Характеристика сплава Fe-C

Углерод как основа всех органических веществ. Анализ истории производства и использования железа. Рассмотрение диаграммы равновесия сплава Fe-C. Виды чугунов: серый, белый, ковкий. Особенности технологии производства и обработки железа и сплавов.

Рубрика Химия
Вид курсовая работа
Язык русский
Дата добавления 15.01.2013
Размер файла 3,9 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Введение

сплав железо чугун

Окружающие нас металлические предметы редко состоят из чистых металлов. Только алюминиевые кастрюли или медная проволока имеют чистоту около 99,9%. В большинстве же других случаев люди имеют дело со сплавами. Сплавы - это системы, состоящие из двух или нескольких металлов, а также из металлов и неметаллов, обладающие свойствами, присущи металлическому состоянию. Так, различные виды железа и стали содержат наряду с металлическими добавками незначительные количества углерода, которые оказывают решающее влияние на механическое и термическое поведение сплавов. Все сплавы имеют специальную маркировку, т.к. сплавы с одним названием (например, латунь) могут иметь разные массовые доли других металлов.

Для изготовления сплавов применяют различные металлы. Самое большое значение среди всех сплавов имеют стали различных составов. Простые конструкционные стали состоят из железа относительно высокой чистоты с небольшими (0,07--0,5%) добавками углерода. Так, чугун, получаемый в доменной печи, содержит около 10% других металов, из них примерно 3% составляет углерод, а остальные -- кремний, марганец, сера и фосфор. А легированные стали получают, добавляя к железу кремний, медь, марганец, никель, хром, вольфрам, ванадий и молибден.

Мой сплав - Fe-C.

Цель моей курсовой работы -- изучение сплава Fe-C (Сталь 45) и его применение.

Список вопросов, подлежащих изучению и анализу:

• Марка стали или сплава, соответствующая заданному составу.

• Зарубежный аналог стали или сплава.

• Двойная диаграмма равновесия основных компонентов сплава.

• Формирование структуры сплава в равновесных условиях.

• Фазовый состав сплава после медленного охлаждения.

• Кристаллическое строение основных фаз.

• Технология получения сплава.

• Механические свойства после стандартной обработки.

• Область применения сплава.

• Возможности нетрадиционного использования сплава.

1.Литературный обзор

1.1 Происхождение углерода, его свойства, структура и применение

Углерод в виде древесного угля применялся в глубокой древности для выплавки металлов. Издавна известны аллотропные модификации углерода -- алмаз и графит.

На рубеже XVII--XVIII вв. возникла теория флогистона, выдвинутая Иоганном Бехером и Георгом Шталем. Эта теория признавала наличие в каждом горючем теле особого элементарного вещества -- невесомого флюида -- флогистона, улетучивающегося в процессе горения. Так как при сгорании большого количества угля остается лишь немного золы, флогистики полагали, что уголь -- это почти чистый флогистон. Именно этим объясняли, в частности, «флогистирующее» действие угля, -- его способность восстанавливать металлы из «известей» и руд. Позднейшие флогистики, Реомюр, Бергман и другие, уже начали понимать, что уголь представляет собой элементарное вещество. Однако впервые таковым «чистый уголь» был признан Антуаном Лавуазье, исследовавшим процесс сжигания в воздухе и кислороде угля и других веществ. В книге Гитона де Морво, Лавуазье, Бертолле и Фуркруа «Метод химической номенклатуры» (1787) появилось название «углерод» (carbone) вместо французского «чистый уголь» (charbone pur). Под этим же названием углерод фигурирует в «Таблице простых тел» в «Элементарном учебнике химии» Лавуазье.

В 1791 году английский химик Теннант первым получил свободный углерод; он пропускал пары фосфора над прокалённым мелом, в результате чего образовывались фосфат кальция и углерод. То, что алмаз при сильном нагревании сгорает без остатка, было известно давно. Ещё в 1751 г. германский император Франц I согласился дать алмаз и рубин для опытов по сжиганию, после чего эти опыты даже вошли в моду. Оказалось, что сгорает лишь алмаз, а рубин (окись алюминия с примесью хрома) выдерживает без повреждения длительное нагревание в фокусе зажигательной линзы. Лавуазье поставил новый опыт по сжиганию алмаза с помощью большой зажигательной машины и пришёл к выводу, что алмаз представляет собой кристаллический углерод. Второй аллотроп углерода -- графит -- в алхимическом периоде считался видоизменённым свинцовым блеском и назывался plumbago; только в 1740 г. Потт обнаружил отсутствие в графите какой-либо примеси свинца. Шееле исследовал графит (1779) и, будучи флогистиком, счёл его сернистым телом особого рода, особым минеральным углём, содержащим связанную «воздушную кислоту» (СО2) и большое количество флогистона.

Двадцать лет спустя Гитон де Морво путем осторожного нагревания превратил алмаз в графит, а затем в угольную кислоту.

Физические свойства

Углерод существует во множестве аллотропных модификаций с очень разнообразными физическими свойствами. Разнообразие модификаций обусловлено способностью углерода образовывать химические связи разного типа. Аллотропные модификации углерода: Кристаллический углерод: Алмаз, Графен, Графит, Карбин, Лонсдейлит , Наноалмаз, Фуллерены, Фуллерит, Углеродное волокно, Углеродные нановолокна, Углеродные нанотрубки. Аморфный углерод: Активированный уголь, Древесный уголь,Ископаемый уголь: антрацит и др.,Кокс каменноугольный, нефтяной и др., Стеклоуглерод, Техуглерод, Сажа, Углеродная нанопена.

На практике, как правило, перечисленные выше аморфные формы являются химическими соединениями с высоким содержанием углерода, а не чистой аллотропной формой углерода.

Кластерные формы: Астралены, Диуглерод

Структура

Электронные орбитали атома углерода могут иметь различную геометрию, в зависимости от степени гибридизации его электронных орбиталей. Существует три основных геометрии атома углерода.

тетраэдрическая, образуется при смешении одного s- и трех p-электронов (sp3-гибридизация). Атом углерода находится в центре тетраэдра, связан четырьмя эквивалентными у-связями с атомами углерода или иными в вершинах тетраэдра. Такой геометрии атома углерода соответствуют аллотропные модификации углерода алмаз и лонсдейлит. Такой гибридизацией обладает углерод, например, в метане и других углеводородах.

тригональная, образуется при смешении одной s- и двух p-электронных орбиталей (sp2-гибридизация). Атом углерода имеет три равноценные у-связи, расположенные в одной плоскости под углом 120° друг к другу. Не участвующая в гибридизации p-орбиталь, расположенная перпендикулярно плоскости у-связей, используется для образования р-связи с другими атомами. Такая геометрия углерода характерна для графита, фенола и др.

дигональная, образуется при смешении одного s- и одного p-электронов (sp-гибридизация). При этом два электронных облака вытянуты вдоль одного направления и имеют вид несимметричных гантелей. Два других р-электрона дают р-связи. Углерод с такой геометрией атома образует особую аллотропную модификацию -- карбин.

В 2010 году сотрудники университета Ноттингема Стивен Лиддл и коллеги получили соединение (мономерный дилитио метандий), в котором четыре связи атома углерода находятся в одной плоскости. Ранее возможность «плоского углерода» была предсказана Паулем фон Шлейером для вещества , но оно не было синтезировано.

Аморфный углерод (строение)

В основе строения аморфного углерода лежит разупорядоченная структура монокристаллического (всегда содержит примеси) графита. Это кокс, бурые и каменные угли, техуглерод, сажа, активный уголь.

Применение

Графит используется в карандашной промышленности. Также его используют в качестве смазки при особо высоких или низких температурах.

Алмаз, благодаря исключительной твердости, незаменимый абразивный материал. Алмазным напылением обладают шлифовальные насадки бормашин. Кроме этого, ограненные алмазы -- бриллианты используются в качестве драгоценных камней в ювелирных украшениях. Благодаря редкости, высоким декоративным качествам и стечению исторических обстоятельств, бриллиант неизменно является самым дорогим драгоценным камнем. Исключительно высокая теплопроводность алмаза (до 2000 Вт/м·К) делает его перспективным материалом для полупроводниковой техники в качестве подложек для процессоров. Но относительно высокая цена (около 50 долларов/грамм) и сложность обработки алмаза ограничивают его применение в этой области.

В фармакологии и медицине широко используются различные соединения углерода -- производные угольной кислоты и карбоновых кислот, различные гетероциклы, полимеры и другие соединения. Так, карболен (активированный уголь), применяется для абсорбции и выведения из организма различных токсинов; графит (в виде мазей) -- для лечения кожных заболеваний; радиоактивные изотопы углерода -- для научных исследований (радиоуглеродный анализ).

Углерод играет огромную роль в жизни человека. Его применения столь же разнообразны, как сам этот многоликий элемент. В частности углерод является неотъемлемой составляющей стали (до 2,14 % масс.) и чугуна (более 2,14 % масс.)

Углерод является основой всех органических веществ. Любой живой организм состоит в значительной степени из углерода. Углерод -- основа жизни. Источником углерода для живых организмов обычно является СО2 из атмосферы или воды. В результате фотосинтеза он попадает в биологические пищевые цепи, в которых живые существа поедают друг друга или останки друг друга и тем самым добывают углерод для строительства собственного тела. Биологический цикл углерода заканчивается либо окислением и возвращением в атмосферу, либо захоронением в виде угля или нефти.

Углерод в виде ископаемого топлива: угля и углеводородов (нефть, природный газ) -- один из важнейших источников энергии для человечества.

1.2 История производства и использования железа, его свойства

Свойства железных сплавов

Более-менее общеизвестно, что материал, в обиходе называемый железом, даже в простейшем случае представляет собой сплав собственно железа, как химического элемента, с углеродом. При концентрации углерода менее 0,3 % получается мягкий пластичный тугоплавкий (Температура плавления железа выше 1500С) металл, за которым и закрепляется название его основного ингредиента -- железа. Представление о том железе, с которым имели дело наши предки, сейчас можно получить, исследовав механические свойства гвоздя.

При концентрации углерода более 0,22 %, но менее 2,14 % сплав называется сталью. В первозданном виде сталь походит по своим свойствам на железо, но, в отличие от него, поддается закалке -- при резком охлаждении сталь приобретает большую твёрдость -- замечательное достоинство, однако, почти совершенно сводимое на нет благоприобретенной в процессе той же закалки хрупкостью. Наконец, при концентрации углерода свыше 2,14 % мы получаем чугун. Хрупкий, легкоплавкий, хорошо пригодный для литья, но не поддающийся обработке ковкой, металл. Чугун насыщен графитовыми включениями, делающими металл неоднородным и механически непрочным. Температура плавления чугуна порядка 1150С.

Технологии производства и обработки железа и сплавов

С производством железа связано достаточно много технологий, которые сложно расположить в хронологическом порядке.

Использование железа началось намного раньше, чем его производство. Иногда находили куски серовато-чёрного металла, который, перекованный в кинжал или наконечник копья, давал оружие более прочное и пластичное, чем бронза, и дольше держал острое лезвие. Затруднение состояло в том, что этот металл находили только случайно. Теперь мы можем сказать, что это было метеоритное железо. Поскольку железные метеориты представляют собой железоникелевый сплав, можно предположить, что качество отдельных уникальных кинжалов, например, могло соперничать с современным ширпотребом. Однако, та же уникальность, приводила к тому, что такое оружие оказывалось не на поле боя, а в сокровищнице очередного правителя.

Первым устройством для получения железа из руды была одноразовая сыродутная печь. При огромном количестве недостатков, долгое время это был единственный способ получить металл из руды.

Впервые железо научились обрабатывать народы Анатолии. Древнегреческая традиция считала открывателем железа народ халибов, для которых в литературе использовалось устойчивое выражение «отец железа», и само название стали в греческом языке (ЧЬлхвт) происходит именно от этнонима.

Первым шагом в зарождающейся чёрной металлургии было получение железа путём восстановления его из окиси. Руда перемешивалась с древесным углем и закладывалась в печь. При высокой температуре, создаваемой горением угля, углерод начинал соединяться не только с атмосферным кислородом, но и с тем, который был связан с атомами железа.

После выгорания угля в печи оставалась так называемая крица -- комок пористого восстановленного железа с примесью большого количества шлаков. Крицу потом снова разогревали и подвергали обработке ковкой, выколачивая шлак из железа. Полученный брусок железа (в котором все же оставалось 2-4% шлака) назывался кричной болванкой. Долгое время в металлургии железа именно ковка была основным элементом технологического процесса, причём, с приданием изделию формы она было связана в последнюю очередь. Ковкой получался сам материал.

Применение угля и коксование

С начала XVII века европейской кузницей стала Швеция, производившая половину железа в Европе. В середине XVIII века её роль в этом отношении стала стремительно падать в связи с очередным изобретением -- применением в металлургии каменного угля.

Прежде всего надо сказать, что до XVIII века включительно каменный уголь в металлургии практически не использовался -- из-за высокого содержания вредных для качества продукта примесей, в первую очередь -- серы. С XVII века в Англии каменный уголь, правда, начали применять в пудлинговочных печах для отжига чугуна, но это позволяло достичь лишь небольшой экономии древесного угля -- большая часть топлива расходовалась на плавку, где исключить контакт угля с рудой было невозможно.

Устранять серу коксованием научились в Англии в 1735 году, после чего появилась возможность использовать для выплавки железа большие запасы каменного угля. Но за пределами Англии эта технология распространилась только в XIX веке.

Потребление же топлива в металлургии уже тогда было огромно -- домна пожирала воз угля в час. Древесный уголь превратился в стратегический ресурс. Именно изобилие дерева в самой Швеции и принадлежащей ей Финляндии позволило шведам развернуть производство таких масштабов. Англичане, имевшие меньше лесов (да и те были зарезервированы для нужд флота), вынуждены были покупать железо в Швеции до тех пор, пока не научились использовать каменный уголь.

Восстановление водородом

Доменные печи и конвертерное производство является достаточно современным, но весьма грязным для экологии процессом. При том, что большая часть железа получается в кислородно-конвертерном производстве, велики и выбросы углекислого и угарного газов в атмосферу. Модной альтернативой становится прямое восстановление железа из руды водородом. При этом образующиеся частички железа расплавляются в электрических печах, после чего добавляется углерод и получается сталь.

Применение

Железо -- один из самых используемых металлов, на него приходится до 95 % мирового металлургического производства.

Железо является основным компонентом сталей и чугунов -- важнейших конструкционных материалов.

Железо может входить в состав сплавов на основе других металлов -- например, никелевых.

Магнитная окись железа (магнетит) -- важный материал в производстве устройств долговременной компьютерной памяти: жёстких дисков, дискет и т. п.

Ультрадисперсный порошок магнетита используется во многих черно-белых лазерных принтерах в смеси с полимерными гранулами в качестве тонера. Здесь одновременно используется чёрный цвет магнетита и его способность прилипать к намагниченному валику переноса.

Уникальные ферромагнитные свойства ряда сплавов на основе железа способствуют их широкому применению в электротехнике для магнитопроводов трансформаторов и электродвигателей.

Хлорид железа(III) (хлорное железо) используется в радиолюбительской практике для травления печатных плат.

Семиводный сульфат железа (железный купорос) в смеси с медным купоросом используется для борьбы с вредными грибками в садоводстве и строительстве. Железо применяется в качестве анода в железо-никелевых аккумуляторах, железо-воздушных аккумуляторах.

Водные растворы хлоридов двухвалентного и трёхвалентного железа, а также его сульфатов используются в качестве коагулянтов в процессах очистки природных и сточных вод на водоподготовке промышленных предприятий.

1.3 Современное использование чугунов

Свойства данного материала обеспечили ему широкое применение в машиностроении. Кристаллизуется он при довольно низких температурах, дает малую усадку, в жидком состоянии сохраняет высокую текучесть. Его литейные свойства оцениваются как высокие. Серый чугун служит основным материалом для цилиндров и поршней самых разных механизмов, станин станков и пр. Склонность данного вида чугуна к растрескиванию при сварке обуславливает необходимость проявления особой осторожности при работе с заготовками. Практикуемое довольно часто отбеливание чугуна, используемое во время сварки, с одной стороны, делает его более твердым, а с другой, исключает всякую возможность его механической обработки.

Существуют и такие сорта серого чугуна, которые вообще сварке не подлежат. В частности, т. н. горелый чугун, который претерпел длительное воздействие повышенных температур, был обработан кислотами или горячим паром.

2.Содержание работы

2.1 Маркировка чугунов

Классификация и маркировка чугуна. Химический состав.

В зависимости от содержания углерода серый чугун называется доэвтектическим (2,14-4,3 % углерода), эвтектическим (4,3 %) или заэвтектическим (4,3-6,67 %). Состав сплава влияет на структуру материала.

Чугуном называется сплав железа с углеродом, содержащий углерода от 2 до 6,67%. Наряду с углеродом в чугуне содержится Si, Mn, S и Р. Содержание S и Р в чугуне больше, чем в стали. В специальные (легированные) чугуны вводят легирующие добавки -- Ni, Mo, V, Сr и др. Чугун делят по структуре на белый, серый и ковкий; по химическому составу -- на легированный и нелегированный.

Чугун, получаемый в доменных печах, подразделяется на передельный чугун, используемый для передела в сталь, и литейный чугун, служащий одним из основных компонентов шихты в чугунолитейном производстве.

До 70-х гг. 20 в. в доменных печах иногда выплавляли зеркальный чугун (10--25% Mn), применявшийся в качестве раскислителя при выплавке стали и для получения специальных видов чугуна. При использовании для выплавки чугуна. железных руд, содержащих Сг, Ni, Ti и др. легирующие элементы, получают т. н. природнолегированные чугуны. При производстве отливок в чугунолитейных цехах чугун. подразделяют: в зависимости от степени графитизации, обусловливающей вид излома, -- на серый, белый и половинчатый (или отбелённый); в зависимости от формы включений графита -- на чугун. с пластинчатым, шаровидным (высокопрочный .), вермикулярным и хлопьевидным (ковкий .) графитом; в зависимости от характера металлической основы -- на перлитный, ферритный, перлитно-ферритный, аустенитный, бейнитный и мартенситный; в зависимости от назначения -- на конструкционный и чугун. со специальными свойствами; по химическому составу -- на легированные и нелегированные.

Назначение

Серый чугун -- наиболее широко применяемый вид (машиностроение, сантехника, строительные конструкции) Перлитный серый чугун имеет высокие прочностные свойства и применяется для цилиндров, втулок и др. нагруженных деталей двигателей, станин и т.д. Для менее ответственных деталей используют серый чугун с ферритно-перлитной металлической основой. Белый чугун вследствие низких механических свойств и хрупкости имеет ограниченное применение для деталей простой конфигурации, работающих в условиях повышенного абразивного износа. Легирование белого чугуна карбидообразующими элементами (Cr, W, Mo и др.) повышает его износостойкость. Половинчатый чугун содержит часть углерода в свободном состоянии в виде графита, а часть -- в связанном в виде карбидов. Применяется в качестве фрикционного материала, работающего в условиях сухого трения (тормозные колодки), а также для изготовления деталей повышенной износостойкости (прокатные, бумагоделательные, мукомольные валки). Ковкий чугун используют в основном в автомобиле-, тракторо- и сельхозмашиностроении. Наблюдается тенденция (особенно в автомобилестроении) к замене ковкого чугуна высокопрочным с шаровидным графитом с целью повышения прочности отливок, уменьшения длительности технологического цикла и упрощения технологии изготовления. Высокопрочный чугун применяется для замены стальных литых и кованых деталей (коленчатые валы двигателей, компрессоров и т.д.), а также деталей из ковкого или обычного серого чугуна .Чугун с вермикулярным графитом применяется в дизелестроении и других областях машиностроения.

Легированные чугуны

Чугун с 5--7% Si (Силал) применяется в качестве жаростойкого материала. Чугун с 12--18% Si (ферросилид) обладает высокой коррозионной стойкостью в растворах солей, кислот (кроме соляной) и щелочей. Такой чугун, легированный молибденом (антихлор), характеризуется высокой стойкостью в соляной кислоте. Чугун с 19--25% Al (Чугаль) обладает наибольшей по сравнению с известными чугунами жаростойкостью в воздушной среде и средах, содержащих серу. В качестве износостойких наибольшее распространение получили чугуны, легированные Cr (до 2,5%) и Ni (до 6%) -- нихарды. Аустенитные никелевые чугуны, легированные Mn, Cu, Cr (нирезисты), применяются как коррозионностойкие и жаропрочные.

2.1.1 Характеристика чугунов

Серый чугун

Маркировка серого чугуна определена ГОСТ 1412-85 «Чугун с пластинчатым графитом для отливок. Марки». Согласно стандарта, такой чугун маркируется буквами «СЧ» и двумя цифрами, которые показывают минимально допустимое временное сопротивление чугуна в кгс/мм2 (0,1*Н/мм2). Например, обозначение чугуна СЧ 30 означает, что он относится к серым чугунам с пластинчатым графитом и его =300 Н/мм2 (30 кгс/мм2). Всего стандартом предусмотрен следующий ряд марок чугунов - от СЧ 10 до СЧ 35.

Серый чугун -- имеет включения графита пластинчатой формы. Для деталей из серого чугуна характерны малая чувствительность к влиянию внешних концентраторов напряжений при циклических нагружениях и более высокий коэффициент поглощения колебаний при вибрациях деталей (в 2--4 раза выше, чем у стали). Важная конструкционная особенность серого чугуна -- более высокое, чем у стали, отношение предела текучести к пределу прочности на растяжение. Наличие графита улучшает условия смазки при трении, что повышает антифрикционные свойства . Свойства серого чугуна зависят от структуры металлической основы, формы, величины, количества и характера распределения включений графита.

Белый чугун

Белый чугун представляет собой сплав, в котором избыточный углерод, не находящийся в твёрдом растворе железа, присутствует в связанном состоянии в виде карбидов железа Fe3C (цементит) или т. н. специальных карбидов (в легированном чугуне). Кристаллизация белых чугунов происходит по метастабильной системе с образованием цементита и перлита.

Половинчатый чугун

Половинчатый чугун содержит часть углерода в свободном состоянии в виде графита, а часть -- в связанном в виде карбидов .

Ковкий чугун

Марки ковкого чугуна определены в ГОСТ 1215-79 «Отливки из ковкого чугуна. Общие технические условия». Он обозначается буквами «КЧ» и двумя группами цифр, которые определяют минимальное временное сопротивление в кгс/мм2 и относительное удлинение при растяжении в процентах - КЧ -b. Например, КЧ 37-12 означает, что эта марка ковкого чугуна с =370 Н/мм2 (37 кгс/мм2) и относительным удлинением 12 %.

Ковким называется чугун в отливках, изготовленных из белого чугуна и подвергнутых последующему графитизирующему отжигу, в результате чего цементит распадается, а образующийся графит приобретает форму хлопьев. Ковкий чугун обладает лучшей демпфирующей способностью, чем сталь, и меньшей чувствительностью к надрезам, удовлетворительно работает при низких температурах. Механические свойства ковкого чугуна определяются структурой металлической основы, количеством и степенью компактности включений графита. Металлическая основа ковкого чугуна в зависимости от типа термообработки может быть ферритной, ферритно-перлитной и перлитной. Наиболее высокими свойствами обладает ковкий чугун, имеющий матрицу со структурой зернистого перлита; им можно заменять литую или кованую сталь. В тех случаях, когда требуется повышенная пластичность, применяют ферритный ковкий чугун. Для интенсификации процесса графитизации при термообработке ковкий чугун модифицируют Te, В, Mg и др. элементами.

Высокопрочный чугун

Высокопрочный чугун маркируют в соответствии с ГОСТ 7293-85 «Чугун с шаровидным графитом для отливок. Марки». Марку высокопрочного чугуна обозначают буквами «ВЧ» и двумя цифрами, которые показывают его минимальное временное сопротивление в кгс/мм2. Например, маркировка ВЧ 50 означает, что этот чугун является высокопрочным и его =500 Н/мм2 (50 кгс/мм2).

Высокопрочный чугун, характеризующийся шаровидной или близкой к ней формой включений графита, получают модифицированием жидкого чугуна присадками Mg, Ce, Y, Ca и некоторых др. элементов (в чистом виде или в составе сплавов). Шаровидный графит в наименьшей степени ослабляет металлическую матрицу, что приводит к резкому повышению механических свойств чугуна с чисто перлитной или бейнитной структурой, приближая их свойства к свойствам углеродистых сталей. При чисто ферритной матрице (в литом или термообработанном состоянии) обеспечивается повышенный уровень пластичности. Высокопрочный чугун обладает хорошими литейными и технологическими свойствами (жидкотекучесть, линейная усадка, обрабатываемость резанием), но по значению сосредоточенной объёмной усадки приближается к стали. Такой чугун применяется для замены стальных литых и кованых деталей (коленчатые валы двигателей, компрессоров и т.д.), а также деталей из ковкого или обычного серого чугуна Высокопрочные чугуны, имеющие включения т. н. вермикулярного графита (при рассмотрении в оптическом микроскопе -- утолщённые изогнутые пластины со скруглёнными краями), по свойствам занимают промежуточное положение между чугуном с шаровидным и чугуном с пластинчатым графитом.

Этот чугун обладает хорошими технологическими свойствами при небольшой объёмной усадке и высокой теплопроводностью (почти такой же, как у серого чугуна).

Легированные чугуны

Легированные чугуны. Для улучшения прочностных, эксплуатационных характеристик или придания чугуну особых свойств (износостойкости, жаропрочности, жаростойкости, коррозионностойкости, немагнитности и т.д.) в его состав вводят легирующие элементы (Ni, Cr, Cu, Al, Ti, W, V, Mo и др.). Легирующими элементами могут служить также Mn при содержании > 2% и Si при содержании > 4%. Легированные чугуны классифицируют в соответствии с содержанием основных легирующих элементов -- хромистые, никелевые, алюминиевые и т.д. По степени легирования различают низколегированные (суммарное количество легирующих элементов < 2,5%), среднелегированные (2,5--10%) и высоколегированные (> 10%). Низколегированные чугуны имеют перлитную или бейнитную структуру матрицы, среднелегированные -- обычно мартенситную, высоколегированные -- в большинстве случаев аустенитную или ферритную.

Чугун с 5--7% Si (Силал) применяется в качестве жаростойкого материала. Чугун с 12--18% Si (ферросилид) обладает высокой коррозионной стойкостью в растворах солей, кислот (кроме соляной) и щелочей. Такой чугун, легированный молибденом (антихлор), характеризуется высокой стойкостью в соляной кислоте. Чугун с 19--25% Al (Чугаль) обладает наибольшей по сравнению с известными чугунами жаростойкостью в воздушной среде и средах, содержащих серу. В качестве износостойких наибольшее распространение получили чугуны, легированные Cr (до 2,5%) и Ni (до 6%) -- нихарды. Аустенитные никелевые чугуны, легированные Mn, Cu, Cr (нирезисты), применяются как коррозионностойкие и жаропрочные.

2.2 Марки чугуна в России и за рубежом

Маркировка чугуна в России

По принятой в СССР маркировке обозначения марок доменных чугунов содержат буквы и цифры. Буквы указывают основное назначение чугуна: П -- передельный для кислородно-конверторного и мартеновского производства и Л -- литейный для чугунолитейного производства. Литейный коксовый чугун обозначают ЛК, в отличие от чугуна, выплавленного на древесном угле (ЛД). С увеличением числа в обозначении марки уменьшается содержание кремния (например, в ЛК5 содержится меньше кремния, чем в ЛК4). Каждая марка чугуна в зависимости от содержания Mn, Р, S подразделяется соответственно на группы, классы и категории. Марки чугуна литейного производства, как правило, обозначаются буквами, показывающими основной характер или назначение чугуна: СЧ -- серый чугун, ВЧ -- высокопрочный, КЧ -- ковкий; для антифрикционного чугуна в начале марки указывается буква А (АСЧ, АВЧ, АКЧ). Цифры в обозначении марок нелегированного чугуна указывают его механические свойства. Для серых чугунов приводят регламентированные показатели пределов прочности при растяжении и изгибе (в кгс/мм2), например СЧ21-40.

Для высокопрочного и ковкого чугуна цифры определяют предел прочности при растяжении (в кгс/мм2) и относительное удлинение (в %), например ВЧ60-2. Обозначение марок легированных чугунов состоит из букв, указывающих, какие легирующие элементы входят в состав чугуна, и стоящих непосредственно за каждой буквой цифр, характеризующих среднее содержание данного легирующего элемента; при содержании легирующего элемента менее 1,0% цифры за соответствующей буквой не ставятся. Условное обозначение химических элементов такое же, как и при обозначении сталей (см. Сталь). Пример обозначения легированных чугунов: ЧН19ХЗ -- чугун, содержащий Чугун19% Ni и Чугун3% Cr. Если в легированном чугуне регламентируется шаровидная форма графита, в конце марки добавляется буква Ш (ЧН19ХЗШ).

1. передельный чугун -- П1, П2;

2. передельный чугун для отливок -- ПЛ1, ПЛ2,

3. передельный фосфористый чугун -- ПФ1, ПФ2, ПФ3,

4. передельный высококачественный чугун -- ПВК1, ПВК2, ПВК3;

5. чугун с пластинчатым графитом -- СЧ (цифры после букв «СЧ», обозначают величину временного сопротивления разрыву в кгс/мм);

6. антифрикционный чугун

7. антифрикционный серый -- АЧС,

8. антифрикционный высокопрочный -- АЧВ,

9. антифрикционный ковкий -- АЧК;

10. чугун с шаровидным графитом для отливок -- ВЧ (цифры после букв «ВЧ» означают временное сопротивление разрыву в кгс/мм);

11. чугун легированный со специальными свойствами -- Ч.

Международные аналоги коррозионно-стойких и жаропрочных сталей

Международная маркировка чугуна

Международные стандарты маркировки чугунов построены по тому же принципу - основным классификационным признаком является форма углерода, которая определяет уровень механических и эксплуатационных свойств. Наличие большого числа стандартов для описания аналогичных материалов затрудняет сравнение маркировок, поэтому многие производители изделий из чугунов в спецификации перечисляют несколько стандартов, которым соответствует используемый материал.

Во многих странах для маркировки чугунов используют английскую систему стандартизации BS, стандарты Германии DIN, на базе которых были разработаны соответствующие стандарты EN.

В стандарте Германии «Gusseisen mit Lammellengraphit (DIN1691 / EN1561)» отмечено, что в заказе на отливки необходимо указать, является ли характерным свойством временное сопротивление при растяжении или твердость по Бринеллю (НВ), и, в зависимости от этого, маркировка обозначается по-разному. Например:

чугун DIN 1691 GG-25 или чугун DIN 1691 GG-210 HB

Буквы GG обозначают соответственно: «gegossen» - отлито и «gusseisen» - чугун, число «25» - временное сопротивление в кгс/мм2. По EN этот чугун обозначается как GJL-250, где «250» - в Н/мм2.

В стандарте DIN «Gusseisen mit Kugelgraphit (DIN1693 / EN1563: 1997)» на шаровидный графит в названии марки три буквы «GGG» означают: G - «gegossen» (отлито), G - «gubeisen» (чугун), G - «globular» (шаровидный), далее указывают в кгс/мм2, например, GGG-60. По EN1563 «Founding. Spheroidal graphite cast iron» этот чугун будет обозначаться как GJS-600-3, т.е. в маркировке дополнительно указывают относительное удлинение в процентах (в данном примере b = 3 %). В стандартах также указан уровень остальных основных механических свойств (твердость, предел текучести). Необходимо отметить, что по этому стандарту выпускают чугуны с весьма высоким уровнем свойств - от GJS-350-22 до GJS-800-2.

В британском стандарте на шаровидный графит «Nodular graphite cast iron BS 2789» марка (grade) чугуна обозначается цифрами, соответственно (Н/мм2) / b (%). Например, grade 420/12 означает, что чугун имеет свойства =420 Н/мм2

Ковкий чугун в зависимости от матрицы обозначается буквами «В» (ферритный) или «Р» (перлитный), далее указывают (в кгс/мм2) и b в процентах. Например, B35-12, P60-03. Серый чугун маркируют только тремя цифрами, которые показывают временное сопротивление чугуна в Н/мм2 - grade 180.

В настоящее время стандарты серии EN заменяют стандарты BS.

В США чугуны разделяют на классы следующим образом:

серый чугун (gray iron);

высокопрочный чугун (ductile iron);

ковкий чугун (malleable iron);

чугун с вермикулярным (компактным) графитом (compacted graphite iron);

белый чугун (white iron);

половинчатый чугун (mottled iron);

высокопрочный изотермически закаленный чугун (austempered ductile iron).

Технические условия ASTM A48 делят серые чугуны на классы - от 20 до 60, где число обозначает временное сопротивление в ksi. Например, класс 20 соответствует 140 Н/мм2, что отвечает марке чугуна СЧ 15.

Кроме указанного, действует еще ряд технических условий на серые чугуны для определенного вида изделий, например, ASTM A159 - для автомобильной промышленности.

Для высокопрочных чугунов также используется система маркировки по механическим свойствам. В системе ASTM для таких чугунов указывают временное сопротивление в ksi - предел текучести в ksi - относительное удлинение в процентах. Например, ASTM A716 - 60-42-10 означает высокопрочный чугун по техническим условиям А716 с =60 ksi; =42 ksi; b=10 %.

В стандарте UNS маркировка чугунов начинается с буквы «F» и состоит из пятизначного номера. Маркировка серых чугунов начинается с «1», например, F11701 (аналог СЧ 15), ковких - с «2» - F23530, высокопрочных - с «3» - F33100.

По ASTM ковкие чугуны обозначают пятизначным числом, в котором первые три цифры - предел текучести в Н/мм2, две последние - относительное удлинение в процентах. Для того, чтобы указать на размерность (метрическую) в маркировке ставят букву «М», например чугун по ASTM A47 марки 480М3 означает, что =480 Н/мм2, b=3 %.

Маркировка чугуна с вермикулярным графитом не имеет аналогов в стандартах Украины и СНГ. По ASTM A842 марки такого чугуна 250; 300; ..450, где число - временное сопротивление в Н/мм2.

Износостойкие легированные чугуны стандартизированы техническими условиями ASTM A532. По техническим условиям такие чугуны делят на три класса по основному элементу и системе легирования. Класс I определяет износостойкие чугуны, легированные никелем - так называемые «нихарды» (от Ni-hard) и в него входят четыре типа чугунов, обозначаемые буквами A, B, C, D. Класс II - чугуны со средним содержанием хрома (от 12 до 20 %) и тоже делится на типы (A, B, C). Класс III - чугун с содержание хрома 25 % (тип А).

По стандарту Японии JIS маркировка чугунов начинается с буквы «F», далее идет буква или сочетание букв, показывающие тип чугуна («C» - серый чугун, «CM» - ковкий, «CD» - высокопрочный) и три цифры, показывающие временное сопротивление чугуна в Н/мм2. Например, FCD 400 соответствует марке ВЧ 40.

В табл. 2.1 приведены сравнительные примеры маркировки основных типов чугунов по различным стандартам.

Таблица 2.1 - Сравнение маркировок основных типов чугунов по различным стандартам

Таблица 2.2-Основные принципы стандартизации чугунов в международных стандартах

Таблица 2.3- Основные принципы стандартизации чугунов в международных стандартах

Таблица 2.4- Основные литейные свойства промышленных чугунов

Таблица 2.5-Маркировка чугунов

2.3 Диаграмма равновесия сплава Fe-C (серый чугун)

Первичная кристаллизация сплавов системы железо-углерод начинается по достижении температур, соответствующих линии ABCD (линии ликвидус), и заканчивается при температурах, образующих линию AHJECF (линию солидус).

При кристаллизации сплавов по линии АВ из жидкого раствора выделяются кристаллы твердого раствора углерода в б-железе (д-раствор). Процесс кристаллизации сплавов с содержанием углерода до 0,1 % заканчивается по линии АН с образованием б (д)-твердого раствора. На линии HJB протекает перитектическое превращение, в результате которого образуется твердый раствор углерода в г-железе, т. е. аустенит. Процесс первичной кристаллизации сталей заканчивается по линии AHJE.

При температурах, соответствующих линии ВС, из жидкого раствора кристаллизуется аустенит. В сплавах, содержащих от 4,3% до 6,67 % углерода, при температурах, соответствующих линии CD, начинают выделяться кристаллы цементита первичного. Цементит, кристаллизующийся из жидкой фазы, называется первичным. B точке С при температуре 1147°С и концентрации углерода в жидком растворе 4,3% образуется эвтектика, которая называется ледебуритом. Эвтектическое превращение с образованием ледебурита можно записать формулой ЖР4,3Л[А2,14+Ц6,67]. Процесс первичной кристаллизации чугунов заканчивается по линии ECF образованием ледебурита.

Таким образом, структура чугунов ниже 1147°С будет: доэвтектических - аустенит + ледебурит, эвтектических - ледебурит и заэвтектических - цементит (первичный)+ледебурит.

Превращения, происходящие в твердом состоянии, называются вторичной кристаллизацией. Они связаны с переходом при охлаждении г-железа в б-железо и распадом аустенита.

Линия GS соответствует температурам начала превращения аустенита в феррит. Ниже линии GS сплавы состоят из феррита и аустенита.

Линия ЕS показывает температуры начала выделения цементита из аустенита вследствие уменьшения растворимости углерода в аустените с понижением температуры. Цементит, выделяющийся из аустенита, называется вторичным цементитом.

В точке S при температуре 727°С и концентрации углерода в аустените 0,8 % образуется эвтектоидная смесь состоящая из феррита и цементита, которая называется перлитом. Перлит получается в результате одновременного выпадения из аустенита частиц феррита и цементита. Процесс превращения аустенита в перлит можно записать формулой А0,8П[Ф0,03+Ц6,67].

Линия PQ показывает на уменьшение растворимости углерода в феррите при охлаждении и выделении цементита, который называется третичным цементитом.

Следовательно, сплавы, содержащие менее 0,008% углерода (точкаQ), являются однофазными и имеют структуру чистого феррита, а сплавы, содержащие углерод от 0,008 до 0,03% - структуру феррит+цементит третичный и называются техническим железом.

Доэвтектоидные стали при температуре ниже 727?С имеют структуру феррит + перлит и заэвтектоидные - перлит + цементит вторичный в виде сетки по границам зерен.

В доэвтектических чугунах в интервале температур 1147-727?С при охлаждении из аустенита выделяется цементит вторичный, вследствие уменьшения растворимости углерода(линия ES). По достижении температуры 727?С (линия PSK) аустенит, обедненный углеродом до 0,8% (точка S), превращаясь в перлит. Таким образом, после окончательного охлаждения структура доэвтектических чугунов состоит из перлита, цементита вторичного и ледебурита превращенного (перлит + цементит).

Структура эвтектических чугунов при температурах ниже 727?С состоит из ледебурита превращенного. Заэвтектический чугун при температурах ниже 727?С состоит из ледебурита превращенного и цементита первичного.

Рисунок 1: а - диаграмма железо-цементит,б - кривая охлаждения для сплава, содержащего 3,4% углерода.

2.4 Формирование структуры сплава в равновесных условиях

Исходная структура серого чугуна до нагрева под закалку - перлит + цементит +ледобурит(рисунок 2).

Критические точки для серого чугуна: АС1=727?С, АС3=1147?С.

Рисунок 2-структура серого чугуна

При нагреве до 727?С в сером чугуне происходят аллотропические превращения и мы имеем структуру - аустенит-цементит-ледобурит, При увеличении скорости охлаждения между температурами линии эвтектического и эвтектойдного превращения (1153-738 С) до перлитного превращения из аустенита выделяется не графит, а цементит.

2.5 Фазовый состав

Рисунок 3 - диаграмма железо-цементит

Фазовый состав сплава (%С=3,4):

Выше т.1: L-охлаждение

т.1-2: L1-B> д 1 д -H феррит - первичная кристаллизация

т.2: L3жидкость+ дH феррит>гJ аустенит - перитектическое превращение

т.2-3: L3 д -C жидкость> г3-Е аустенит - кристаллизация

т.3-4: г аустенит - твердый раствор - охлаждение

т.4-5: г4-S аустенит - б4 д -P феррит - охлаждение

т.5: гS аустенит- бP феррит + Fe3C - эвтектойдное превращение

Правило фаз устанавливает зависимость между числом степеней свободы, числом компонентов и числом фаз и выражается уравнением:

C = K + 1 - Ф,

где С - число степеней свободы системы;

К - число компонентов, образующих систему;

1 - число внешних факторов (внешним фактором считаем только температуру, так как давление за исключением очень высокого мало влияет на фазовое равновесие сплавов в твердом и жидком состояниях);

Ф - число фаз, находящихся в равновесии.

Сплав железа с углеродом, содержащий 0,45%С, называется доэвтектоидной сталью. Его структура при комнатной температуре - феррит + перлит.

2.6 Кристаллическое строение основных фаз

Железо -- металл переходной группы серебристо-серого цвета, очень пластичный, с удельным весом 7,86 г/см3, температурой плавления 1539° С. Чистейшее железо содержит примесей до 0,01%. На практике применяется техническое железо, содержащее 0,1% примесей таких, как С, Mn, Si, S, Р, О2, Н2, N2 и др.Железо имеет несколько аллотропических модификаций б, г и д (Аллотропией, или полиморфизмом, называется способность некоторых веществ при одном и том же химическом составе изменять тип кристаллической решетки, а значит, иметь различные свойства)

Модификация б существует при температурах ниже 911 °С. Кристаллическая решетка б-железа - объемно центрированный куб (ОЦК) с периодом решетки 0,28606 нм. Плотность б-железа 7,68 Мг/м3 . Вторая модификация г-железо (Feг) существует при температуре 911 - 1392 °С. Кристаллическая решетка - гранецентрированная кубическая (ГЦК) с периодом 0,3645 нм. В интервале температур 1392 - 1539 °С существует д-железо с кристаллической решеткой объемно центрированного куба (ОЦК) с периодом решетки 0,293 нм. Высокотемпературная модификация (именуемая д-Fe) не представляет собой новой аллотропической формы.

При температуре ниже 768oС железо ферромагнитно, а выше - парамагнитно. Точка Кюри железа, равная 768oС, обозначается А2. Это фазовый переход второго рода.

Температуру аллотропического (полиморфного) и магнитного превращения железа принято называть критическими точками и обозначать их буквой А с соответствующими индексами 2, 3, 4, указывающими на характер превращения. Чтобы отличить превращения, протекающие в железе и в железоуглеродистых сплавах при нагревании, от превращений при охлаждении принято к обозначению критических точек добавлять: при нагревании индекс с, при охлаждении индекс r.

Железо технической чистоты обладает невысокой твердостью (80 НВ по Бринеллю) и прочностью, но высокими характеристиками пластичности. Свойства могут изменяться в некоторых пределах в зависимости от величины зерна.

Железо со многими элементами образует твердые растворы: с металлами - растворы замещения, с углеродом, азотом и водородом - растворы внедрения.

Углерод -- относится к неметаллам, удельный вес 2,5 г/см3, атомный радиус 0,77 А; температура плавления 3500° С. Углерод имеет три аллотропические модификации: алмаза, графита и угля. В сплавах железа с углеродом углерод находится в состоянии твердого раствора с железом, в виде химического соединения - цементита (Fe3C), а также в свободном состоянии в виде графита (в серых чугунах). Кристаллическая решетка графита -- гексагональная, неплотноупакованная. Графит не прочен, не пластичен.

Цементит (Fe3C) - химическое соединение железа с углеродом (карбид железа), содержит 6,67 % углерода. Аллотропических превращений не испытывает. При низких температурах цементит слабо ферромагнитен, магнитные свойства теряет при температуре около 217o С. Цементит имеет высокую твердость (более 800 НВ, легко царапает стекло), но чрезвычайно низкую, практически нулевую, пластичность. Цементит способен образовывать твердые растворы замещения. Атомы углерода могут замещаться атомами неметаллов, например азотом; атомы железа - металлами, например марганцем, хромом, вольфрамом и др. Такой твердый раствор на базе решетки цементита называется легированным цементитом.

Цементит - соединение неустойчивое (метастабильное) и при определенных условиях распадается с образованием свободного углерода в виде графита. Этот процесс имеет важное практическое значение при структурообразовании чугунов.

В системе железо - углерод существуют следующие фазы: жидкая фаза, твердый раствор углерода в б-Fe - феррит (в случае д-Fe - высокотемпературный феррит Фд), твердый раствор углерода в г-Fe - аустенит, химическое соединение - цементит.

Жидкая фаза. В жидком состоянии железо хорошо растворяет углерод в любых пропорциях с образованием однородной жидкой фазы.

Феррит (Ф, )- твердый раствор внедрения углерода в железо.

Феррит имеет переменную растворимость углерода: минимальную - 0,006 % при комнатной температуре, максимальную - 0,02 % при температуре 727oС (точка P рис.1). Углерод располагается в дефектах решетки.

При температуре выше 1392oС существует высокотемпературный феррит Фд с предельной растворимостью углерода 0,1 % при температуре 1499oС (точка J рис.1). Свойства феррита близки к свойствам железа. Он мягок и пластичен, магнитен до 768o С.

Аустенит (А, ) - твердый раствор внедрения углерода в г - железо.

Углерод занимает место в центре гранецентрированной кубической ячейки.

Аустенит имеет твердость 200…250 НВ, пластичен, парамагнитен. Структура аустенита состоит из одной фазы -- твердого раствора переменного состава.

Растворимость углерода в железе зависит от температуры. Чем выше температура, тем больше растворимость. Максимальная растворимость углерода в железе у равна 2,0% при температуре 1130° С; минимальная растворимость равна 0,8% при температуре 723° С. При растворении в аустените других элементов могут изменяться свойства и температурные границы существования.

Цементит -- характеристика дана выше. В железоуглеродистых сплавах присутствуют фазы - цементит первичный, цементит вторичный, цементит третичный. Химические и физические свойства этих фаз одинаковы.

Перлит П -- эвтектоидная механическая смесь, состоящая из двух фаз: феррита и цементита. Образуется перлит при распаде аустенита определенного состава (0,8% С) при температуре 723° С. Содержание углерода в перлите для всех железоуглеродистых сплавов всегда постоянно и равно 0,8%. Эвтектоид этот назван перлитом потому, что после травления стали, содержащей 0,8% С, ее поверхность имеет перламутровый блеск.

Ледебурит Л -- эвтектическая смесь, образующаяся из жидкой фазы определенного состава (4,3% С). При температуре 1130 и до 723° С ледебурит состоит из двух фаз -- аустенита и цементита; ниже 723° С ледебурит состоит из двух структур -- перлита и цементита, т. е. также из двух фаз, но только уже из феррита и цементита. Содержание углерода в ледебурите всегда постоянно и равно 4,3%.

3.Технология получения сплава

3.1 Технологические особенности

При выплавке низкомарганцевого не склонного к отбелу чугуна расчет шихты производится исходя из минимально необходимого для связывания серы содержания марганца (%Mn = 1.72% S+0,2). При этом понижение содержания марганца в чугуне по сравнению с рекомендациями ГОСТ должно сопровождаться сбалансированным уменьшением содержания кремния в пропорции 3:1.

В шихте применяются литейные и предельные чугуны, в основном I и II групп, использование природно-легированных чугунов типа ЛК1-ХН-ЛК6-ХН, а также других материалов с повышенным содержанием хрома и марганца исключаются. Возможно применение титаномедных чугунов БТМЛ.

При изготовлении тонкостенных отливок из чугуна марки СЧ25 необходимо модифицировать металл графитизирующими добавками. Пониженное содержание кремния в низкомарганцевом чугуне обуславливает высокую эффективность кремнийсодержащих модификаторов таких как ФС 75-Л2, ферросилиций с активными добавками редко-земельных материалов или силикобарий. Плавку можно вести в обычных плавильных агрегатах: вагранке, дуговой или индукционной электропечи, использовать моно- или дуплекс-процесс, например: вагранка-канальный миксер.

Технология литейной формы и термовременные параметры заливки низкомарганцевого чугуна особенностей не имеют.

Влияние кремния и марганца на твердость и отбел серого чугуна, достоинства

Новая технология обеспечивает:

- Стабильное выполнение марочных требований по прочности и однородную перлитную структуру в отливках из чугунов СЧ15 - СЧ25;

- Получение отливок без кромочного и поверхностного отбела;

- Хорошую обрабатываемость резанием тонкостенных литых заготовок;

- Высокие технологические свойства чугуна.

Применение низкомарганцевого чугуна со сбалансированным содержанием кремния позволяет:

- Исключить или значительно снизить потребление дорогостоящих шихтовых материалов: марганца и кремнийсодержащих ферросплавов, природно-легированных чугунов;

- Отменить графитизирующий отжиг отливок;


Подобные документы

  • Определение состава сплава и нахождение процентного содержания основных составляющих элементов исследуемого образца. Характеристика возможных путей приготовления пробы к анализу. Отделение кобальта от железа фторидом натрия. Осаждение щавелевой кислотой.

    реферат [174,8 K], добавлен 09.12.2014

  • История производства и использования железа. Общая характеристика элемента, строение атома. Степени окисления и примеры соединений, основные реакции. Нахождение железа в природе, применение. Содержание железа в земной коре. Биологическая роль железа.

    презентация [5,3 M], добавлен 09.05.2012

  • Запасы железных руд России. История получения железа. Основные физические и химические свойства железа. Способы обнаружения в растворе соединений железа. Применение железа, его сплавов и соединений. Сплавы железа с углеродом. Роль железа в организме.

    реферат [19,6 K], добавлен 02.11.2009

  • Железоуглеродистые сплавы, стали и чугуны: взаимодействии железа с углеродом, а также с многочисленными легирующими элементами по о диаграмме железо – углерод. Плавление чистого железа и системы железа с углеродом в зависимости от фазового состояния.

    реферат [20,1 K], добавлен 10.01.2010

  • Физические свойства элементов VIIIB группы и их соединений, в частности, соединений железа. Анализ комплексных соединений железа (II) и железа (III) с различными лигандами с точки зрения теории кристаллического поля. Строение цианидных комплексов железа.

    курсовая работа [1,3 M], добавлен 24.02.2011

  • Нахождение металла в природе, характеристика его типичных минералов. Способы получения и области применения. Физические и химические свойства его аллотропных модификаций. Углерод - основной легирующий элемент. Описание синтеза оксидов железа (II) и (III).

    курсовая работа [71,0 K], добавлен 24.05.2015

  • Электронное строение железа, характерные степени окисления. Нахождение железа в природе, способы получения, применение. Парамагнитные сине-зеленые моноклинные кристаллы. Соединения железа, их физические и химические свойства, биологическое значение.

    реферат [256,2 K], добавлен 08.06.2014

  • Физико-химические и термодинамические свойства концентрированных водных растворов, содержащих компоненты электролитов осаждения сплава железо-никель. Кинетические закономерности анодного растворения сплава железо-никель в нестационарных условиях.

    автореферат [23,4 K], добавлен 16.10.2009

  • Рассмотрение основных методов анализа железа и марганца. Описание классических и инструментальных методов. Анализ состава соли. Масс-спектрометрическое, титриметрическое и гравиметрическое определение лития, железа, марганца в смешанном фосфате.

    курсовая работа [633,0 K], добавлен 24.01.2016

  • Методы определения железа в почвах: атомно-абсорбционный и комплексонометрический. Соотношение групп соединений железа в различных почвах. Методики определения подвижных форм железа с помощью роданида аммония. Эталонные растворы для проведения анализа.

    контрольная работа [400,1 K], добавлен 08.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.