Получение дихлорэтана из этилена
Товарные и технологические свойства дихлорэтана, области применения. Сырьевые источники: этиленовая фракция газов пиролиза нефтяного сырья и этиленовая фракция коксового газа. Способы получения дихлорэтана. Материальный баланс производства дихлорэтана.
Рубрика | Химия |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 30.03.2008 |
Размер файла | 124,2 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
ПОЛУЧЕНИЕ ДИХЛОРЭТАНА ИЗ ЭТИЛЕНА
1. Товарные и технологические свойства дихлорэтана, области применения
Дихлорэтан (хлористый этилен) CH2Cl--CH2Cl -- бесцветная летучая жидкость со специфическим запахом, напоминающим запах хлороформа (т.кип. 83,7°С; т.пл. -35,3°С; теплота испарения 77,3 ккал/кг). С водой образует азеотропную смесь (80,5% дихлорэтана), кипящую при 72оС. Дихлорэтан загорается с трудом, горит светящимся пламенем с зеленой каймой, при горении выделяется хлористый водород. Горящий дихлорэтан может быть легко погашен водой. Пары дихлорэтана образуют с воздухом взрывоопасные смеси с пределами взрываемости 4,8--15,9 %(об.).
Дихлорэтан смешивается во всех отношениях со спиртами, бензолом, ацетоном и многими другими органическими соединениями; хорошо растворяет масла, жиры, смолы, воска, каучук, алкалоиды, а также некоторые неорганические вещества, например серу, желтый фосфор, иод и др.
Дихлорэтан ядовит и обладает наркотическим действием, поэтому при работе с ним надо соблюдать осторожность. Вдыхание паров дихлорэтана вызывает головные боли, раздражение дыхательных путей, кашель и может привести к смерти. Предельно допустимая концентрация паров дихлорэтана в воздухе производственных помещений 10 мг/м3.
Дихлорэтан применяется как растворитель в самых различных областях: для экстрагирования жиров, для очистки нефтепродуктов от парафина, для обезжиривания шерсти, мехов, а также металлических изделий перед хромированием или никелированием, для извлечения восков (монтан-воск) из бурых углей и т. д. Он является также полупродуктом для многих промышленных синтезов. Значительные количества дихлорэтана расходуются на получение хлористого винила.
2. Сырьевые источники: этиленовая фракция газов пиролиза нефтяного сырья и этиленовая фракция коксового газа.
3. Способы получения дихлорэтана.
Существуют несколько способов получения дихлорэтана из этилена:
взаимодействие этилена с хлором в среде жидкого дихлорэтана при 20--30° С;
пропускание этилена через жидкий хлор при повышенном давлении и температуре не выше 0° С;
взаимодействие этилена с хлором при повышенных температурах (до 120° С) над различными катализаторами .(CuCl2, FeCl3, SbCl5, животный уголь и др.);
взаимодействие этилена, хлористого водорода и кислорода воздуха над медным катализатором при 300°С:
CH2=CH2+2HCl+0,5О2 > СН2Сl--СН2Сl+Н2О
В промышленности распространен главным образом первый способ, технологически разработанный А. Ф. Добрянским с сотрудниками. Они доказали возможность использования для получения дихлорэтана не только чистого этилена, но и зтиленсодержащиж смесей, например этиленовой фракции газов пиролиза нефтяного сырья и этиленовой фракции коксового газа. По второму способу для достижения высокого выхода дихлорэтана требуются высококонцентрированный этилен и жидкий хлор. Кроме того, реакция образования дихлорэтана в этом случае протекает при избытке хлора, что приводит к образованию не только дихлорэтана, но и других продуктов хлорирования этилена. Недостатками остальных способов являются невысокий выход дихлорэтана вследствие образования побочных продуктов замещения, а также трудности очистки дихлорэтана.
4.Физикокохимические основы процесса получения дихлорэтана
Процесс получения дихлорэтана является гетерогенной сложной реакцией. Реакция необратимая эндотермическая, протекает без применения катализатора при низкой температуре.
Реакция присоединения хлора к этилену протекает с выделением большого количества тепла:
CH2=CH2+Cl2 > СН2Сl--СН2Сl ?Н= - 48 ккал
При получении дихлорэтана взаимодействием этилена с хлором в среде жидкого дихлорэтана, который растворяет оба газа, реакция протекает фактически в жидкой фазе. Благодаря этому достигается безопасность процесса (смесь газообразных хлора и этилена взрывоопасна) и улучшаются условия теплопередачи от реакционной массы к охлаждающему агенту. Отвод реакционного тепла значительно облегчается, и полностью устраняется возможность местных перегревов. Кроме того, в среде дихлорэтана процесс протекает аутокаталитически и скорость реакций значительно выше, чем при взаимодействии газообразных этилена и хлора При взаимодействии этилена с хлором, кроме продукта присоединения хлора по двойной связи (1,2-дихлорэтана), образуются также продукты замещения -- трихлорэтан, тетрахлорэтан и высшие полихлориды:
CH2=CH2+2Cl2 > СН2Сl--СНСl2+HCl
CH2=CH2+3Cl2 > СНСl2--СНСl2+2HCl и т.д.
Реакции замещения ускоряются с повышением температуры (рис. 2). Из рисунка видно, что при температурах от --30 до --20е С получается почти исключительно дихлорэтан, в то время как при +20° С образуется преимущественно трихлорэтан. При дальнейшем повышении температуры происходит более глубокое замещение с образованием тетрахлорэтана. Лимитирование процесса происходит со стороны химической реакции. Согласно рис. 2 при увеличении температуры ускоряются реакции замещения, а при понижении температуры - выход дихлорэтана.
Состав получаемых продуктов резко изменяется, если в реакционную среду вводить свободный кислород. При этом образование продуктов замещения замедляется и даже прекращается. Объясняется это тем, что цепная реакция замещения в присутствии кислорода обрывается. Это обстоятельство значительно упрощает технологию производства дихлорэтана. Поэтому при добавлении кислорода можно проводить взаимодействие этилена с хлором при 20--30° С и отводить тепло реакции холодной водой без охлаждения рассолом требуемого при температурах ниже 0°С. Благодаря этому упрощается аппаратурное оформление процесса и понижается себестоимость дихлорэтана.
Механизм ингибирования кислородом реакции замещения атома водорода атомом хлора точно не выяснен. Предполагают, что образующиеся атомы хлора
Cl2 > Cl· +Cl·
Реагируют с кислородом по схеме
Cl2·+О2 > Cl - O - O·
Cl - O - O·> Cl·
ClO· +ClO· > Cl2+O2 и т.д.
вследствие чего число атомов хлора значительно уменьшается.
5. Аппаратурно-технологическая схема производства дихлорэтана
В промышленных условиях хлорирование этилена для получения дихлорэтана проводят в вертикальных цилиндрических хлораторах; тепло реакции отводится холодной водой, циркулирующей в змеевиках и рубашке аппарата. Хлоратор доверху заполнен дихлорэтаном, через который барботируют реагирующие газы -- этилен и хлор. Газы должны быть предварительно тщательно осушены, так как влажный хлор, частично гидролизуясь, оказывает коррозионное действие на стальную аппаратуру. При достаточно полной осушке исходных газов всю реакционную аппаратуру и трубопроводы можно изготовлять из обычной углеродистой стали.
Этилен поступает с разделительных установок глубокого охлаждения достаточно осушенным, и дополнительной осушки его не требуется. Из этилена, выделяемого другими способами, например гиперсорбцией, влага должна быть удалена твердыми поглотителями или вымораживанием. Применять для осушки этилена серную кислоту не рекомендуется, так как в ее присутствии происходит осмоление и сульфирование непредельных углеводородов, содержащихся в этиленовой фракции. Для осушки хлора применяют концентрированную серную кислоту, но обычно хлор поступает с хлорного завода уже осушенным. При работе с недостаточно осушенными исходными газами требуется освинцовывать внутренние стенки хлоратора, охлаждающих змеевиков и мешалок.
Технологическая схема промышленного производства дихлорэтана показана, на рис. 1. В газовой смеси, поступающей в хлоратор 1, должен содержаться избыток этилена (5--10% от стехиометрического количества), необходимый для полного связывания хлора. Присутствие хлора в реакционных газах недопустимо, так как взаимодействие хлора с углеводородами в неохлаждаемом трубопроводе может привести к повышению температуры и воспламенению углеводородов. Хлор, подаваемый в хлоратор, разбавляют
Рис.1. Схема производства дихлорэтана из этилена и хлора:
1 - хлоратор; 2 - сборник дихлорэтана-сырца; 3 - конденсатор смешения; 4 - холо-дильник; 5 - промывной скруббер; 6 - нейтрализатор; 7, 13 - разделители; 8 - сборник щелочи; 9 - сборник нейтрализованного дихлорэтана; 10, 14 - ректификационные колонны; 11, 15 - кипятильники; 12, 16 - дефлегматоры; 17 - холодильник.
воздухом (8--10% от объема реагирующих газов); это дает возможность проводить хлорирование этилена при 20--30°С.
Для лучшего контакта между реагирующими газами и более полного растворения их в дихлорэтане в хлораторе установлена пропеллерная мешалка. Образующийся дихлорэтан-сырец из хлоратора самотеком непрерывно перетекает в сборник 2.
Отходящие из хлоратора газы (непрореагировавший этилен) газообразные примеси, содержащиеся в исходном этилене и хлоре, воздух) увлекают значительное количество паров дихлорэтана и часть хлористого водорода, образующегося в результате реакций замещения. Поэтому из отходящих газов выделяют дихлорэтан либо абсорбцией растворителями (керосин и др.), либо конденсацией, как показано на схеме. Отходящие газы поступают в насадочный конденсатор смешения 3, смонтированный над холодилышком 4. В верхнюю часть конденсатора смешения подают из холодильника 4 охлажденный до --20о С дихлорэтан для орошения, насадки. Газы, поступающие в нижнюю часть конденсатора смешения, проходят насадку снизу вверх противотоком к дихлорэтану и охлаждаются до --15°С, благодаря чему почти все пары дихлорэтана конденсируются. Сконденсировавшийся дихлорэтан смешивается с дихлорэтаном, подаваемым на орошение, и поступает в холодильник 4, где вновь охлаждается до --20°С. Газы, отходящие из верхней части конденсатора смешения, отмываются водой в скруббере 5 от хлористого водорода и уходят в атмосферу.
Дихлорэтан-сырец из сборника 2 перекачивается в аппарат 6, где при перемешивании производится нейтрализация растворенного в дихлорэтане хлористого водорода 5--10%-ным раствором едкого натра. Нейтрализованный дихлорэтан отделяется в разделителе 7 от раствора щелочи и стекает в сборник 9, из которого поступает на осушку и ректификацию. Осушка дихлорэтана производится в ректификационной колонне 10, в нижней части которой поддерживается температура 75--85°С. Из колонны отгоняется азеотропная смесь дихлорэтана с водой, конденсирующаяся в дефлегматоре 12 и частично возвращаемая на орошение колонны 10. Дистиллят расслаивается в разделителе 13; вода направляется на очистную станцию и далее в канализацию, а дихлорэтан возвращается в сборник 9, Из кубовой части колонны 10 стекает обезвоженный дихлорэтан, поступающий далее в ректификационную колонну 14, где дихлорэтан-дистиллят отделяется от трихлорэтана и полихлоридов (кубовая жидкость).
6. Расчет материального баланса процесса хлорирования этилена
Данные для расчета:
На основании табл. 4.1 [1] определяем выходы продуктов реакции при температуре 255 К:
Рис. 2. Выход продуктов реакции.
На основании рис. 2 данные по выходу продуктов реакции сводим в табл. 1.
Таблица 1.
Выход продуктов реакции при Т=265К
Состав продуктов хлорирования, %(масс.) |
||
Дихлорэтан |
76,0 |
|
Трихлорэтан |
13,9 |
|
Тетрахлорэтан |
3,2 |
|
Высшие хлориды |
3,2 |
Избыток этилена в % от стехиометрии 10
В дихлорэтане растворяется 50 % хлористого водорода
Давление в системе, МПа 0,89
Производительность установки, т/год дихлорэтана 10000.
Число рабочих дней в году 350
Таблица 2.
Состав хлора и этиленовой фракции
Состав хлора, %(об.) |
Состав этиленовой фракции, %(об.) |
||||||
Cl2 |
CO2 |
H2 |
N2 |
C2H4 |
C2H6 |
C3H6 |
|
98 |
1,2 |
0,3 |
0,5 |
92,0 |
6,0 |
2,0 |
Часовая производительность установки по дихлорэтану составляет:
.
При этом образуется:
Трихлорэтана ;
Тетрахлорэтана ;
Высших хлоридов ;
При взаимодействии хлора с этиленом протекают следующие реакции:
(1)
(2)
(3)
(4)
Исходя из этих реакций, определяем:
1. Расход этилена на образование ди-, три-, тетрахлорэтана и высших хлоридов:
или
.
С учетом 10 %-ного избытка этилена его расход составит:
1,1·318,1=349,9 м3/ч
или
349,9·1,250=437,4кг/ч.
2. Расход этиленовой фракции (с учетом 10 %-ного избытка этилена):
.
3. Расход хлора:
или
.
4. Расход технического хлора:
.
5. Количество образующегося хлористого водорода:
или
.
6. Количество отходящих газов:
Газы |
Объем, м3/ч |
Состав %(об.) |
Количество, кг/ч |
|
Этилен |
380,3·0,92-318,1=31,8 |
30,77 |
(31,8:22,4)·28=39,8 |
|
Этан |
380,3·0,06=22,8 |
22,08 |
(22,8:22,4)·30=30,6 |
|
Пропилен |
380,3·0,02=7,6 |
7,36 |
(7,6:22,4)·42=14,3 |
|
Двуокись углерода |
392,5·0,012=4,7 |
4,56 |
(4,7:22,4)·44=9,3 |
|
Азот |
392,5•0,005=2,0 |
1,91 |
(2,0:22,4)·28=2,5 |
|
Водород |
392,5•0,003=1,2 |
1,14 |
(1,2:22,4)·2=0,1 |
|
Хлористый водород |
66,5·0,5=33,3 |
32,18 |
(33,3:22,4)·36,5=54,2 |
|
ИТОГО: |
103,3 |
100,00 |
150,6 |
Отходящие газы насыщены парами дихлорэтана, количество которых можно рассчитать по формуле [2]:
,
где - количество паров дихлорэтана, уносимых газами, кг/ч;
Gг - количество газов, пропускаемых через дихлорэтан, кг/ч;
? - коэффициент насыщения (в данном случае ?=1 [2]);
р - давление пара над жидкостью (при Т=265 К р=0,0021 МПа рис. XIV [4]);
Мж - молекулярная масса дихлорэтана;
Мг - средняя молекулярная масса газовой смеси;
Р - общее давление в системе, МПа.
Находим среднюю молекулярную массу газовой смеси:
Мг=0,3077·28+0,2208·30+0,0736·42+0,0456·44+0,0191•28+0,0114•2+0,2487·36,5=32,64.
Унос паров дихлорэтана составит:
.
Из реактора отводится жидкий дихлорэтан, количество которого составляет:
1190,5-1,1=1189,4 кг/ч.
Массовый расход сырья:
Масса газа при нормальных условиях равна его молярной массе, поделенной на объем, занимаемый одним молем, т.е. , где - плотность газа при нормальных условиях.
Этиленовая фракция:
;
;
;
Технический хлор:
;
;
;
Массовый расход сырья составит:
Этиленовая фракция:
;
;
;
Хлор технический:
;
;
.
Материальный баланс производства дихлорэтана сводим в таблицу 3:
Таблица 3
Материальный баланс производства дихлорэтана
№ п/п |
Приход |
кг/ч |
№ п/п |
Расход |
кг/ч |
|
1 |
Этиленовая фракция |
482,3 |
1 |
Дихлорэтан-сырец |
1561,5 |
|
в том числе: |
в том числе: |
|||||
Этилен |
437,4 |
дихлорэтан |
1189,4 |
|||
Этан |
30,6 |
трихлорэтан |
217,7 |
|||
Пропилен |
14,3 |
тетрахлорэтан |
50,1 |
|||
высшие хлориды |
50,1 |
|||||
2 |
Хлор технический газообраный |
1231,0 |
хлористый водород |
54,2 |
||
в том числе: |
2 |
Отходящие газы |
150,6 |
|||
хлор |
1219,1 |
в том числе: |
||||
двуокись углерода |
9,3 |
этилен |
39,8 |
|||
водород |
0,1 |
этан |
30,6 |
|||
азот |
2,5 |
пропилен |
14,3 |
|||
двуокись углерода |
9,3 |
|||||
хлористый водород |
54,2 |
|||||
дихлорэтан |
1,1 |
|||||
водород |
0,1 |
|||||
азот |
2,5 |
|||||
ИТОГО: |
1713,3 |
ИТОГО: |
1712,1 |
Расхождение баланса составляет:
, что вполне допустимо.
Конверсия исходного сырья.
Основным реагентом в сырье является этилен, поэтому конверсию рассчитываем по этилену, как отношение количества израсходованного этилена (Gн-Gк), где Gк - количество непрореагировавшего этилена, к общему его количеству в начале процесса Gн:
Селективность находим как отношение готового продукта Gп к прореагировавшему сырью Gc
Выход целевого продукта.
Если количество целевого (товарного) продукта Gп, то выход продукта Ф в расчете на сырье Gз составит
ЛИТЕРАТУРА
1. Кутепов А.М., Бондарева Т.И., Беренгартен М.Г. Общая химическая технология. Учебник для технических ВУЗов. - М.: «Высшая школа», 1990. - 512 с.
2. Лебедев Н.Н. Химия и технология основного органического и нефтехимического синтеза: Учебник для вузов. - М. Химия, 1988. - 592 с.
3. Общая химическая технология: Учеб. для химико-техн. спец. вузов. В 2-х т./под ред. проф. И.П.Мухленова. - М.: Высш. шк., 1984. - 263 с.
4. Павлов К.Ф., Романков П.Г., Носков А.А. Примеры и задачи по курсу процессов и аппаратов химической технологии. - Л.: Химия, 1987. - 576 с.
5. Паушкин Я.М., Адельсон С.В., Вишнякова Т.П. Технология нефтехимического синтеза, в двух частях. Ч. I. Углеводородное сырье и продукты его окисления. М.: «Химия», 1973. - 448 с.
Подобные документы
Технология и этапы производства 1,2-дихлорэтана, обоснование выбранного метода. Характеристика сырья, продуктов и вспомогательных материалов. Описание технологической схемы получения 1,2-дихлорэтана, необходимые расчеты и правила техники безопасности.
дипломная работа [305,9 K], добавлен 18.05.2009Товарные и определяющие технологию свойства ацетилена. Сырьевые источники получения. Перспективы использования различного сырья. Промышленные способы получения. Физико-химический процесс получения ацетилена методом термоокисленного пиролиза метана.
контрольная работа [329,9 K], добавлен 30.03.2008Изотерма адсорбции паров дихлорэтана на активном угле. Диаметр и высота адсорбера. Коэффициент внутренней массопередачи. Продолжительность адсорбции, выходная кривая. Построение профиля концентрации в слое адсорбента. Вспомогательные стадии цикла.
курсовая работа [225,1 K], добавлен 10.06.2014Хлористый винил как представитель моногалоидных производных этиленовых углеводородов. Производство хлористого винила по Остросмысленскому, гидрохлорированием ацетилена и пиролизом дихлорэтана. Производство винилиденхлорида, винилацетата и этиленгликоля.
контрольная работа [3,0 M], добавлен 13.03.2011Характеристика процесса пиролиза жидкого углеводородного сырья (фракция гексановая) для получения пирогаза, содержащего этилен, пропилен и другие мономеры для нефтехимических синтезов. Расчеты технологического оборудования и контроль производства.
дипломная работа [1,4 M], добавлен 02.12.2010Товарные и определяющие технологию свойства метанола, области применения в химической технологии. Сырьевые источники получения метанола. Перспективы использования различных видов сырья. Промышленный синтез метилового спирта и его основные стадии.
контрольная работа [42,6 K], добавлен 10.09.2008Сущность понятия "нефтяные газы". Характерная особенность состава попутных нефтяных газов. Нахождение нефти и газа. Особенности получения газа. Газовый бензин, пропан-бутовая фракция, сухой газ. Применение газов нефтяных попутных. Пути утилизации ПНГ.
презентация [2,5 M], добавлен 18.05.2011Состав, свойства и направления переработки каменноугольной смолы. Фазовые равновесия жидкость-пар в системах. Легкая, фенольная, нафталиновая, поглотительная, антраценовая фракция и ее компоненты. Пек каменноугольный, новые идеи получения продукции.
курсовая работа [337,3 K], добавлен 21.12.2015Сущность и характеристика процесса пиролиза (высокотемпературного распада) этановой фракции. Расчет избыточного давления и импульса волны давления при сгорании смесей горючих газов. Расчет интенсивности теплового излучения и оценка индивидуального риска.
контрольная работа [57,9 K], добавлен 13.03.2011Основы процесса пиролиза. Факторы, влияющие на процесс пиролиза. Техническая характеристика исходного сырья, материалов, реагентов, полуфабрикатов и изготовляемой продукции. Материальный баланс реактора гидрирования пропан–пропиленовой фракции.
курсовая работа [285,7 K], добавлен 05.06.2014