой. Именно в таких условиях осуществляют промышленные процессы каталитического алкилирования. Из парафинов к каталитическому алкилированию способны только изопарафины, имеющие третичный атом углерода. Олефины могут быть различными (даже этилен), но чаще всего применяют бутилены, алкилирующие изобутан с образованием изо-, по температуре кипения наиболее пригодных в качестве компонента бензинов. С-алкилирование протекает, как и каталитический крекинг, по карбений-ионному цепному механизму. Рассмотрим механизм С-алкилирования на примере реакции изобутана с бутеном-2. сернокислотный алкилирование изобутан бутилен
1. Первой стадией процесса (возникновения цепи) является протонирование олефина:
2. При высоком отношении изобутан : бутен бутильный карбений-ион реагирует в основном с изобутаном с образованием третичного карбений-иона:
2а. Возможна также изомеризация первичного бутильного катиона в третичный без обмена протонами:
3. Образовавшийся по реакциям 2 и 2а третичный бутильный карбениевый ион вступает в реакцию с бутеном:
4. Далее вторичный октильный карбкатион изомеризуется в более устойчивый третичный:
5. Изомеризованные октильные карбкатионы в результате обмена протоном с изоалканом образуют целевой продукт процесса -- 2,2,4-, 2,3,3- и 2,3,4-триметилпентаны:
Реакции 2, 3, 4 и 5 представляют собой звено цепи, повторение которого приводит к цепному процессу.
6. Обрыв цепи происходит при передаче протона от карбкатиона к аниону кислоты:
Наряду с основными реакциями С-алкилирования изобутана бутиленами, при которых на 1 моль изобутана расходуется 1 моль олефина, в процессе протекают и побочные реакции, приводящие к образованию продуктов более легких или более тяжелых, чем целевой продукт, или к потере активности и увеличению расхода катализаторов. К таковым относят реакции деструктивного алкилирования, самоалкилирование изобутана, С-алкилирование с участием и алканов и алкенов, полимеризацию алкенов, сульфирование олефинов с образованием сложных эфиров, кислого шлама и др. Деструктивное алкилирование происходит в результате ?-распада промежуточных карбениевых ионов и приводит к образованию углеводородов -. Скорость этих реакций снижается с понижением температуры.
Полимеризация алкенов, катализируемая также кислотами, дает продукты большей молекулярной массы, чем С8. Протекание этих реакций подавляется избытком изобутана.
Реакции самоалкилирования, осуществляемые с Н-переносом, протекают при большом избытке изобутана и малой концентрации бутиленов: Эта реакция нежелательна, поскольку вызывает повышенный расход изопарафина и образование малоценного н-бутана.
Список использованной литературы
1. С. А. Ахметов, Т. П. Сериков, И. Р. Кузеев, М. И. Баязитов Технология и оборудование процессов переработки нефти и газа. С-Пб. - Недра, 2006.
Размещено на Allbest.ru
Подобные документы
Основные промышленные способы производства изооктана. Технологическая схема и краткое описание процесса производства. Требования к серной кислоте, используемой в качестве катализатора. Принцип работы установки для алкилирования изобутана изобутиленом.
курсовая работа [635,8 K], добавлен 16.06.2014Сырьё и катализаторы процесса алкилирования. Преимущества фтористоводородного алкилирования по сравнению с сернокислотным. Общая принципиальная технологическая схема установки фтористоводородного алкилирования. Промышленный процесс алкилирования.
реферат [1,3 M], добавлен 23.11.2011Материальные и энергетические потоки процесса. Этапы имитационного моделирования объекта в VisSim. Построение топологических и структурных схем подсистем. Моделирование работы системы управления при подаче возмущающего воздействия по потоку сырья.
курсовая работа [1,3 M], добавлен 12.04.2015Технологические особенности процесса сернокислотного алкилирования изопарафинов олефинами. Выбор типа и конструкции реактора. Механизм пиролиза пентана. Катализаторы риформинга и уравнения протекающих реакций. Этерификация спиртов карбоновыми кислотами.
реферат [1,0 M], добавлен 28.02.2009Характеристика промышленных способов алкилирования бензола пропиленом. Принципы алкилирования бензола олефинами в химической технологии. Проблемы проектирования технологических установок алкилирования бензола. Описание технологии процесса производства.
дипломная работа [557,7 K], добавлен 15.11.2010Номенклатура, классификация, химические свойства аминов. Основные и кислотные свойства, реакции ацилирования и алкилирования. Взаимодействие аминов с азотистой кислотой. Восстановление азотсодержащих органических соединений, перегруппировка Гофмана.
курсовая работа [608,4 K], добавлен 25.10.2014Теоретический анализ, химизм и механизм процесса получения изопропилбензола методом алкилирования бензола пропиленом в присутствии безводного хлористого алюминия. Кинетика и термодинамика процесса, технические и технологические приемы управления ним.
дипломная работа [121,3 K], добавлен 18.05.2019Общие правила техники безопасности при работе в химической лаборатории. Оборудование для процесса алкилирования. Процессы этерификации, гидролиза и дегидратации. Окисление карбонильных соединений. Условия получения глицерина из непищевого сырья.
отчет по практике [491,9 K], добавлен 16.01.2013Классификация, свойства, распространение в природе, основной способ получения эфиров карбоновых кислот путем алкилирования их солей алкилгалогенидами. Реакции этерификации и переэтерификация. Получение, восстановление и гидролиз сложных эфиров (эстеров).
лекция [151,9 K], добавлен 03.02.2009Процесс алкилирования фенола олефинами. Термодинамический анализ. Зависимость мольной доли компонентов от температуры. Адиабатический перепад температур в реакторе. Протонирование олефина с образованием карбкатиона. Окислительный аммонолиз пропилена.
курсовая работа [159,9 K], добавлен 04.01.2009