Модернизация технологической линии производства вареных колбас на ОАО "Борисоглебский мясокомбинат"

Анализ современных технологий и техники производства вареных колбас. Требования к сырью, материалам, готовой продукции. Машинно-аппаратурная схема производства вареных колбас. Кинематический расчет привода мешалки. Расчет годового экономического эффекта.

Рубрика Кулинария и продукты питания
Вид дипломная работа
Язык русский
Дата добавления 07.01.2010
Размер файла 1,3 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

где = 2104 - удельный расход энергии на измельчение, Дж/кг

Мв = 0,347 - секундная производительность механизма, кг/с:

N1 = = 9 кВт.

N2 - мощность, необходимая для преодоления трения в режущем механизме, кВт

N2 = (4.7)

где = 0,15 - коэффициент трения скольжения ножа по решетке во время работы,

= 300 - усредненное удельное давление в поверхности стыка Н/см2;

b = 3 - ширина площадки контакта лезвия ножа и решетки, см;

= 15,7 - угловая скорость вращения ножей, рад/с;

D = 18 - внешний диаметр лезвия ножа, см;

D = 5 - внутренний диаметр лезвия ножа, см;

N2= = 12,6 кВт,

N3- мощность, необходимая для работы червяка, кВт;

N3 = ( 4.8)

где P0 - давление, необходимое для преодоления сопротивлений, Па

P0 = ( 4.9)

где J = 400 - напряжение сдвига для мяса, Н/ см,

R = 1 - коэффициент, учитывающий соотношение размеров кусочков, диаметр отверстий, скорость истечение продукции,

dup - приведенный диаметр, см

dup = (4.10)

где d1 = 0,3 - диаметр отверстий первой решетки, см,

d2 = 2,5 - диаметр отверстий второй решетки, см

dup = = 0,53 см.

P0 = = 12015 Па.

d0 = 2 - коэффициент, учитывающий потери энергии на трение продукта о стенки при движении его в цилиндре машины;

M0 = 0,013 - объемная производительность машины, н3/с;

N3= = 0,36 кВт,

N4 = мощность, необходимая для работы подающих механизмов, кВт;

N4 = (4.11)

где К0 = 8 - коэффициент сопротивления при перемещении продукции шнеками

L = 0,7 - длина шнеков, м;

N4 = = 0,02 кВт.

Ножевые решетки, используемые в волчке для измельчения мясного сырья, представляют собой диск постоянной толщины с плоской рабочей перфорированной поверхностью, с центральным посадочным отверстием и с круглыми отверстиями перфорации. Решетка представлена на рисунке 3.1.

Рисунок 4.1

Рассчитаем количество и схему размещения отверстий перфорации таким образом, чтобы обеспечить одинаковую пропускную способность каждого условного кольца решетки по всей плоскости рабочей поверхности.

Расчет производим по формулам, содержащим числа ряда Фибоначчи.

Определяем наружные радиусы условных колец

Rn = (1,272)nR0, (4.12)

где R = 0,024 - радиус центрального посадочного отверстия решетки, м;

n - порядковый номер условного кольца;

R1 = 1,27210,024 = 0,030528 м;

R2 = 1,27220,024 = 0,0388 м;

R3 = 1,27230,024 = 0,0493 м;

R4 = 1,27240,024 = 0,0799 м;

R5 = 1,27250,024 = 0,0897 м;

R6 = 1,27260,024 = 0,1016 м.

Так как ориентировочно внешний диаметр решетки равен 0,2 м, то принимаем наружный радиус Rn = R6 = 0,1016 м.

Определяем количество отверстий, расположенных рядами на центральных радиусах условных колец.

Zn+1 = 1,618Zn, (4.13)

где Zn = 13 - количество отверстий в первом от оси диска условном кольце;

Квадратные скобки означают целую часть числа:

Z2 = 1,61813 = 21,

Z3 = 1,61821 = 34,

Z4 = 1,61834 = 55,

Z5 = 1,61855 = 89,

Z6 = 1,61889 = 144.

Определим пропускную способность 1,4 и 6-го условных колец

Kn = , (4.14)

где d0 = 0,003 - диаметр круглых отверстий перфорации, м;

K1 = ,

K4 = ,

K6 = .

Таким образом из расчетов видно, что K1 = K2 = K3 = K4 = K5 = K6.

4.1.2 Технологический расчет фаршемешалки [11]

Фаршмешалка горизонтальная с вертикальным вращением лопастей.

Определим производительность фаршемешалки. Для мешалок периодического действия производительность определяется по следующей формуле:

, (4.15)

где = 0,7- коэффициент заполнения или использования полезной емкости;

V = 0,15 - геометрическая емкость резервуара (дежи) мешалки, м3;

= 1070 - плотность перемешиваемого продукта, кг/м3;

t = 16 - полная продолжительность перемешивания, включая загрузку и выгрузку, мин.

Среднее практическое значение для перемешивания вязких продуктов в горизонтальной мешалке составляет 0,5-0,7.

.

Определим сопротивление среды, испытываемое вращающимися лопастями ведущего и ведомого валов.

Сопротивление, испытываемое одной лопастью, определяется по формуле:

, (4.16)

где - удельное сопротивление, Н/м2;

F - площадь лобовой поверхности лопасти, м2.

По данным Лапшина для фарша, имеем:

, (4.17)

где 0 = 4000-8000 - условное начальное сопротивление, Н/м2;

а = 4000-5000 - постоянный параметр, зависящий от вида фарша;

- скорость вращения лопастей, м/с.

Лобовая площадь поверхности лопасти:

F = (R - r)l, (4.18)

где R = 0,1375- наружный радиус, м;

r = 0,03- внутренний радиус, м;

l = 0,39- длина лопасти, м;

F = (0,1375 - 0,03)0,39 = 0,042 м2.

Удельное сопротивление для лопасти:

1 = 7000 + 5000 + 0,685 = 10420 Н/м2;

2 = 7000 + 5000 + 1,1 = 12500 Н/м2.

Сопротивление, испытываемое одной лопастью ведущего вала

Р1 = 1F = 104200,042 = 437,64 Н;

ведомого вала

Р2 = 2F = 125000,042 = 525 Н.

Мощность двигателя привода фаршемешалки определяется по формуле

(4.19)

где z1, z2 - соответственно число лопастей на ведущем и ведомом валах

Выбираем согласно рекомендациям [13] мотор-редуктор МЦ2С-100-56 КУЗ ГОСТ 20721-75, мощностью N = 3 кВт, n = 56 мин-1.

Мощность, потребляемая на привод поворота дежи фаршемешалки определяется по формуле

, (4.20)

гдеМ - момент сопротивления повороту дежи, Нм;

- угловая скорость вращения дежи, рад/c;

а = 1,3-1,5 - коэффициент запаса мощности в момент пуска, выбираем а = 1,5;

= 0,8 - КПД привода поворота дежи;

1 = 0,87 - КПД редукторной части мотор-редуктора.

Момент сопротивления определяется следующим образом

М = Рl, (4.21)

где Р - сила сопротивления повороту дежи, Н;

l - плечо силы относительно оси поворота (оси ведущего вала фаршемешалки), м;

Р = mg, (4.22)

гдеm - суммарная масса дежи фаршемешалки и находящегося в ней фарша

m = m1m2, (4.23)

где m1 = 100 - масса дежи, кг;

m2 - масса фарша, кг.

(4.24)

где = 0,7 - коэффициент заполнения дежи;

V = 0,15 - емкость дежи, м3;

- плотность фарша, кг/м3.

m2 = 0,70,151070 = 112,5 кг

mсум = 100 + 112,5 = 212,5 кг

Р = 2125 Н; R = 0,15 м - определяется согласно чертежу.

М = РR, (4.25)

М = 21250,15 = 319 Нм.

, (4.26)

.

.

Согласно рекомендациям [13] выбираем мотор-редуктор 2МВЗ-80-15G310 ГОСТ 24439-80 мощностью N = 0,25 кВт; n = 15 мин-1.

4.1.3 Технологический расчет шприца ФШ2-ЛМ [11]

Определим производительность шприца

Q = (4.27)

где = 0,6 - коэффициент подачи фарша;

= 58 - угол подъема винтовой линии шнека, град;

D = 0,1- наружный диаметр рабочей части шприца, м;

D = 0,05 - внутренний диаметр рабочей части шприца, м;

S = 0,07 - шаг винта, м;

К = 1,075 - коэффициент увеличения ширины впадины;

= 95,5 - число оборотов шнека, мин-1;

= 1100 - плотность мяса, кг/ м3

Q = кг/ч.

Объемную производительность шнекового питателя определим по методу Шенкеля

, (4.28)

где D = 0,1 - наружный диаметр шнека, м;

h = 0,004 - глубина нарезки, м;

Z = 2 - число шнеков;

0 = 0,25 - коэффициент, учитывающий уменьшение производительности за счет контакта шнеков;

к = 0,6 - коэффициент;

к1 = 0,7 - коэффициент;

t = 0,17 - среднее значение шага нарезки винтовой линии, м;

N0 = 1 - число заходов винта;

l - 0,005 - средняя толщина гребня винта, м;

= 48 - угол развертки средней линии нарезки;

к2 = 0,7 - коэффициент, зависящий от обратного хода продукта;

= 300103 - давление, создаваемое винтом на выходе продукта, Н/м2;

L = 0,6 - длина шнека, м.

=

= 4,210-3 м3/с.

Мощность электродвигателя вытеснителя

N = , (4.29)

где М = 4,210-3 -объемная производительность за секунду, м3/с;

Р = 300103 - давление напора, создаваемое вытеснителем, Н/ м2;

= 1,2 - коэффициент запаса мощности;

= 0,21 - механический КПД вытеснителя.

N = кВт.

Производительность вакуум-насоса

Мв = 0, (4.30)

где 0 = 4 - коэффициент, учитывающий соотношение производительности вакуум- насоса и производительности вытеснителя

Мв = 44,210-3 = 16,810-3 м3/с.

Мощность электродвигателя к вакуум- насосу

N = (4.31)

где А = 30000 - расход энергии на сжатие, 1 м3 воздуха, откачиваемого вакуум-насосом, Дж/м3;

= 0,8 - механический КПД вакуум-насоса

N = = 5 кВт.

4.2 Кинематический расчет привода мешалки []

Привод фаршемешалки состоит из:

- мотор-редуктора серии МЦ2С-100-56КУЗ ГОСТ 20721-75 с частотой вращения выходного вала 56 мин-1 и мощностью N = 3 кВт.

- цепной передачи;

- зубчатой передачи от ведущего вала фаршемешалки к ведомому.

;

;

;

;

;

;

;

.

Поворот дежи

.

Время одного полного оборота емкости

.

Поворот емкости на 900

.

4.2.1 Расчет параметров цепной передачи [15]

Исходные данные: цепная передача расположена меду мотор-редуктором и ведущим шнековым валом фаршемешалки. Передаваемая мощность 3 кВт. Частоты вращения: ведущей звездочки n1 = 56 мин-1, ведомой - n2 = 48 мин-1. Угол между линией, проходящей через центры и горизонталью 550, смазывание периодическое, работа в две смены.

Выбираем цепь приводную роликовую однорядную ГОСТ 13568-75 и определяем ее шаг

, (4.32)

где Т1 - вращающий момент на валу ведущей звездочки, Нмм;

z1 - число зубьев ведущей звездочки;

[р] - допускаемое давление, приходящееся на единицу проекции опорной поверхности шарнира, Н/мм2;

m - число рядов цепи;

Кэ - коэффициент, учитывающий условия монтажа и эксплуатации цепной передачи.

Кэ = Кд + Ка + Кн + Кр + Ксм + Кп, (4.33)

где Кд - динамический коэффициент, при спокойной нагрузке Кд = 1;

Ка - коэффициент, учитывающий влияние межосевого расстояния, при а = (30-50)t принимаем Ка = 1;

Кн - коэффициент, учитывающий наклон цепи, при наклоне до 600 Кн = 1;

Кр - коэффициент, учитывающий способ регулирования натяжения цепи, при автоматическим регулировании Кр = 1;

Ксм - коэффициент, учитывающий способ смазки; для периодического способа смазывания Ксм = 1,3-1,5. Выбираем Ксм = 1,3.

Кп - коэффицент, учитывающий сменность работы оборудования, при работе в две смены Кп = 1.

Кэ = 11111,31 = 1,3.

Число зубьев ведущей звездочки z1 = 25, ведомой:

z2 = z1u, (4.34)

где u - передаточное отношение передачи (u = 1,167)

z2 = 251,167 = 29,175.

Принимаем z2 = 30.

Вращающий момент на валу ведущей звездочки

. (4.35)

гдеР = 3 - мощность мотор-редуктора, кВт;

n1 = 56 - частота вращения звездочки, мин-1.

Допускаемое давление в шарнирах цепи [Р], МПа, определяется в зависимости от шага цепи и числа оборотов ведущей звездочки.

Согласно рекомендациям [16] для шага t = 19,05 мм, n1 = 56 мин-1 и с учетом примечания

[P] = [Ртабл][1 + 0,01(z1 - 17)], (4.36)

[Р] = 39[1 + 0,01 (25 - 17)] = 42,12 МПа.

Находим шаг цепи

.

Принимаем ближайшее большее значение t = 25,4 мм.

Проекция опорной поверхности шарнира Аоп = 179,7 мм2, разрушающая нагрузка Q = 60 кН, масс 1 м цепи g = 2,6 кг/м.

Проверка цепи по двум показателям

- по частоте вращения: для цепи с шагом t = 25,4 мм допускаемая частота вращения [n1] = 800 мин-1. Условие n1 [n1] выполнено;

- по давлению в шарнирах.

Для данной цепи при n = 56 мин-1 значение [Р]=36[1+0,01(25-17)]=38,88 МПа.

Расчетное давление

, (4.37)

гдеFt - окружная сила, Н;

Аоп - проекция опарной поверхности шарнира, мм2;

, (4.38)

гдеV - средняя скорость цепи, м/с.

, (4.39)

.

.

.

Условие Р [Р] выполнено.

Определение числа звеньев цепи

, (4.40)

гдеаt - межосевое расстояние при данном шаге цепи

, (4.41)

где а - межосевое расстояние, мм;

t - шаг цепи, мм;

z - суммарное число зубьев

z = z1 + z2, (4.42)

- поправка, = z2 - z1/2.

Выбираем а = 488 мм.

.

z = 25 + 30 = 55.

.

Lt = 219,2 + 0,555 + (0,7962/19,2) = 38,4 + 27,5 + 0,033 = 65,933.

Округляем до четного числа Lt = 66.

Уточняем межосевое расстояние

Определение диаметров делительных окружностей звездочек

- ведущий:

;

- ведомой:

.

Определение диаметров наружных окружностей звездочек:

- ведущей:

, (4.43)

гдеd1 - диаметр ролика цепи, принемаем d1 = 15,88.

.

- ведомой:

.

Определение сил, действующих на цепь.

Окружная сила: Ft = 5067 Н.

Центробежная сила:

, (4.44)

гдеg = 2.6 - масса 1 м цепи, кг/м;

V = 0,592 - средняя скорость цепи, м/с.

Fv = 2,60,592 = 0,91 Н.

Сила от провисания цепи

Ff = 9.81Kfga, (4.45)

гдеКf - коэффициент, учитывающий расположение цепи;

а - межосевое расстояние, м.

При наклонном расположении цепи Kf = 1,5.

Ff = 9,811,52,60,488 = 18,67 Н.

Расчетная нагрузка на валы

Fb = Ft + 2Ff, (4.46)

Fb = 5067 + 218,67 = 5104,34 Н.

Проверка коэффициента запаса прочности цепи

, (4.47)

где Q = 60 кН - табличная величина, определяемая согласно рекомендациям, нагрузка на цепь, кН.

.

Нормативный коэффициент запаса прочности [S] = 7,3.

Условие S [S] выполнено.

4.2.2 Расчет зубчатого зацепления [15]

Исходные данные:

- ведущая шестерня: число зубьев z1 = 85, модуль 4, диаметр делительной окружности d1 = 340 мм, ширина зубчатого венца В = 20 мм, частота вращения n1 = 48 мин-1, угловая скорость = n/30 = 5,02 рад/с;

- ведомая шестерня: число зубьев z2 = 53; модуль 4, диаметр делительной окружности d2 = 212 мм, ширина зубчатого венца В = 25 мм, частота вращения n1 = 77 мин-1, угловая скорость = 8,06 рад/с.

материал шестерни - сталь 40Х улучшенная ГОСТ 4543-71, твердость НВ = 245.

Передаточное отношение

u = z2/z1, (4.48)

u = 53/85 = 0,623.

Расчет зубчатого зацепления ведется на выносливость по контактным напряжениям на изгиб.

Напряжение контакта для прямозубых передач

, (4.49)

где aw = 276 - межосевое расстояние, мм;

Т2 - передаваемый крутящий момент на валу ведущей шестерни (ведомой звездочки), Нмм;

Т2 = Т1u, (4.50)

Т2 = 5101031,167 = 595103 Нмм;

Кн - коэффициент, учитывающий динамическую нагрузку и неравномерность распределения нагрузки между зубьями и по ширине венца;

Кн = КнКнКн, (4.51)

гдеКн - коэффициент, учитывающий неравномерность распределения нагрузки между зубьями, для прямозубых колес Кн = 1;

Кн - коэффициент, учитывающий неравномерность распределения нагрузки по ширине венца, при консольном расположении зубчатых колес, для

НВ 350 Кн = 1,2-1,35. Выбираем Кн = 1,3;

Кн - коэффициент, зависящий от окружной скорости колес и степени точности их изготовления. Для прямозубых колес при = 5 м/с и девятой степени точности Кн = 1,05-1,10. Выбираем Кн = 1,05.

Кн = 11,31,05 = 1,365.

.

Допускаемое контактное напряжение

, (4.52)

гдеНlimb - предел контактной выносливости при базовом числе циклов; для стали 40 Х нормализованной при НВ < 350 Нlimb = 2НВ + 70 = 2245 + 70 = 560 МПа;

КНL - коэффициент долговечности, при числе циклов нагружения каждого зуба колеса больше базового, принимают КHL = 1;

[SH] - коэффициент безопасности

Для нормализованной и улучшенной стали [SH] = 1,1-1,2.

.

4.3 Расчёт шнекового питателя волчка

Определяем шаг шнека

H = 0,7D, (4.53)

где D = 0,156 диаметр шнека, м

H = 0,70,156 = 0,1 м.

Предельный диаметр шнека

Dпр = (Н/)f , (4.54)

где f = 0,9 - коэффициент трения

Dпр = ()0,9 = 0,28 м.

Принимаем диаметр вала шнека d = 0,08 м

Угол подъёма винтовой линии на внешней стороне шнека

D= arctg (4.55)

D= arctg = 56,9 град.

Угол подъёма винтовой линии на внутренней стороне шнека

d= arctg (4.56)

d= arctg =38,1 град.

Среднее значение угла подъёма винтовой линии витка шнека

ср= 0,5( D+ d). (4.57)

ср= 0,5(56,9 + 38,1) = 47,5 град.

Снижение перемещения частиц продукта в осевом направлении можно учесть коэффициентом отставания, который определяется по формуле

К0 = 1 - (cos2 ср - 0,5fsin2ср). (4.58)

К0 = 1 - (cos2 47,5 - 0,50,9sin247,5) = 0,992.

Изгибающий момент в витке шнека по внутреннему контуру определим по выражению

, (4.59)

где Рmax = 800103 - максимальное давление, развиваемое шнековым нагнетателем, Па;

D = 0,156 - внешний диаметр шнека, м;

а = 2 - отношение шнека и вала

Нм.

Толщина витка шнека

, (4.60)

где = 125106 - допускаемое напряжение при изгибе, Па

м.

Площадь внутренней поверхности корпуса устройства на длине одного шага

Fb = D(H - ). (4.61)

Fb = 3,140,156(0,1 - 0,0054) = 0,0465 м2.

Площадь одной стороны поверхности витка шнека на длине одного шага

(4.62)

где L - развертка винтовой линии, соответствующая диаметру шнека, м;

, (4.63)

м,

l - развертка винтовой линии , соответствующая диаметру вала, м

, (4.64)

м.

.

Условие Fm < Fb выполняется.

Крутящий момент при двух рабочих витка шнека определим по формуле

Мкр= 0,131nPmax(D3-d3) tgop , (4.65)

где n = 2 - число рабочих витков шнека

Мкр= 0,1312800103(0,1563 - 0,083) tg47,5 = 5499 Нм.

Осевое усилие

S = 0,392n(D2 - d2)Pmax. (4.66)

S = 0,3922(0,1562 - 0,082)80010 3 = 11038,72 H.

Нормальное напряжение вала шнека определяется по формуле

сm = S/F, (4.67)

где F- площадь поперечного сечения вала шнека, м2

, (4.68)

м2;

сm = 11038,72/510-3= 2,2106 Па.

Касательное напряжение вала определим по формуле

= Мкр/Wp, (4.69)

где Wp- полярный момент сопротивления поперечного сечения вала шнека, м3

Wp 0,1d3. (4.70)

Wp 0,10,083 = 510-5 м3.

= 5499/(510-5 ) = 1108 Па.

Эквивалентное напряжение определим по формуле

. (4.71)

Па.

Примем, что вал шнека изготовлен из стали 12Х18Н10Т, для которой допускаемое напряжение при изгибе = 180106 Па.

Условие экв выполняется.

Рисунок 4.2 - Шнек

Мощность, затрачиваемая на привод шнекового нагнетателя

( 4.72)

где = 15,7 - угловая частота вращения шнека, рад/с;

= 0,65 - механический КПД привода

= 7 кВт.

Производительность нагнетателя

П = 0,125(D2 - d2)(H - )(1 - K0), (4.73)

где = 1100 - плотность мяса, кг/м3[6];

= 1,0 - коэффициент подачи;

П = 0,125(0,1562 - 0,082)(0,1 - 0,005)(1 - 0,992)11001,015,7 = 0,347 кг/с.

Ширина винтовой поверхности

b = 0,5(D - d) (4.74)

b = 0,5(0,156 - 0,08) = 0,03 м.

Угол выреза

L0 = 2 - (L - l)/b; (4.75)

L0 = 23,14 - (0,49 - 0,27)/0,038 = 6,1 рад

Диаметр наружного кольца

D0 = 2L/(2 - L0), (4.76)

D0 = 20,49/(23,14 - 6,1) = 5,4 м.

Диаметр внутреннего кольца

L0 = 2l/(2 - L0) (4.77)

L0 = 20,27/23,14 - 6,1 = 3 м.

4.4 Расчеты, подтверждающие работоспособность

4.4.1 Расчет вала шнека на прочность

Произведем расчет вала шнека волчка на прочность и плотность.

Передаваемый момент

Mz = N/, (4.78)

где N = 7103 - передаваемая мощность, Вт;

= 15,7 - угловая скорость вала, рад/с

Mz = 7103/15,7 = 445103 Нмм.

Окружное усилие в зацеплении

(4.79)

где d2 = 284 - диаметр делительной окружности зубчатого колеса, мм;

= 3133,8 Н.

Осевое усилие в зацеплении

Q12 = P12tg, (4.80)

где = 10 - угол наклона зубьев, град

Q12 = 3133,8tg10 = 3133,80,176 = 551 Н.

Радиальное усилие в зацеплении

, (4.81)

где = 20 - угол зацепления в нормальном сечении, град,

Определим реакции в вертикальной плоскости.

Сумма моментов относительно опоры В

, (4.82)

Из формулы (4.82) выразим реакцию Ах

(4.83)

Н.

Сумма моментов относительно опоры А

, (4.84)

Из формулы (4.84) выразим опорную реакцию Вх

, (4.85)

Н.

Определим изгибающие моменты в горизонтальной плоскости Муа = 0,

Му1 = Bx , (4.86)

Му1=1566,9 = 109,6103 Нмм.

Определим суммарный изгибающий момент в наиболее нагруженном сечении В

, (4.87)

Нмм.

Эквивалентный момент по III гипотезе прочности

Мэкв = , (4.88)

Мэкв = Нмм.

Определим диаметр вала под подшипником

Dn = , (4.89)

где -1 4 = 50 - допускаемое напряжение изгиба, МПа

Dn = = 61 мм.

Диаметр под подшипник принимаем из стандартного ряда Dn = 65 мм.

Определяем диаметр вала на выходном конце.

Dn = , (4.90)

где = 20 - допускаемое напряжение на чистое кручение, МПа;

Dn = = 32 мм.

Принимаем диаметр выходного конца вала равным 35 мм

Выполним уточнённый расчёт вала, который заключается в определении коэффициентов запаса прочности в опасных сечениях. Материал вала круг, 100-е дм, Т 2590-88/30 дм, Т 1050-88 предел прочности для этого материала B = 780 МПа, предел текучести т = 440 МПа.

Рисунок 4.3 - Расчетная схема вала шнека.

Определяем предел выносливости при изгибе

-1 = 0,43В , (4.91)

-1 = 0,43780 = 335 МПа.

Определяем предел выносливости при кручении

-1 = 0,58-1, (4.92)

-1 = 0,58335 = 193 МПа.

Концентрация напряжений обусловлена посадкой подшипника с гарантированным натягом.

Определяем амплитуду нормальных напряжений

v= max= , (4.93)

где W - осевой момент сопротивления, мм3;

W = (4.94)

W = мм3;

МПа.

Определяем амплитуду и среднее напряжение цикла касательных напряжений

(4.95)

где Wр- полярный момент сопротивления, мм3;

Wр= 2W, (4.96)

Wр= 226961,2 = 53922,4 мм3.

МПа.

Определяем коэффициент запаса прочности по нормальным напряжениям

, (4.97)

где К = 3,6 - эффективный коэффициент концентрации нормальных напряжений;

= 2,5 - масштабный фактор для вала диаметром 65 мм;

= 0,15 - коэффициент, учитывающий влияние постоянной составляющей цикла для сталей

Определим коэффициент запаса прочности по касательным напряжениям

, (4.98)

где К = 2,5- эффективный коэффициент концентрации касательных напряжений;

= 0,68 - масштабный фактор для вала диаметром 65 мм;

= 0,1- коэффициент, учитывающий влияние постоянной составляющей цикла для сталей.

.

Определяем общий коэффициент запаса прочности

, (4.99)

.

Условие прочности выполняется, если S S . А так как

S = 2,5 - 4, то прочность и жесткость обеспечены.

Выполним проверку вала на сопротивление пластическим деформацием. Условие прочности

, (4.100)

где Sт - коэффициент запаса по текучести,

- наибольшие нормальные и касательные напряжение при передаче валом пикового момента, МПа;

- требуемый коэффициент запаса прочности по текучести;

= 2v= 24 = 8 МПа.

= 24,1 = 8,2 МПа.

.

Этот коэффициент запаса достаточен.

5.Организация монтажа, эксплуатации и ремонта оборудования

5.1 Проведение монтажных работ

Монтаж линии осуществляется в соответствии с установочными чертежами, силами ремонтных и слесарных бригад под руководством главного инженера. Предварительно приготавливают подъемно транспортные механизмы и необходимые механизмы, с помощью которых будет осуществляться подъем и перемещение машин и аппаратов. А также подготавливаются установочные площадки.

Поступившее новое оборудование извлекают из транспортирующей тары, удаляют поверхностную смазку и осуществляют сборку отдельных агрегатов и механизмов, которые монтируется на основное оборудование после его установки. Необходимость этого заключается в том, что эти агрегаты и механизмы являются ответственными сборочными единицами и поэтому должны транспортироваться отдельно от основного оборудования, во избежание их поломки и повреждения.

После установки и компоновки всех машин и аппаратов в линии осуществляют подвод и присоединение трубопроводов и электрокоммуникаций. Особенно тщательно выполняют соединения, обеспечивающие герметичность (фланцевые соединения, сварные и т.д.). При монтаже трубопроводов крепление производится к строительным конструкциям, причем при выборе способа крепления учитывают необходимость разборки и сборки и степень подвижности трубопровода. Перед монтажом проверяют наличие и правильность оставленных отверстий для прохода отверстий в стенках, перегородках, перекрытиях. Осуществляется заземление каждого аппарата и машины.

При определении качества монтажа проверяют качество заливки фундаментных болтов и надежность крепления машины, правильность ее установки и выверки на горизонтальность, вертикальность, соосность валов, соответствие проекту и технической документации материалов трубопроводов, их диаметров и уклонов, правильность установки и соединения с трубопроводами запорной и регулирующей арматуры (кранов, вентилей, задвижек). Затем проверяют соосность деталей и механизмов привода, комплектность и правильность сборки внутренних сборочных единиц и механизмов, соблюдение зазоров и допусков, для данного класса механизмов, производят подтяжку болтовых и других разъемных соединений.

Проверяют наличие контрольно-измерительных приборов, предохранительных устройств, ограждений, а также смазка во всех точках. В заключение работ по подготовке к пуску оборудование чистят, моют, протирают и убеждаются в отсутствии посторонних предметов (ключей, тряпок и т.д.) на движущихся частях машин. Перед пуском машина должна быть обеспечена электроэнергией, паром, холодом, водой, сжатым воздухом и стоком отработанных вод.

Дальнейшие этапы пуско-наладочных работ производят как после монтажа, так и после капитального ремонта или модернизации машины или аппарата. Испытания могут быть механические, для машин и технологические для машин и аппаратов. Кроме того, при необходимости для определения прочности и плотности соединений сосудов, трубопроводов и аппаратов производят пневматические (при помощи сжатого воздуха) и гидравлические (на воде) испытания.

Механические испытания машин начинают с пробного пуска, к которому приступают после тщательного изучения заводской инструкции по эксплуатации. Вначале машину по возможности проворачивают вручную (за штурвал, рукоятку, шкив привода), отключив при этом электродвигатель от сети и сняв приводные ремни и цепи.

Затем, пробным пуском (толкачом) проверяют правильность направления вращения электродвигателя, что особенно важно при наладке автоматов, во избежание аварии. После этого электродвигатель присоединяют к передаче и производят пробный пуск машины кратковременным включением привода. При нормальной работе в период пробного пуска не должно быть заеданий, рывков, толчков, повышенной вибрации и постороннего шума. Мелкие дефекты, выявленные в процессе пробного пуска, устраняют.

Затем производят обкатку машины вхолостую, т.е. без нагрузки. Продолжительность обкатки указывается в инструктаже по эксплуатации, или в справочной литературе. В процессе обкатки проверяют взаимное расположение деталей в сборочных единицах, надежность крепления болтов, гаек, заклепок и так далее.

По возможности обкатку ведут на скорости, меньше рабочей. Все замеченные неисправности немедленно устраняются. Испытания под нагрузкой производят с целью достижения машиной механических параметров (производительности, рабочей нагрузки, скорости движения) в соответствии с паспортными данными. Продолжительность испытания указываются в инструкции завода изготовителя. Нагрузка на машину должна возрастать постепенно по величине и по времени.

5.2 Испытания трубопроводов

После монтажа или ремонта трубопроводы промывают водой, затем производят гидравлические испытания на прочность и плотность, при пробном давлении. Величина пробного давления обычно равна 1,25 от рабочего давления, но не менее 0,2 МПа; для арматуры 1,5 от рабочего давления.

При испытании конец проверяемого участка трубопровода закрывают заглушкой, давление создаю с помощью ручного гидравлического пресса. Вначале давление создают до разрешенного, выдерживают систему не менее 5 минут, после чего давление постепенно снижают до рабочего и производят осмотр. Трубопровод считается выдержавшим испытания, если, давление не падает, а также отсутствуют течи в соединениях.

5.3 Особенности наладки технологической линии

Вначале производят индивидуальные испытания каждой единицы оборудования, входящего и на рабочем режиме под нагрузкой. Затем регулируют в допустимых пределах производительность каждой машины и аппарата, чтобы убедится в возможности синхронной работы всей линии. Линию в целом опробуют в том же порядке, в котором производились индивидуальные механические и технологические испытания каждой единицы оборудования, т.е. вхолостую и с нагрузкой [1].

Эксплуатация оборудования должна производиться в строгом соответствии с требованиями технологической документации заводов-изготовителей. В случае отсутствия техдокументации она разрабатывается службой главного механика. Разрабатываются также инструкции по эксплуатации, выполнение которых обеспечивает безотказную работу оборудования. Они содержат следующие требования:

- порядок приема и сдачи смен;

- остановки и пуска оборудования, проведение его технологического обслуживания;

- требование бесперебойной, надежной эффективной работы оборудования;

- характерные неисправности, при которых оборудование необходимо остановить;

- порядок остановки оборудования при аварийной ситуации;

- перечень блокирующе-сигнализирующих устройств, отключающих оборудование в случае аварии;

- требование по технике безопасности и производственной санитарии. Начальник цеха (участка) закрепляет оборудование за эксплуатационным персоналом, несет ответственность за оборудование цеха, организует его правильную эксплуатацию, своевременную смазку, уборку и чистку, в том числе при передаче его в ремонт.

5.4 Монтаж, ремонт и эксплуатация фаршемешалки

К работе на фаршемешалке допускаются только лица, изучившие его устройство и приемы работы, прошедшие инструктаж но технике безопасности.

Работать на фаршемешалке можно только при установленных и укрепленных ограждениях. До начала работы необходимо обеспечить санитарное состояние фаршемешалки.

В процессе работы нужно следить за своевременной загрузкой сырья в корпус, своевременной выгрузкой обработанного сырья из корпуса фаршемешалки. В случае обнаружения неисправности (посторонний шум, искрение электродвигателя) следует немедленно выключигь фаршемешалку и не приступать к работе до полного устранения неисправности. [4]

В процессе эксплуатации фаршемешалки могут возникнуть различные неисправности, которые приведены в таблице 5.1

Таблица 5.1

Неисправность

Причина возникновения

Способ устранения

При включенном приводе электродвигатель не включается.

Сгорела катушка электромагнитного пускателя.

Замыкание контактов пускателя.

Заменить катушку или пускатель. Зачистить контакты.

При включенном электродвигателе привода, привод не работает.

Проскальзывание клиновых ремней.

Отрегулировать натяжение ремней.

5.5 Монтаж, ремонт и эксплуатация волчка

Волчки устанавливают на фундамент или виброопоры. После выверки волчка проводят ревизию его узлов, открывают задний щиток, отворачивают спускную пробку и сливают остатки масла из редуктора. Новое масло заливают в редуктор согласно карте смазки. Затем кратковременными пусками проверяют правильность вращения шкива электродвигателя, предварительно сняв клиновые ремни. Направление вращения шкива электродвигателя должно быть против часовой стрелки, если смотреть со стороны шкива. Перед испытанием на холостом ходу надевают клиновые ремни и регулируют их натяжение. Ревизии подлежат ножевой механизм волчка и рабочий шнек. Новки шнека и режущего механизма при сборке смазывают пищевым жиром. Затем, прокручивая вал электродвигателя за ремни вручную, определяют легкость вращения валов. Выявленные дефекты устраняют и проводят испытание кратковременными пусками на холостом ходу. Избегают излишних холостых ходов при отсутствии в ножевом механизме смазки.

При испытаниях под нагрузкой следят за тем, чтобы вместе с мясом в машину не попадали кусочки костей и другие предметы, регулируют работу режущего механизма.

Значительная затяжка гайки на волчке приводит к заклиниванию двустороннего ножа между плоскостями решеток и может вызвать поломку ножей или самой машины. Излишний зазор между лезвиями ножа и плоскостями решеток ухудшает условия резания, снижает качество измельчаемого сырья и увеличивает потребление мощности. Лезвие ножей должны прилегать к плоскостям ножевых решеток [3]. После окончания испытаний под нагрузкой поверхности волчка, соприкасавшиеся с сырьем (чаша, корпус, шнеки, ножи, подпора шнека), подвергают санобработке: моют горячей водой и стерилизуют кипятком.

Затем все поверхности перечисленных деталей протирают насухо и смазывают тонким слоем несоленого пищевого жира. В случае длительной остановки машины, например, при ремонте, детали смазывают технической антикоррозийной смазкой. Основные неисправности волчков представлены в таблице 5.2.

5.6 Техническое обслуживание и ремонт оборудования

Техническое обслуживание (ТО) - это комплекс операций по поддержанию работоспособности оборудования, проводимых при использовании по назначению, хранении и транспортировки. Оно является основным профилактическим мероприятием, предназначенным для обеспечения надежной работы оборудования между плановыми ремонтами, и выполняется в течение смены, между шнеками или в период технологических остановок.

Таблица 5.2 -Возможные неисправности волчков

Наименование неисправности

Причина возникновения

Способы устранения

Электродвигатель нагревается и периодически останавливается.

Недостаточная мощность электродвигателя, слишком велика частота вращения и подача продукта.

Заменить электродвигатель, уменьшить частоту вращения.

Шнек плохо подает мясо, выталкивается обратно в загрузочную горловину.

Слишком большой зазор между червяком и внутренней стенкой рабочего цилиндра или небольшая пропускная способность решеток по сравнению с подачей шнека.

Восстановить витки червяка или вставить новые ребра в рабочий цилиндр, так, чтобы зазор был не более 0,3…0,4 мм, сменить ножи, решетки.

Продукт плохо измельчается или сильно нагревается.

Неправильно собран режущий механизм. Затупились ножи и забились решетки: не прилегают плотно к решеткам.

Разобрать режущий механизм, проверить и устранить дефекты сборки. Заточить ножи и прочистить решетки.

Внутри рабочего цилиндра слышен посторонний шум и стук.

Сломался нож или решетка захватила посторонний предмет.

Остановить волчок, разобрать цилиндр, удалить ломаные детали.

Объем работ при ТО определяется в технической документации завода изготовителя. ТО включает:

- смазку оборудования;

- проверка действия смазочных устройств и маслопроводов;

- смена и пополнение масла в картерах;

- наблюдение за состоянием подшипников и зазоров в местах сопряжения деталей;

- наблюдение за состоянием фланцев трубопроводов, штуцеров и люков аппаратуры, шпоночных соединений;

- наблюдение за работой контрольно-измерительных приборов;

- наблюдение за работой системы охлаждения;

- надзор за натяжением и состоянием ремней, тросов, цепей;

- проверку наличия и исправности ограждений;

- проверку исправности заземления;

- подтяжка разлаженных креплений, сальников, смена стяжных болтов и арматуры, прогонка болтов с гайками, смена прокладок, наложение хомутов на трубопроводы;

- частичная регулировка прочистка смазочных отверстий;

- проверка общего состояния изоляции.

Все обнаруженные в процессе ТО неисправности фиксируются в специальном журнале.

Правильная организация ТО увеличивает сроки службы оборудования, сохраняет высокое качество его работы, исключает аварии, а также ускоряет и удешевляет плановые ремонты.

Работники службы главного механика и технологического цеха проводят контрольные осмотры. Устанавливается полнота и качество технического обслуживания, фактическое, техническое состояние ответственных узлов и деталей, утоняется объем и вид предстоящего ремонта. Количество и периодичность контрольных осмотров устанавливает служба главного механика. График проведения осмотров оборудования утверждается главным механиком.

Система ПТОР предусматривает следующие виды ремонта:

1) Текущий - выполняется для обеспечения или восстановления работоспособности оборудования и состоит в замене или восстановлении его отдельных деталей и сборочных единиц.

В зависимости от характера и объема приводимых работ текущие ремонты подразделяются на первый текущий ремонт (Т1) и второй текущий (Т2).

Текущий ремонт оборудования осуществляется как в ремонтный период, так и в период эксплуатации оборудования.

2) Капитальный ремонт (К) выполняется для обеспечения исправности и полного или близкого к полному восстановлению ресурса оборудования с заменой или восстановлением любых его частей.

Послеремонтный ресурс должен составлять не менее 80 % ресурса нового оборудования.

6. Безопасность и экологичность проекта

6.1 Производственная безопасность

Для обеспечения безопасности проектируемых производств следует исходить из современных достижений в разработке техники и технологии, комплексной механизации и автоматизации производственных процессов при строгом соблюдении технологической и трудовой дисциплины.

6.1.1 Физические опасные и вредные производственные факторы

Одним из значительных факторов производственной среды является микроклимат. Отклонение от нормируемых параметров микроклимата может привести к снижению производительности труда, повышению утомляемости рабочих.

Помещения линии производства вареных колбас можно охарактеризовать как помещения с незначительными избытками явной теплоты. Согласно с СанПиН 2.2.4.548-96, основную массу работ можно отнести к категориям IIа, IIб (прием сырья, жиловка, обвалка, измельчение и посол мяса, приготовление фарша,) и Iб (формовка, вязка).

Несоответствие санитарным нормам метеорологичеких условий также можно отметить в цехе жиловки и в цехе измельчения и особенно в цехе куттерования, так как это связано с технологическими требованиями (температура не должна превышать +5°С).

Для поддержания микроклимата на предприятии имеются вентиляционные установки, использующие вентиляторы типа ВР 290-46 №2п в холодное время помещение отапливаются с помощью системы водяных калориферов типа КСК3-12-02.

Тип вентиляторов и калориферов подобраны согласно СНиП 41-01-2003. Допустимые параметры микроклимата приведены в таблице 6.1.

Таблица 6.1. - Допустимые параметры микроклимата рабочей зоны производственных помещений

Параметры

Категория работ

IIа, IIб

Период года

Холодный

Теплый

Холодный

Теплый

Температура воздуха, °С

Диапазон ниже оптимальных величин

19,0-20,9

20,0-21,9

17,0-18,9

15,0-16,9

18,0-19,9

16,0-18,9

Диапазон выше оптимальных величин

23,1-24,0

24,0-28,0

21,0-23,0

19,0-22,1

22,1-27,0

21,1-27,0

Температура поверхностей, °С

18,0-25,0

19,0-29,0

16,0-24,0

14,0-23,0

17,0-28,0

15,0-28,0

Относительная влажность воздуха, %

15-75

15-75

15-75

15-75

Скорость движения воздуха, м/с

Для диапазона температур ниже оптимальных величин

0,1

0,1

0,1

0,2

0,1

0,2

Для диапазона температур выше оптимальных величин

0,2

0,3

0,3

0,4

0,4

0,5

Одним из основных вредных и опасных физических факторов в линии производства вареных колбас является повышенная опасность поражения электрическим током, из-за наличия электрооборудования. Согласно «Правилам устройства электроустановок (ПУЭ)» для предотвращения опасных ситуаций двигатели всех используемых машин должны быть надежно заземлены с сопротивлением заземлителя , а все токоведущие линии - изолированы.

В каждом из цехов необходимо установить опознавательные знаки и плакаты, предупреждающие об опасности поражения электрическим током.

Согласно классификации помещений по электроопасности

ГОСТ 12.1.038-82 с изм. 1996, линию производства вареных колбас в зависимости от выполняемых работ можно отнести к III категории - особо опасные помещения (обвалочный цех и цех приготовления фарша, цех термокамер).

В качестве мероприятий направленных на предотвращение электротравматизма необходимо использовать следующие меры: применение токов безопасного напряжения, изоляция токоведущих частей, защитное заземление, защитное зануление, применение электрозащитных средств.

Достаточное освещение наиболее благотворно влияет на зрение и общую производительность труда. В производственных помещениях предусмотрено Естественное боковое и общее искусственное освещение. Нормы естественного и искусственного освещения для различных цехов линии производства вареных колбас, в соответствии со СНиП 23-05-95 приведены в таблице 6.2.

Нормированное значение эквивалентного уровня звука в соответствии со СНиП 23-03-2003 составляет 69 дБА. Для обеспечения данного значения уровня звука предусмотрена звукоизоляция, а также средства индивидуальной защиты - наушники.

Данные по уровню звука от различных видов оборудования линии производства тефтелей представлены в таблице 6.3

Виброскорость используемого оборудования не превышает порогового значения 5*10-8 м/с, поэтому мероприятия по снижению вибрации не требуется.

6.1.2. Химические опасные и вредные производственные факторы

Для мойки и дезинфекции рабочих мест и машин, на предприятиях мясной промышленности применяют следующие средства: карбонат натрия, гидроксид натрия, хлорную известь, перекись водорода и некоторые другие, так же в качестве добавки в продукт используется для придания колбасным изделиям

Таблица 6.2 - Характеристика освещенности рабочего места

Наименование операции

Разряд

зрительных работ

Естественное освещение

Искусственное

освещение

система

освещения

КЕО, %

нормированная

освещенность, лк

Обвалка, жиловка, измельчение и посол

VI

боковая

0,6

200

приготовление

компонентов, фарша

VIIIа

-

0,6

200

формование

VI

боковая

0,6

200

Таблица 6.3 - Усредненные данные по замеру уровней звука от различных видов оборудования.

Вид оборудования

Эквивалентный уровень звука, дБА

Куттер

69 - 72

Электродвигатель

40 - 43

Шпигорезка

85

Термокамера

75

Компрессор

96 - 100

приятного розового цвета добавляют нитрит натрия, в процессе обжарки образуются вещества, являющиеся продуктами неполного сгорания топлива (окись углерода, двуокись азота), однако, в рабочую зону они не поступают.

После мойки и дезинфекции оборудование тщательно ополаскивают водой до полного удаления моющих и дезинфицирующих средств (контроль по фенолфталеину или лакмусовой бумаге, отсутствию запаха).

Значения ПДКр.з., а также другие характеристики указанных веществ в соответствии с ГН 2.2.5 1313-03 приведены в таблице 6.4.

Таблица 6.4 - характеристика веществ, применяемых для мойки аппаратов

Техническая операция

Вещество

ПДКр.з,

Класс

токсичности

Воздействие на организм человека

Меры

защиты

Мойка и

дезинфекция

гидроксид

натрия

0,5

2

высокоопасные

химический ожог

Предохранительные очки, резиновые сапоги, перчатки, фартуки, марлевые повязки на нос и рот, вентиляция

карбонат натрия

5

4

умерено

опасные

отравление

перекись

водорода

100

2

высокоопасные

химический ожог

6.1.3 Биологические и психофизические опасные и вредный производственные факторы

На предприятии при приеме сырья (скота) ведется жесткий ветеринарный контроль, также ведется жесткий бактериологический контроль при приеме других ингредиентов, что в целом исключает проникновение вредоносных микроорганизмов в продукцию и на рабочие поверхности аппаратов и машин. В результате этих мероприятий практически исчезает угроза биологических ОВПФ. Для профилактики возникновения вредоносных микроорганизмов применяют мойку и обработку паром рабочих поверхностей аппаратов и машин. При работе персонала в цехах измельчения и вязки батонов, вследствие наличия большого количества ручных однообразных операций, наблюдается нервно-психические перегрузки. В цехах приготовления компонентов и механической обвалки существует проблема физической перегрузки персонала. Данные вредные факторы возможно устранить увеличением времени отдыха персонала и степени автоматизации операций.

6.2. Экологическая безопасность

Отходы производства вареных колбас связаны с выбросами в атмосферу газов, сбросами в водоемы сточных вод, ухудшающих состояние почвы, прилегающей к предприятию, а также твердыми отходами. Степень вредного воздействия на природу определяют по параметрам: ПДК, ПДВ, БПК, ХПК. Твердыми отходами являются кости и костный остаток, которые перерабатываются на предприятии и затем реализуются.

Источником загрязнения воздуха является котельная предприятия. В атмосферу выбрасываются оксиды углерода и азота. Значения ПДКм.р. приведены в таблице 6.5.

Однако эти значения превышаются и к предприятию применяются штрафные санкции.

Таблица 6.5- ПДКм.р оксидов углерода и азота

Соединения

ПДКм.р, мг/м3

Оксид азота

0,6

Оксид углерода

0,81

Предельно допустимые концентрации (ПДК) и содержания химических веществ в воде водоемов после смешения со сбрасываемыми стоками не должны превышать нормы, установленные в ГН 2.1.5.1315-03.

Ориентировочные допустимые уровни (ОДУ) химических веществ в воде должны превышать нормы, установленные в ГН 2.1.5.689-98. Значения ПДК и ОДУ некоторых химических веществ приведены в таблице 6.6.

Очистные сооружения мясоперерабатывающего завода включают в себя два отделения: гидроуловитель и флотатор. Исходный производственный сток проходит через решетку, на которой задерживаются грубодисперсные и волокнистые примеси. Отбросы с решеток собираются в контейнер и отправляются на свалку. Далее сток попадает в приемный резервуар (песколовушку). Здесь взвешенные частицы выпадают в осадок, который удаляется насосом и отправляется на свалку. Далее из резервуара сточные воды полаются в жироловушку, где всплывает жир и выделяется осадок. Из жироуловителя сток поступает во флотатор, откуда через камеру очищенных стоков сбрасывается в канализацию.

6.3 Безопасность в чрезвычайных ситуациях

При нарушении установленных норм эксплуатации технологического оборудования возможно возникновение чрезвычайных ситуаций различного рода. Также в качестве одной из причин возникновения чрезвычайных ситуаций на производстве могут послужить различные природные стихийные бедствия (ураганы, молнии и т.д).

Таблица 6.6 - ПДК и ОДУ некоторых химических веществ в воде водных объектов хозяйственно-питьевого и культурно-бытового водопользования

Наименование вещества

(синонимы)

№ по САS

Норматив

Величина норматива (мг/дм3)

Лимитирующий показатель вредности

Класс опасности

Гелезагуститель

OG-10 Gellant

ПДК

0,3

общ.

3

Диметилэтаноламмоний хлорид полигидроксилпроиленамина

ОДУ

5,0

общ.

3

Проксифеин

65497-24-7

ОДУ

отсутствие

общ.

1

гидроксид натрия

144-55-8

ПДК

0,02

общ.

2

карбонат натрия

ПДК

1,0

общ.

4

перекись водорода

ПДК

0,2

общ.

2

Производственные помещения линии производства вареных колбас, в соответствии с НПБ 105-03, можно отнести к категории Д - низшая степень взрывопожарной опасности.

При обнаружении пожара в производственном помещении необходимо немедленно вызывать спасательные и пожарные расчёты, одновременно с этим, провести эвакуацию работников предприятия по заранее разработанным планам эвакуации через специально предусмотренные пожарные выходы. Самостоятельную борьбу с огнем персонал предприятия должен проводить в случае возникновения небольших очагов возгорания, это осуществляется посредством огнетушителей типа ОУ-5 или ОПУ-5 и системы противопожарного водоснабжения.

Для защиты от природного электричества производственное здание снабжено молниеотводами. Выбор типа и высоты молниеотводов производится в соответствии с СО 153-34.21.122-2003.

6.4 Расчет количества теплоты, влаги и диоксида углерода

Целью расчета является определение количества теплоты, влаги, диоксида углерода выделяемых одной сменой рабочих, и объема воздуха, необходимый для удаления этих выделений в холодный и горячий периоды года.

Исходные данные:

Количество человек в смене, M, чел

10

Категория тяжести работ

IIб

Температура воздуха в помещении, °С

19

Город

Воронеж

Средняя температура наружного воздуха:

в жаркий период года, °С

в холодный период года, °С

24,2

-14

Влагосодержание:

в жаркий период года, г/м3

в холодный период года, г/м3

21,5

1,5

Определим количество теплоты Q, выделяемой всеми рабочими смены, Вт:

Q=q*M*8 , (6.1)

где q- количество теплоты, выделяемое одним человеком, Вт/ч, примем q= 205 Вт/ч [21]

.

Определяем количество влаги d, выделяемое всеми рабочими данной смены, г/ч:

d=di*M , (6.2)

где di- количество влаги, выделяемой одним человеком, г/ч. Принимаем di=140г/ч [21]

.

Определяем количество диоксида углерода МСО2, выделяемого всеми рабочими данной смены, г/ч:

Mco2= qco2* M, (6.3)


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.