Анализ типовой технологической линии производства кефира резервуарным способом с охлаждением продукта в резервуарной емкости для сквашивания молока и фасовкой в полиэтиленовые пакеты

Технохимическая характеристика сырья. Требования к качеству готовой продукции. Оборудование, применяемое при производстве кефира резервуарным способом с охлаждением продукта в резервуарной емкости для сквашивания молока и фасовкой в полиэтиленовые пакеты.

Рубрика Кулинария и продукты питания
Вид курсовая работа
Язык русский
Дата добавления 14.11.2013
Размер файла 909,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru

Содержание

Введение

1 Технохимическая характеристика сырья

2 Принципы и способы консервирования

3 Технологическая схема производства

4 Требования к качеству готовой продукции. Дефекты

5 Основное оборудование, применяемое при производстве

6 Специфика техники безопасности

7 Экологичность производства

Заключение

Список использованной литературы

Введение

Кефир является одним из наиболее популярных кисломолочных диетических напитков и по праву занимает доминирующее положение среди всех продуктов переработки молока.

В России кефир вырабатывался еще в 1866-1867 гг. кустарным способом на грибках, привезенных с Кавказа в сухом виде. Кефирные грибки оживляли в кипяченом охлажденном обезжиренном молоке и использовали для приготовления заквасок. Молоко для кефира подогревали до 16-23 0С и заквашивали закваской, непосредственно слитой с грибков. После получения сгустка бутыли взбалтывали для ускорения процесса образования напитка и выдерживали в помещении при температуре 14-16 0С в течение суток, а иногда и более продолжительное время.

По той же технологии вырабатывали кефир на городских молочных заводах, при этом применяли пастеризацию молока и розлив напитка в бутыли с герметичной укупоркой.

В результате длительности технологического процесса, трудоемкости многих операций, выпуск кефира был ограничен и спрос населения на него не удовлетворялся, поэтому в 30-х годах ХХ в. технологию кефира изменили: его стали выпускать ускоренным способом, получившим впоследствии наименование термостатного.

Молоко, идущее на выработку кефира, стали сквашивать при высоких температурах в термостатах без встряхивания и соответствующего накопления продуктов дрожжевого брожения. В результате изменения технологии вместо мягкого по консистенции полужидкого напитка с характерным освежающим вкусом заводы стали выпускать продукт с плотным сгустком, по вкусу похожим на простоквашу.

В результате ряда научно-исследовательских работ был разработан резервуарный способ производства кефира, являющийся в настоящее время общепризнанным и широко внедренным в молочную промышленность.

Кисломолочная продукция оказывает положительное воздействие на пищеварительную систему человека, в связи с тем, что в результате ряда биохимических процессов, протекающих при сквашивании молока, образуется особая, молочнокислая микрофлора, имеющая в своем составе различные вещества - молочную кислоту, углекислый газ, спирт, антибиотики и др.

Усвояемость кисломолочных продуктов выше, чем усвояемость свежего молока. Кроме того, в кефире сгусток пронизывается мельчайшими пузырьками углекислого газа, в результате чего становится более доступным воздействие ферментов пищеварительного тракта.

Кефир имеет приятный, слегка освежающий и кислый вкус, нежный сгусток, возбуждает аппетит, усиливает секреторную и моторную деятельность желудка и кишечника, укрепляет нервную систему. Благодаря своим питательным свойствам он широко применяется для лечения и профилактики малокровия, атеросклероза, болезней легких и плевры, при нарушении функции желудочно-кишечного тракта и обмена веществ.

Целью моей работы является рассмотрение типовой технологической линии производства кефира резервуарным способом с охлаждением продукта в резервуарной емкости для сквашивания молока и фасовкой в полиэтиленовые пакеты. Данная технологическая линия широко применяется для производства кефира на предприятиях России и позволяет получать продукт с хорошими вкусовыми и органолептическими качествами, удовлетворяющими требованиям нормативных документов.

1. Технохимическая характеристика сырья

Молочнокислые продукты, к которым относится и кефир получаются в процессе переработки молока, заключающемся в сбраживании исходного сырья некоторыми микроорганизмами, из которых отметим в первую очередь молочнокислые, или молочные бактерии, а кроме них, молочные дрожжи. По составу закваски молочнокислые продукты разделяют на продукты молочнокислого и смешанного (молочнокислого и спиртового) брожения. К продуктам молочнокислого брожения относят простоквашу, йогурт, ряженку, варенец, ацидофильные продукты, сметану, творог. К продуктам смешанного брожения относят кумыс, айран, курт, чал, а также кефир. 

Молочные бактерии, по форме, относятся к палочкам, причем размеры клеток зависят от способа инкубации, но главным образом от условий среды - химического состава и наличия кислорода. При этом клетки могут принимать вид коккообразных шариков или нитевидный. Размножаются бактерии клеточным делением перегородкой, в результате чего образуют длинные цепочки.

Молочнокислые бактерии получают энергию для обмена веществ в своих клетках в процессе молочнокислого брожения. По типу брожения бактерии разделяют на гомоферментативные и гетероферментативные.

Гомоферментативные бактерии в процессе брожения преобразуют углеводы в молочную кислоту (до 90 %) и незначительные по объему этиловый спирт, уксусную кислоту и летучие кислоты. Гетероферментативные бактерии сбраживают углеводы до молочной кислоты в объеме 50 %, углекислоты в объеме 25 % и уксусной кислоты с этиловым спиртом в равных объемах. Молочнокислые бактерии, попадая в желудочно-кишечный тракт человека, становятся составной частью его микрофлоры, причем располагаются преимущественно в кишечнике. Наиболее обычны для микрофлоры кишечника бифидобактерии, которых в последнее время ряд ученых (Берджи и др.) выделяют в отдельный род бактерий - Bifidobacterium.

Химический состав кефира 3,2%-ной жирности: вода - 88,3; белки - 2,8; жира - 3,2; углеводов - 4,1; органических кислот - 0,9; золы - 0,7%. Энергетическая ценность 59 ккал. Витамины А, ?-каротин, В1, В2, РР, С.

Сырье, используемое для производства кефира - молоко. Требования к заготавливаемому молоку как к сырью, для производства высококачественных молочных продуктов согласно ГОСТ Р 52054-2003 «Молоко натуральное коровье-сырье.Технические условия».

Молоко должно быть натуральным, полученным от здоровых коров, иметь чистый, приятный, сладковатый вкус и запах, свойственный свежему молоку; цвет от белого до светло-кремового, без каких-либо цветных пятен и оттенков; консистенция однородная, без сгустков белка и комочков жира, без осадка, плотностью не ниже 1027 кг/м3. Не подлежит приемке молозиво, в первые 7 дней после отела и стародойное молоко. Не допускается в молоке резко выраженных кормовых привкусов, особенно лука, чеснока, полыни, которые не исчезают и во время технологической обработки. Нельзя принимать на завод молоко со стойким запахом химикатов и нефтепродуктов, с добавлением нейтрализующих веществ, с остаточным содержанием химических средств защиты растений и животных, затхлым привкусом, тягучей консистенции, что свидетельствует о наличии в больших количествах гнилостной и посторонней микрофлоры.

Соответствие молока стандарту по физико-химическим показателям устанавливают анализом на содержание массовой доли жира, титруемой кислотности, плотности и, при необходимости, СОМО (по массовой доле жира и плотности). Расчеты за сданное молоко производятся по базисной жирности и содержанию белка соответствующим средним нормам для данного сырьевого района. При приемке проводят контроль молока на санитарно-микробиологическое состояние проверкой 1 раз в декаду на механическую загрязненность, педунтазной или резазуриновой пробами на бактериальную обсемененность. Молоко коров, больных маститом, не подлежит приемке. Несмотря на то, что мастит не передается человеку через молоко, в нем содержится большое количество стафилококков, выделяющих токсины, которые могут вызвать пищевое отравление молочными продуктами и быть причиной опасных заболеваний.

Для производства диетических продуктов используют молоко высококачественное в гигиеническом отношении, т.е. минимальной механической и бактериальной загрязненностью и титруемой кислотностью не более 19?Т.

Молоко должно быть биологически полноценным, содержать витамины и свободные аминокислоты в количестве, необходимом для успешного развития в нем микрофлоры. 

При выработке кисломолочных продуктов в промышленных условиях используют специальные закваски, приготовленные на чистых культурах молочнокислых бактерий. Применение чистых культур с проверенными биохимическими свойствами позволяет интенсифицировать производственный процесс и получать продукт с заранее определенными свойствами. Молочные бактерии, используемые в производстве кисломолочных продуктов, по морфологическим признакам подразделяются на две группы: молочнокислые стрептококки, имеющие шарообразную форму клеток, и молочные палочки, относящиеся к группе молочновидных бактерий.

Молочнокислые палочки обладают более высокой энергией кислотообразования, при развитии в молоке могут повышать кислотность до 300?Т и более. Молочнокислые стрептококки - менее активные кислотообразователи, предельная кислотность молока при развитии в нем только стрептококков не превышает 120?Т, а продукты, сквашенные с применением только стрептококковых культур, имеют нежный кисломолочный вкус.

Обе морфологические группы бактерий различаются отношением к температуре. Большинство молочнокислых палочек являются термофильными бактериями с оптимальной температурой развития в пределах 37-45?С, минимальная температура - около 20?С. Представители этой группы - ацидофильная палочка с оптимум развития 37-38?С и болгарская палочка с оптимальной температурой развития 40-45?С. В молочнокислых продуктах иногда обнаруживается термоустойчивая молочнокислая палочка незаквасочного происхождения, которая хорошо переносит более высокую (90?С) температуру пастеризации. Под действием этой культуры резко повышается кислотность и появляется излишне кислый вкус; нарастание кислотности сверх предела, допустимого стандартом, возможно еще в период выработки продукта на заводе.

Молочнокислые стрептококки относятся к мезофильным микроорганизмам, развиваются успешно при температуре 25-30?С; минимальная температура развития - 10?С, а иногда несколько ниже.

Из этой группы для выработки цельномолочных продуктов используют молочнокислый стрептококк - основной компонент микрофлоры заквасок для простокваши, сметаны, а также сливочный стрептококк и ароматообразующий стрептококк.

Термофильный стрептококк в отличие от других бактерий этой группы имеет оптимум развития в пределах 40-45?С, вырабатывает несколько меньше молочной кислоты, но очень удобен для составления комбинированных заквасок в сочетании с молочнокислыми палочками. 

Ароматообразующий стрептококк является более слабым кислотообразователем, сбраживает молочный сахар с образованием не только молочной кислоты, но и ароматических соединений - ацетоина, диацетила, ацетальдегида.Важнейшем из этих соединений является диацетил, он образуется из пировиноградной кислоты в присутствии лимонной, которая служит акцептором водорода. Образование четырехуглеродистых соединений снижает выход молочной кислоты.

На заводах сначала готовят лабораторную закваску в микробиологической лаборатории, а затем на ее основе - производственную закваску в соответствии с требованиями СанПиН 2.3.4.551-96 "Производство молока и молочных продуктов". Санитарные требования к производству заквасок.

На небольших предприятиях, при отсутствии микробиолога приготовление лабораторной закваски может осуществлять специально выделенное лицо. Микробиолог передает лабораторную закваску для приготовления производственной закваски в выходные и праздничные дни мастеру цеха.

Для приготовления лабораторной закваски берут стерилизованное молоко, охлаждают его до температуры сквашивания, а затем вводят в него сухие или жидкие культуры микроорганизмов, полученные из специальных лабораторий ВНИМИ. Сухую закваску вносят в молоко после сквашивания получают первичную лабораторную закваску, которая должна иметь ровный плотный сгусток, кислотность в пределах 75-85?Т (при наличии в закваске молочнокислых стрептококков) и 100-130?Т (при наличии молочнокислых палочек).

Заранее приготовленная закваска бывает ослабленной, так как при хранении в сухом состоянии или в одной и той же среде часть клеток погибает. Для восстановления активности культуру переносят в свежее молоко. В зависимости от количества пересадок получают первичную, вторичную закваску и т.д. С увеличением количества пересадок усиливается способность к размножению и биохимическая активность культуры, в том числе энергия кислотообразования. Производственную закваску готовят в значительно больших объемах и используют для выработки продуктов.

Для ее получения, в пастеризованное и охлажденное молоко вводят лабораторную закваску в количестве от 1 до 3% и оставляют для сквашивания на 8-10 ч (при наличии в закваске молочнокислых стрептококков) или 4-6 ч (при наличии молочнокислых палочек).

Весь цикл приготовления производственной закваски, начиная с пастеризации молока, его охлаждения, заквашивания и хранения готовой закваски, проводят в одной емкости во избежание попадания посторонних микроорганизмов. По этой же причине закваску не перемешивают.

Качество производственной закваски тщательно контролируют и, если при просмотре препарата под микроскопом обнаруживается посторонняя микрофлора, то немедленно вырабатывают производственную закваску на свежей лабораторной. Свежеприготовленная закваска обладает наибольшей кислотообразующей активностью. Если закваску нельзя использовать сразу после сквашивания, ее охлаждают до 4-6?С и хранят до использования, но не более 24 ч, так как при дальнейшем хранении в ней развивается посторонняя микрофлора.

2. Принципы и способы консервирования

Известно, что некоторые пищевые продукты, например мука, крупы сахар и т.п., не портятся при хранении длительное время в обычных условиях. Для кратковременного и особенно длительного хранения других продуктов требуются специальные условия, так как качество их относительно быстро ухудшается - изменяются присущие свежим продуктам вкус, запах, консистенция и цвет. Такие пищевые продукты называются скоропортящимися.

К ним относятся мясо и мясопродукты; рыба и морепродукты; молоко и молочные продукты; яйца и яичные продукты; масло животное и растительные жиры; свежие плоды и овощи; дрожжи хлебопекарные; фруктовые соки и минеральные воды; пиво; виноградные и плодово-ягодные вина; сиропы; мороженое и многие другие.

Все скоропортящиеся продукты во время хранения подвергаются значительным изменениям. Если по отношению к ним не применить своевременно те или иные способы консервирования, то они относительно быстро придут в негодность. Следовательно, консервирование пищевых продуктов заключается в специальной их обработке для предохранения от порчи при хранении.

Все методы консервирования подразделяют на физические, физико-химические, химические, биохимические и комбинированные. В основу физических методов положено использование высоких и низких температур, а также ионизирующих излучений, ультрафиолетовых лучей, ультразвука и фильтрации.

Физико-химические методы включают сушку, соление и использование сахара.

Химические методы консервирования основаны на применении химических веществ, которые должны быть безвредными для человека и не должны изменять вкус, цвет и запах продукта.

В настоящее время в России в качестве консервантов разрешены следующие химические препараты: этиловый спирт, уксусная, сернистая, бензойная, сорбиновая кислоты и некоторые их соли, борная кислота, уротропин, отдельные антибиотики, озон, углекислый газ и ряд других.

Биохимические методы консервирования основаны на подавляющем действии молочной кислоты, образующейся в результате сбраживания сахаров продукта молочнокислыми бактериями.

К комбинированным методам консервирования относят дымное и бездымное копчение, а также некоторые другие способы, основанные на использовании нескольких видов консервантов одновременно.

Применяемые методы сохранения пищевых продуктов, в основу которых положено внешнее воздействие на биологические факторы порчи, классифицированы одним из основоположников товароведения проф. Я. Я. Никитинским, предложившим свести все существующие способы консервирования к четырем принципам - биозу, анабиозу, ценанобиозу и абиозу.

Биоз - поддержание жизненных процессов в продуктах с использованием для этой цели иммунитета. Этот принцип применяют при хранении плодов и овощей, транспортировании и реализации живой рыбы, предубойном содержании скота, птицы.

Анабиоз - замедление, подавление жизнедеятельности микроорганизмов и активности тканевых ферментов при помощи таких способов консервирования, как холодильная обработка и хранение, сушение и вяление, маринование, консервирование в сахарном сиропе и т. д.

Ценанобиоз - подавление вредной микрофлоры за счет создания условий для жизнедеятельности полезной микрофлоры, способствующей сохранению продуктов (квашение, молочнокислое и спиртовое брожение при производстве и хранении кисломолочных продуктов).

Абиоз - прекращение жизнедеятельности микроорганизмов в продуктах (высокотемпературная обработка, применение лучистой энергии, токов высокой и сверхвысокой частоты, антибиотиков, антиоптиков и др.).

Для данного продукта (кефир) используют метод консервирования - ценанобиоз.

С биологической точки зрения все методы консервирования отличаются друг от друга тем, что при применении их достигается различная степень торможения нежелательных процессов в продуктах. При выборе метода консервирования, кроме основной цели (торможение нежелательных процессов), стремятся добиться максимальной сохраняемости продукта, а также экономичности процесса. Поэтому в практической деятельности часто разные способы консервирования комбинируют.

Лучшим способом консервирования является тот, который позволяет, возможно, более длительное время хранить продукт с наименьшими потерями пищевой ценности и массы. Этим требованиям в наибольшей степени отвечает применение искусственного холода. С точки зрения экономичности холод превосходит методы тепловой обработки по затратам энергии.

В зависимости от решаемых задач продукты подвергаются разной глубине холодильной обработки (охлаждение, переохлаждение, подмораживание, замораживание, домораживание), а для восстановления натуральных свойств к продукту подводится теплота (отепление, размораживание).

3. Технологическая схема производства

Технологическая схема процесса производства кефира представлена на рисунке 1.

Рисунок 1 - Технологическая схема производства кефира

Существует два способа производства кефира - резервуарный и термостатный. Резервуарный способ производства отличается от термостатного тем, что сквашивание молока производится в большой емкости и на розлив направляется продукт с перемешанным сгустком.

Технологический процесс состоит из следующих операций: приемки и подготовки сырья, нормализации, гомогенизации, пастеризации и охлаждения, заквашивания, сквашивания в специальных емкостях, охлаждения сгустка, созревание сгустка, фасования.

Кефир резервуарным способом вырабатывают из цельного натурального нормализованного молока не ниже второго сорта, кислотностью не более 190Т, плотностью не менее 1,0278 кг/м3, с различной массовой долей жира, поэтому исходное молоко нормализуют до требуемой массовой доли жира.

При нормализации цельного молока по жиру могут быть два варианта: жира в цельном молоке больше, чем требуется в производстве, и жира в цельном молоке меньше, чем требуется. В первом варианте жир частично отбирают путем сепарирования или к исходному молоку добавляют обезжиренное. Во втором варианте для повышения жирности исходного молока добавляют к нему сливки. Один из простейших способов нормализации по жиру - нормализация путем смешивания в емкости рассчитанных количеств, нормализуемого молока и нормализующего компонента (сливок или обезжиренного молока) при тщательном перемешивании смеси.

Тепловая обработка и гомогенизация.

Пастеризация молока производится с целью уничтожения вегетативных форм микрофлоры, в том числе патогенных. Наиболее распространенный способ в производстве кисломолочных продуктов - кратковременная пастеризация при температуре 85-87 0С с выдержкой в течение 5-10 мин. или при 90-92 0С с выдержкой 2-3 мин. с последующим охлаждением до температуры заквашивания. Режим пастеризации должен обеспечить получение заданных свойств готового продукта, в частности органолептических показателей (вкус, нужные вязкость и плотность сгустка). Высокие температуры пастеризации вызывают денатурацию сывороточных белков, при этом повышаются гидратационные свойства казеина. Это способствует образованию более плотного сгустка, который хорошо удерживает влагу, что препятствует отделению сыворотки при хранении.

Гомогенизация - это раздробление (диспергирование) жировых шариков путем воздействия на молоко значительных внешних усилий. В процессе обработки уменьшаются размеры жировых шариков и скорость всплывания. Происходит перераспределение оболочечного вещества жирового шарика, стабилизируется жировая эмульсия, и гомогенизированное молоко не отстаивается. В настоящее время применяют двухступенчатую гомогенизацию, исключающую слипание частичек жировых шариков на выходе из клапанной щели гомогенизирующей головки. Гомогенизация проводится при температуре 60-65 0С и давлении 15-17,5 МПа (125-175 атм). После пастеризации и гомогенизации смесь охлаждается до температуры заквашивания.

Заквашивание и сквашивание молока.

При производстве кефира обычно применяют закваску, приготовленную на кефирных грибках. Основными представителями их являются молочнокислые палочки, молочнокислые стрептококки. Случайная микрофлора зерен состоит из споровых палочек, уксуснокислых бактерий, молочных плесеней, пленчатых дрожжей, бактерий группы Coli и пр.

Для приготовления кефирной закваски сухие кефирные зерна выдерживают в теплой воде (25-30 0С) в течение суток, меняя ее за это время 2-3 раза. После этого воду сливают, и набухшие зерна заливают теплым молоком, взятым в десятикратном количестве по отношению к объему грибков.

Для выработки кефира с характерным вкусом и прочной консистенцией необходимо использовать производственную закваску, выдержанную после сквашивания при температуре 10-12 0С в течение 12-24 час. Закваску, масса которой обычно составляет 5 % массы заквашиваемой смеси, вносят в смесь, охлажденную до температуры заквашивания. Смесь сквашивают при температуре 23-25 0С до образования молочно-белкового сгустка кислотностью 80-100 0Т (рН 4,5-4,65). Во время сквашивания происходит размножение микрофлоры закваски, нарастает кислотность, коагулирует казеин и образуется сгусток. После окончания сквашивания продукт немедленно охлаждают.

Перемешивание и охлаждение сгустка.

После сквашивания кефир перемешивают и охлаждают до температуры созревания. Перемешивание продукта начинают через 60-90 мин. после начала времени его охлаждения и проводят в течение 10-30 минут. Перемешанный и охлажденный до температуры 20 0С сгусток оставляют в покое.

Созревание кефира.

Продолжительность созревания кефира составляет 6-10 ч. Во время созревания активизируются дрожжи, происходит спиртовое брожение, в результате чего в продукте образуются спирт, диоксид углерода и другие вещества, придающие этому продукту специфические свойства.

Перемешивание и розлив.

По истечении времени созревания, перед началом розлива кефир в резервуаре перемешивают 2-10 мин.

Упаковку и маркировку производят в соответствии с требованиями стандарта на этот продукт. С целью улучшения консистенции готового продукта, упакованный кефир рекомендуется выдерживать в холодильной камере перед реализацией. При достижении кефиром требуемого показателя условной вязкости и температуры 6 0С технологический процесс считается законченным и продукт готов к реализации.

Хранение кефира

Хранение кефира производят при температуре от 6 до 8 0С не более 36 ч с момента окончания технологического процесса в соответствии с действующими санитарными правилами для особо скоропортящихся продуктов, в том числе на предприятии-изготовителе не более 18 ч.

Такие условия позволяют в оптимальном соотношении продолжаться процессам брожения (спиртовое брожение преобладает над кисломолочным). При этом интенсивность брожения достаточно снижена, чтобы предотвратить в течение периода хранения, составляющего 36 часов и в том числе 18 часов на предприятии изготовителе, чрезмерное повышение кислотности или содержания спирта в продукте.

Камеры хранения для сырья и продукции охлаждают батарейным воздушным и смешанным способами. Наиболее широко применяется батарейное охлаждение.

Воздушное охлаждение даёт возможность использования рассола и аммиака, обеспечивает равномерную температуру по всему объёму камеры.

Смешанный способ охлаждения - камеры оборудуют батареями и воздухоохладителями. Этот способ применяется в основном в камерах с универсальным температурным режимом.

4. Требования к качеству готовой продукции. Дефекты

Требования, предъявляемые к качеству кефира, характеризуются органолептическими и физико-химическими показателями, так же регламентируется, в соответствии с СанПиН, и микробиологические показатели качества, регламентируемые стандартом.

Согласно ГОСТ 52093 - 2003 «Кефир. Технические условия». По органолептическим характеристикам продукт должен соответствовать требованиям таблицы 1.

Таблица 1 - Органолептические показатели кефира по ГОСТ 52093-03. Кефир. Технические условия

Наименование показателя

Характеристика

Внешний вид и консистенция

Консистенция должна быть однородной, с нарушенным сгустком при резервуарном способе производства, с ненарушенным сгустком - при термостатном способе производства.

Допускается газообразование в виде отдельных глазков, вызванное нормальной микрофлорой.

На поверхности кефира допускается незначительное отделение сыворотки (не более 2% от объема продукта).

Вкус и запах

Кисломолочный, освежающий, слегка острый

Цвет

Молочно-белый, слегка кремовый

Согласно ГОСТ 52093 - 2003 Кефир. Технические условия. По физико - химическим показателям продукт должен соответствовать нормам, указанным в таблице 2 .

Таблица 2 - Массовая доля жира продукта, согласно ГОСТ 52093 - 2003 Кефир. Технические условия

Наименование показателей

Норма для кефира

1,0%-го

2,5%-го

3,2%-го

нежирного

Массовая доля жира, % не менее

1,0

2,5

3,2

-

Массовая доля сухих веществ, % не менее

-

-

-

-

Массовая доля витамина С, % не менее

0,01

0,01

0,01

0,01

Кислотность, 0Т

85-120

85-120

85-120

85-120

Температура при выпуске с предприятия,0С не более

8

8

8

8

Содержание токсичных элементов, микотоксинов, антибиотиков, пестицидов и радионуклидов в продукте не должно превышать допустимых уровней, установленных СанПиН 2.3.2.1078 «Гигиенические требования безопасности и пищевой ценности пищевых продуктов».

Микробиологические показатели продукта должны соответствовать требованиям СанПиН 2.3.2.1078 «Гигиенические требования безопасности и пищевой ценности пищевых продуктов». Количество молочнокислых микроорганизмов КОЕ в 1 г. Продукта в течении срока годности не менее 10.

Количество дрожжей КОЕ в 1 г продукта - не менее 10. Фосфатаза в продукте не допускается.

Кисломолочные напитки благоприятной средой для развития многих микроорганизмов, поскольку содержат много влаги, белков, углеводов и зольных элементов. В связи с этим во время хранения у них могут измениться кислотность, вкус, запах и консистенция.

Изменение кислотности. Содержащийся в кисломолочных напитках молочный сахар разлагается под действием микроорганизмов с образованием молочной и некоторых других кислот. Титруемая кислотность превышает при этом допустимые нормы, вследствие чего продукт приобретает резко кислый вкус. С повышением температуры окружающего воздуха скорость нарастания кислотности возрастает.

При длительном хранении в условиях повышенной температуры отмечается снижение кислотности вследствие развития гнилостных процессов. В результате этих процессов происходит распад белков с образованием щелочных соединений. Продукт приобретает пороки вкуса, запаха и консистенции и становится непригодным для употребления.

Изменения вкуса и запаха. Нечистые вкус и запах возникают при развитии в продуктах посторонней микрофлоры.

Уксуснокислый вкус и запах могут появляться в результате развития в них уксуснокислых бактерий, которые окисляют спирт до уксусной кислоты. Эти бактерии при пастеризации молока погибают. Поэтому недостаточная пастеризация кисломолочных напитков, несоблюдение санитарно-гигиенических условий производства и плохая укупорка способствуют появлению этого порока.

Прогорклый вкус появляется в результате гидролиза молочного жира под влиянием липазы плесеней, которые попадают в сметану при нарушении санитарно-гигиенических режимов производства и хранения. Пресный вкус получается при слабом развитии молочнокислого брожения.

Плесневение. На поверхности кисломолочных напитков может развиваться белая молочная плесень, которая вызывает нечистый, а иногда прогорклый вкус. Кисломолочные напитки, поступившие в крупной таре с плесенью на поверхности, перед реализацией зачищают.

Тягучая консистенция кисломолочных напитков может быть результатом развития слизеобразующих бактерий или другой посторонней микрофлоры, например уксуснокислых бактерий.

Вспученная консистенция. Этот порок кисломолочных напитков вызывается развитием в продукте газообразующих микроорганизмов, дрожжей, сбраживающих лактозу, или в результате хранения при высоких температурах.

Отделение сыворотки (перекисание) в кисломолочных напитках происходит в результате накопления излишнего количества кислот в процессе производства и хранения при высокой температуре.

Салистый вкус возникает в результате окисления жира под действием солнечного света, повышенной температуры хранения, наличия металлов переменной валентности.

Горький вкус обусловлен расщеплением белковых веществ под действием протеолитических ферментов в процессе длительного хранения. Металлический привкус возникает при упаковке кисломолочных напитков в металлические фляги с нарушенным слоем внутреннего покрытия.

Усушка. Кисломолочные напитки при хранении могут незначительно терять в весе в результате испарения влаги черёз тару и упаковку. С понижением температуры окружающего воздуха потери эти уменьшаются.

Неоднородная консистенция наблюдается в кисломолочных напитках при их подмораживании вследствие образования комков белка.

Кисломолочные напитки замораживать нельзя. Образующиеся при замораживании кристаллы льда нарушают структуру продукта, в результате чего при оттаивании выделяется сыворотка, консистенция продукта становится хлопьевидной или крупитчатой. Снижаются и вкусовые достоинства, тара деформируется.

5. Основное оборудование, применяемое при производстве кефира

Рассмотрим основную технологическую схему производства кефира резервуарным способом с охлаждением в резервуарах. По этой схеме молоко подается насосами по трубам, а расфасованный готовый продукт - внутризаводским транспортом (цепными и ленточными транспортерами и т.д.).

В теплообменниках молоко и напитки подвергают термической обработке (нагреванию и охлаждению) до заданной температуры. От механических примесей молоко очищается в сепараторах-очистителях в потоке и для получения соответствующей дисперсности жира и улучшения вязкости напитка обрабатывается в гомогенизаторах.

Напиток в резервуаре перемешивается приводной мешалкой. Расфасовывают напиток в пленочную упаковку или картонные пакеты на разливочных машинах и автоматах. Контроль технологического процесса и управление им автоматизированы.

Машинно-аппаратурная линия производства макаронных изделий изображена на рисунке 2.

Проанализируем конкретную линию производства. Нормализованное по жирности молоко, охлажденное до 4-6 0С, из молокохранительного танка В2-ОМГ-10 емкостью 10 тыс. л центробежным насосом НМУ-6 подается в балансировочный бачок пастеризационно-охладительной установки ОПЛ-5 и далее насосом НМУ-6 направляется в I секцию регенерации теплообменника, откуда подогретое до 30-35 0С поступает в центральную трубку сепаратора-молокоочистителя ОМА-3М.

Рисунок 2 - Технологическая схема производства кефира резервуарным способом: 1, 4, 10, 12 - насосы; 2 - емкость для молока; 3 - выравнивающий бачок; 5 - пластичная пастеризационно-охладительная установка; 6 - пульт управления; 7 - сепаратор; 8 - гомогенизатор; 9 - выдерживатель; 11 - емкость для кефира; 13 - пластинчатый охладитель; 14 - промежуточная емкость.

Очищенное молоко под давлением, создаваемым напорным диском сепаратора, поступает в секцию II регенерации теплообменника, после чего направляется в секцию пастеризации для нагрева до 85 0С и подается в танк Г6-ОПБ-1000, где выдерживается при этой температуре 5-10 мин. Из танка молоко самотеком направляется в гомогенизатор А1-ОГМ, где под давлением 125-175 ат гомогенизируется и поступает во вторую секцию теплообменника для отдачи тепла встречному потоку молока.

Молоко, охлажденное до температуры заквашивания (23-25 0С) поступает в двустенный танк ОТК-6, куда предварительно с помощью насоса НРМ-2 попадает закваска. Сквашивание происходит до кислотности 85-90 0Т, затем сгусток перемешивается и тут же охлаждается холодной водой до 20 0С. В дальнейшем сгусток оставляют в покое для созревания на 6-10 ч.

По истечении времени созревания, перед началом розлива кефир в резервуаре перемешивают 2-10 мин. и подают на фасовочно-упаковочный автомат М6-ОПЗ-Е для расфасовки.

Упакованный кефир рекомендуется выдерживать в холодильной камере перед реализацией до достижения, им требуемого показателя условной вязкости и температуры 6 0С.

Емкость для хранения молока

Емкость для хранения молока цилиндрической формы представлена на рисунке 3. Она состоит из алюминиевого корпуса и стального кожуха. Пространство между ними заполнено термоизолирующим веществом. В верхней части емкости предусмотрены смотровое окно, светильник, моечное устройство, датчик верхнего уровня и воздушный клапан. Смотровое окно и светильник предназначены для периодического осмотра внутренней полости емкости. Моечное устройство выполнено в виде двух трубчатых полудуг с отверстиями для подачи раствора.

При вытекании моющего раствора из отверстий трубчатые дуги вращаются за счет возникающих реактивных сил. При этом внутренняя поверхность емкости равномерно орошается моющим раствором. Датчик верхнего уровня сигнализирует о заполнении рабочей вместимости емкости, а воздушный клапан впускает и выпускает воздух при ее опорожнении и заполнении.

Рисунок 3 - Танк молокохранительный В2-ОМГ-10

1 - рабочая емкость; 2 - теплоизоляция; 3 - кожух; 4 - мешалка; 5 - смотровое окно; 6 - люк; 7 - привод мешалки; 8 - ножки; 9 - сливной патрубок; 10 - термометр; 11 - наливная труба

Емкость для хранения молока цилиндрической формы представлена на рисунке 2. Она состоит из алюминиевого корпуса и стального кожуха. Пространство между ними заполнено термоизолирующим веществом. В верхней части емкости предусмотрены смотровое окно, светильник, моечное устройство, датчик верхнего уровня и воздушный клапан. Смотровое окно и светильник предназначены для периодического осмотра внутренней полости емкости. Моечное устройство выполнено в виде двух трубчатых полудуг с отверстиями для подачи раствора. При вытекании моющего раствора из отверстий трубчатые дуги вращаются за счет возникающих реактивных сил. При этом внутренняя поверхность емкости равномерно орошается моющим раствором. Датчик верхнего уровня сигнализирует о заполнении рабочей вместимости емкости, а воздушный клапан впускает и выпускает воздух при ее опорожнении и заполнении.

В средней части емкости расположены люк, термометр, кран для отбора проб, устройство для контроля за уровнем молока и стационарная лестница для обслуживания верхней части. В нижней части имеются перемешивающее устройство, датчик нижнего уровня и опоры. Перемешивающее устройство состоит из центробежного насоса, эжектора, кранов и соединяющих из трубопроводов. Емкость наполняется через нижний патрубок. Через этот же патрубок емкость и опорожняется при переключении трехходового крана. Окончание заполнения или опорожнения сопровождается подачей светового или звукового сигнала. При отборе проб пользуются специальным краником, а температуру молока контролируют термометром. Повышение температуры молока за 24 ч хранения в таких емкостях при разности температур окружающего воздуха и продукта, равной 24 0С, допускается не более чем на 2 0С.

Центробежный насос для подачи молока в пастеризационно-охладительную установку

Центробежный насос для подачи молока в пастеризационно-охладительную установку представлен на рисунке 4 он имеет корпус в виде цилиндра, закрываемого крышкой. Во внутренней полости корпуса через отверстие проходит вал с насаженной на него лопастью. Крышка уплотнена резиновым кольцом и зажимными винтами.

Рисунок 3 - Центробежный насос НМУ-6: 1 - защитный кожух; 2 - фланец; 3 - шпонка; 4 - зажимное устройство; 5 - гайка крепления кожуха; 6 - обойма; 7 - корпус насоса; 8 - лопасть; 9 - резиновое кольцо; 10 - крышка; 11 - торцевое уплотнение; 12 - торцевая шайба; 13 - наконечник вала; 14 - обратный клапан; 15 - патрубок; 16 - гайка крепления напорного патрубка

Имеет корпус в виде цилиндра, закрываемого крышкой. Во внутренней полости корпуса через отверстие проходит вал с насаженной на него лопастью. Крышка уплотнена резиновым кольцом и зажимными винтами.

На ней расположен по оси вала всасывающий патрубок. По касательной к цилиндру корпуса установлен нагнетательный патрубок.

При вращении вала в камере насоса молоко отбрасывается лопастью к периферии камеры и под действием центробежных сил создается давления для вывода продукта в нагнетательный патрубок и транспортирования по молокопроводу. При этом в центральной части камеры насоса образуется разрежение и туда поступает новая порция молока. Поток молок не прерывается. Возврат молока из полости нагнетания в полость всасывания между корпусом и лопастью предотвращения благодаря минимально возможным зазорам между ними.

Подводимая от электродвигателя к рабочему колесу насоса энергия затрачивается на преодоление гидравлических сопротивлений внутри самого насоса и на приращение энергии потока молока. Гидравлические сопротивления внутри насоса зависят от формы и расположения всасывающего и нагнетательного патрубков насоса, формы лопастей, зазоров между ними и корпусом, профиля клапанов и чистоты обработки их поверхностей. Приращение энергии потока молока в насосе зависит от частоты вращения рабочего колеса, размеров и формы камеры и рабочего колеса.

Установка для быстрой пастеризации молока

Пластинчатая пастеризационно-охладительная установка представлена на рисунке 5. Установка ОПЛ-5 предназначена для быстрой тонкослойной пастеризации молока в закрытом потоке с последующим охлаждением. Она работает при автоматическом регулировании технологического процесса, что исключает возможность выхода из аппарата недопастеризованного молока.

Рисунок 5 - Автоматизированная пластинчатая пастеризационно-охладительная установка ОПЛ-5

1 - пластинчатый пастеризатор; 2 - молокоочиститель ОМА-3М; 3 - балансировочный бак; 4 - центробежный насос для молока; 5 - регулятор потока; 6 - бойлер; 7 - насос для горячей воды; 8 - инжектор; 9 - гомогенизатор А1-ОГМ; 10 - выдерживатель пастеризованного молока Г6-ОПБ-1000; 11 - насос центробежный; 12 - щит управления

Принцип работы установки. Сырое молоко поступает в балансировочный бак, снабженный поплавковым клапаном для поддержания постоянного уровня молока. Из бака молоко поступает в насос, который подает его в регулятор потока соответствующей производительности (5000 л/ч).

Затем под напором оно входит в секцию регенерации, где прогревается пастеризованным молоком, движущимся с другой стороны пластины. Подогретое молоко из секции регенерации поступает в один из двух работающих по очереди сепараторов-молокоочистителей, где под действием центробежной силы взвешенные частицы вместе со слизью молока остаются на стенках барабана.

Очищенное молоко под напором, создаваемым сепаратором (2-3 ат), подается в гомогенизатор, а из него молоко поступает в секцию регенерации теплообменника, где нагревается до заданной температуры и направляется в выдерживатель, затем возвращается в секцию регенерации теплообменника, проходит ее, отдавая тепло через стенку пластины встречному потоку молока, частично охлаждается и приходит в секцию охлаждения, где температура его снижается до заданной.

При работе установки ОПЛ-5 в секцию пастеризации насосом (3К-9) подается теплоноситель - горячая вода из бойлера, обогреваемого паром. В секцию охлаждения подается хладоноситель - ледяная вода.

Контроль и регулирование технологического процесса обработки молока в установке ОПЛ-5 осуществляются автоматически.

Если во время работы установки температура пастеризации снижается, то перепускной клапан автоматически возвращает недопастеризованное молоко в балансировочный бачок.

Сепаратор для очистки молока от посторонних примесей

Сепаратор-молокоочиститель ОМА-3М представлен на рисунке 6, он предназначен для очистки молока от посторонних примесей, микрофлоры и белковой слизи. В комплект установки ОПЛ-5 входят два молокоочистителя ОМА-3М.

Механические загрязнения удаляются путем тонкослойной сепарации в быстровращающемся барабане молокоочистителя. Молоко, подлежащее очистке, по центральной трубке поступает во внутреннюю полость тарелкодержателя. Закрытый ввод предохраняет молоко от попадания посторонней микрофлоры из окружающего воздуха.

Здесь наиболее тяжелые и крупные частицы оседают на стенке корпуса, а молоко вместе с мельчайшими частицами поступает в пакет конических тарелок. В пространстве между тарелками молоко очищается от взвешенных частиц.

Рисунок 6 - Сепаратор-молокоочиститель ОМА-3М: 1 - манометр с мембранной приставкой; 2 - отводящая коммуникация; 3 - гайка для крепления приемно-отводящего устройства с крышкой; 4 - питающий патрубок; 5 - напорный диск; 6 - крышка сепаратора; 7 - крышка барабана; 8 - тарелкодержатель; 9 - конические тарелки; 10 - затяжное кольцо барабана; 11 - основание барабана; 12 - стопор; 13 - станина; 14 - центрируемые винтовые пружины горловой опоры; 15 - гнезда корпуса; 16 - веретено; 17 - шестерня; 18 - опорные шарики; 19 - пружина подпятника; 20 - стакан подпятника; 21 - указатель уровня масла; 22 - винтовое колесо; 23 - валик тахометра; 24 - тормоз (два); 25 - шламовое пространство; 26 - предохранительная гайка

Очищенное молоко под давлением вновь поступающих порций проходит к центру и поднимается по каналам тарелкодержателя в камеру напорного диска. Неподвижный напорный диск захватывает вращающуюся жидкость и под давлением выводит ее из барабана в отводящую коммуникацию.

Чем дольше работает сепаратор, тем больше заполняется грязевое пространство, поэтому качество очистки с течением времени ухудшается. Практически сепаратор нормально работает 1,5-2 ч, причем этот срок зависит от степени загрязненности исходного молока.

Клапанный гомогенизатор

Гомогенизатор А1-ОГМ представлен на рисунке 7. Гомогенизация - это раздробление (диспергирование) жировых шариков путем воздействия на молоко значительных внешних усилий. В процессе обработки уменьшаются размеры жировых шариков и скорость всплывания. Происходит перераспределение оболочечного вещества жирового шарика, стабилизируется жировая эмульсия, и гомогенизированное молоко не отстаивается.

Принцип действия клапанного гомогенизатора А1-ОГМ. В цилиндре гомогенизатора на молоко оказывается механическое воздействие при давлении 15-20 МПа (125-175 ат). При подъеме клапана, приоткрывающего узкую щель, молоко выходит из цилиндра. Это возможно при достижении в цилиндре рабочего давления. При проходе через узкую круговую щель между седлом и клапаном, скорость молока возрастает от нулевой до величины, превышающей 100 м/с. Давление в потоке резко падает, и капля жира, попавшая в такой поток, вытягивается, а затем в результате действия сил поверхностного натяжения дробится на мелкие капельки-частицы. Во избежании слипания раздробленных частичек на выходе из клапанной щели применяют двухступенчатую гомогенизацию. На первой ступени создается давление, равное 75% рабочего, на второй ступени устанавливается рабочее давление. производство кефир сквашивание сырье

Гомогенизатор представляет собой трехплунжерный насос. Каждый из трех плунжеров, совершая возвратно-поступательное движение, всасывает молоко из приемного канала, закрытого всасывающим клапаном, и нагнетает его через нагнетательный клапан в гомогенизирующую головку под давлением 15-20 МПа.

Рисунок 7 - Гомогенизатор А1-ОГМ

Выдерживание пастеризованного молока

Выдерживание пастеризованного молока осуществляется в Танке Г6-ОПБ-1000, который изображен на рисунке 8. В танке для выдерживания пастеризованного молока продукт нагревается через теплопередающую стенку-рубашку от поступающей в нее горячей воды или пара, пропускаемого через горячую воду.

Емкость состоит из корпуса цилиндрической формы, теплообменной рубашки, теплоизоляции и наружного кожуха. Для ее заполнения и опорожнения служит патрубок. Емкость снабжена мешалкой пропеллерного типа. С теплообменной рубашкой соединяется переливная труба и парораспределительная головка, к которой через трубопровод подается пар. Теплоноситель удаляется через патрубок в нижней части из теплообменной рубашки. Люк для осмотра и ремонта рабочей поверхности расположен в средней части. Моющее устройство, находящееся в верхней части емкости, представляет собой реактивную вертушку.

Рисунок 8 - Танк Г6-ОПБ-1000

1 - мешалка; 2 - теплоизоляция; 3 - теплообменная рубашка; 4 - внутренний корпус; 5 - наружный корпус; 6 - пульт управления; 7 - ножки; 8 - патрубок наполнения-опорожнения; 9 - пробоотборный кран; 10 - люк; 11 - привод мешалки

Резервуар для скашивания молока

Танк двустенный ОТК-6 для сквашивания молока изображен на рисунке 9. Представляет собой цилиндрический резервуар из нержавеющей стали, закрытый приваренными сферическими днищами. Рабочий резервуар внутри изолирован. Он помещен в кожух (рубашку) из стали толщиной 8 мм, который служит основанием для крепления всей конструкции и арматуры танка. По периметру фланца просверлены отверстия на расстоянии 30 мм. Через отверстия поступает вода, которая, омывая поверхность резервуара, охлаждает его и стекает к днищу, откуда через штуцер свободно сливается из межстенного пространства обратно в систему ледяного охлаждения.

В танке смонтирована мешалка. Мешалка установлена на упорном шарикоподшипнике, который закреплен в стакане привода, находящегося на верхнем днище рабочего резервуара; приводится в действие электродвигателем. Все элементы мешалки разъемные, что позволяет без особых затруднений осуществлять монтаж и сборку.

Рисунок 9 - Танк двустенный ОТК-6

1 - стенка внутреннего резервуара; 2 - стенка кожуха; 3 - крестообразная мешалка; 4 - привод мешалки; 5 - люк; 6 - клапан для спуска готового продукта; 7 - штуцер для подачи хладагента; 8 - штуцер переливной трубы; 9 - штуцер моющего устройства; 10 - пробный кран; 11 - изоляция танка.

Фасовка и упаковка кефира

Фасовочно-упаковочный автомат М6-ОПЗ-Е изображен на рисунке 10. Он предназначен для фасования продуктов в пакеты из полимерных материалов. Состоит из разливочно-формовочного блока с механизмами сварки пакетов и устройства для укладки пакетов в транспортные ящики. Рабочие органы, кроме конвейера, подачи и отвода ящиков для пакетов, имеют пневмопривод, работой которого управляет командоаппарат. Конвейер имеет электромеханический привод. Разливочно-формовочный блок состоит их рулонодержателя, на котором находится рулон пленки, устройства для выравнивания и натяжения ленты пленки, печатающего устройства, рукавообразователя, механизма продольной сварки, поршневого дозатора с дозирующей трубой, механизма поперечной сварки и обрезки пакета. Поверхность пленки стерилизуют бактерицидной лампой.

Автомат осуществляет следующие операции: разматывает пленку с рулона, наносит на пленку дату и код молокозавода, проводит бактерицидную обработку пленки, формует из нее рукав, сваривает продольный и поперечный швы, наполняет пакет продуктом, отсасывает из пакета воздух, сваривает второй поперечный шов и одновременно отрезает пакет и отводит его на конвейер, который подает пакеты в ящик.

Опорой при сварке продольного шва служит формовочная труба, к которой пленка прижимается сваривающей головкой с нагревательным элементом. В нижней части трубы размещены пружинящие распорки, придающие рукаву удобную для поперечной сварки форму. Распорки предотвращают образование складок на поперечном шве. К верхней части формовочной трубы подведена трубка от вакуумного устройства для отсасывания из пакета воздуха. Дозирование продукта в автомате осуществляется поршневым дозатором со всасывающим и нагнетающим клапаном. Порция кефира из дозатора по дозировочной трубе подается в пакет. Дозировочная труба помещена в формовочную.

Рисунок 10 - Фасовочно-упаковочный автомат М6-ОПЗ-Е

1 - поршневой дозатор; 2 - бак молочный; 3 - лестница; 4 - рулонодержатель; 5 - формовочная трубка; 6 - рукавообразователь; 7 - механизм сварки продольного шва; 8, 10 - шкафы электрооборудования; 9 - механизм сварки поперечного шва; 11 - конвейер пакетов; 12 - фотоэлемент счетного устройства; 13 - бункер; 14 - конвейер ящиков с пакетами

Механизм сварки поперечного шва имеет две губы - сваривающую и прижимную. Их сжатие обеспечивается пневмоцилиндром. К сваривающей губе прикреплен электронагревательный элемент, к нажимной - резиновая прокладка. Для охлаждения во время работы к сваривающей и прижимной губам подается вода. Механизм сварки поперечного шва осуществляет также протяжку полиэтиленового рукава на длину одного пакета. Привод конвейера пакетов - пневматический с храповым механизмом, конвейера ящиков с готовой продукцией - электродвигателем через редуктор.


Подобные документы

  • Обзор технологии и оборудования для производства кефира. Два способа (резервуарный и термостатный) для выработки данного вида продукции. Порядок приемки и подготовки сырья. Пороки кисломолочных продуктов, причины их возникновения и меры предупреждения.

    контрольная работа [82,1 K], добавлен 12.01.2014

  • Ассортимент продукции предприятия. Технологический процесс производства кефира, обогащенного йодированным белком. Органолептическая оценка запаха и вкуса продукта, анализ содержания жира и кислоты. Изучение качества пастеризации и гомогенизации молока.

    дипломная работа [142,1 K], добавлен 09.01.2013

  • Состав и основные лечебно-диетические свойства кефира. Требования к сырью, идущему на переработку. Заквашивание и сквашивание молока. Перемешивание и охлаждение сгустка. Технико-химический контроль кефира. Последовательность обработки заквасочника.

    курсовая работа [54,6 K], добавлен 01.11.2013

  • Применение безотходных технологических операций при переработке сырья. Ассортимент продукции, вырабатываемый на молочном предприятии. Распределение сырья на молочном комбинате. Изготовление кефира, молока пастеризованного, сливок и обезжиренного молока.

    курсовая работа [109,7 K], добавлен 15.02.2012

  • Анализ ассортимента выпускаемой продукции и объемов производства. Описание приемки и подготовки сырья, хранения, сепарирования и гомогенизации молока. Технологический процесс и рецептура производства молока топленого, сливочного масла, кефира, ряженки.

    отчет по практике [44,3 K], добавлен 11.11.2013

  • Исследование истории возникновения и органолептических показателей кисломолочных напитков. Технологическая схема производства кисломолочных напитков резервуарным способом с охлаждением в потоке. Пороки кисломолочных напитков и меры их предупреждения.

    курсовая работа [386,4 K], добавлен 10.01.2015

  • Характеристика, виды, ассортимент питьевого молока. Требования ГОСТа к качеству и химическому составу питьевого молока. Качество использующегося сырья для питьевого молока. Особенности подготовки технологического процесса и производства молока питьевого.

    доклад [30,4 K], добавлен 25.11.2010

  • Технологии приготовления обезжиренного творога и продукта пониженной жирности. Кислотная коагуляция белков, происходящая посредством сквашивания молока бактериями. Органолептические показатели качества и микробиологические нормы безопасности творога.

    презентация [3,2 M], добавлен 30.11.2016

  • Характеристика сырья, вспомогательных материалов, биологических объектов, готового продукта. Химизм и механизм биохимических реакций получения биотехнологического продукта. Особенности производства видов творога. Оборудование для производства творога.

    курсовая работа [59,1 K], добавлен 16.04.2012

  • Процесс приготовления икорной продукции. Технологическая характеристика сырья. Требования к качеству готового продукта. Расход сырья и полуфабрикатов на каждом производственном этапе. Технологические характеристики оборудования для пробивки икры.

    дипломная работа [670,7 K], добавлен 23.10.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.