Экология и природопользование
Предмет и задачи природопользования. Геохимические и медико-географические особенности природных зон. Типы отношений в биоценозах. Основные уровни организации живых и биокостных систем. Особенности и типы экосистем. Учение В.И. Вернадского о биосфере.
Рубрика | Экология и охрана природы |
Вид | шпаргалка |
Язык | русский |
Дата добавления | 10.06.2009 |
Размер файла | 112,5 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
В периоды раскрытия океанических впадин их объемы уменьшались вследствие разрастания СОХ, что приводило к обмелению океанов, воды к/х как бы «выплескивались» на континенты. Это влекло за собой глоб. трансгрессии и абсолютное преобладание площади моря над площадью суши. Активность восходящих мантийных потоков способствовала дегазации недр, поступлению в атмосферу больших кол-в СО и усилению парн. эффекта. Этому же способствовало увел. содержания в атмосфере водяного пара в эпохи. В результате при глоб. трансгрессиях происходило повсеместное потепление, смягчение и увлажнение климата. Господство теплого влаж. климата содействовало быстрому выравниванию рельефа с образованием обширных равнин. Все это создавало предпосылки для расцвета разнообразных форм жизни, повышения биопродуктивности и биоразнообразия.
По мере разрастания океанов истощались источники энергии тект. процессов, ослабевали восходящие потоки мантийного в-ва, замедлялись темпы дегазации недр и поступления в атмосферу СО. СОХ сокращались в размерах, склоны их становились круче, что влекло за собой увеличение объемов океанических впадин, глоб. регрессии и отн. увеличение площади суши. На завершающих стадиях геотектонических циклов столкновения материков приводили к закрытию океанов и образованию горно-складчатых поясов, соединяющих отдельные материковые плиты в единые континенты и суперконтиненты.
Следствием всего этого являлись ослабление парн. эффекта, общее похолодание и увел. степени континентальности климата и ухудшение условий жизни. Когда обширные материки оказывались в низких широтах, происходила их аридизация; если же они попадали в полярные районы, то развивались покровные оледенения.
5. Соврем. глоб. эколог. кризис, его содержание и перспективы разрешения. Содержание соврем. этапа охраны окружающей среды
Средневековая Европа столкнулась с экол. кризисом в XIII-XIV вв., когда были исчерпаны ресурсы экстенсивного развития («великое корчевание» Европ. лесов и распашка земель, рост городов как центров ремесленного пр-ва в XI--XIII вв.). Аграрное перенаселение способствовало масс. оттоку населения в города. Рост городов сдерживался крепостными стенами, что вело к высокой скученности насел. и, в силу антисанитарных условий, способствовало развитию эпидемий. Обострение борьбы за ресурсы вылилось в многочисленные войны и смуты позд. средневековья. Выходом их этого кризиса стали: приток ресурсов с других материков, промышленная революция, приведшая к формир. индустр. общества. Индустриализация, резко повысив пр-сть труда и ускорив развитие обществ, в то же время стала причиной многих соц.-эконом. и экол. проблем. Обострившаяся борьба за ресурсы стала причиной двух мировых и многочисленных локальных войн, гонки вооружений. Ускоренное индустриальное развитие, в значительной степени стимулировавшееся военным противостоянием, привело к соврем. эколог. кризису и этапу охраны ОС как попытке его разрешения.
Международная охр. пр. тесно связана с общественной. Роль: в объединении усилий разных государств для решения глоб. и регион. эколог. проблем Разработка, заключение и реализация соглашений, направленных на сокращение атм. выбросов, охр. озон. слоя, сохр. биолог. ресурсов морей и т.д.
Соврем. этап природ-ия и охраны ОС начался на рубеже 1960-1970 гг. Ему предшествовал эколог. кризис, наиболее остро проявившийся в развитых странах Запада в 1950-1960 гг. и несколько позже в 1970-1980 гг., в бывшем СССР и соц. странах.
Эколог. кризис 1950-1980-х годов. К проявлениям экол. кризиса относятся многочисленные примеры катастроф. загрязнения атмосферного воздуха, поверхностных и подземных вод, деградации почв и растительности. Н-р, в 1952 г. от смога в Лондоне за несколько дней умерло 2500 человек. В США символами эколог. катастрофы стали р. Кьюяхога в г. Кливленд, которая в конце 1960-х годов была настолько загрязнена нефтепродуктами, что иногда горела, и озеро Эри, где процессы эвтрофикация, вызванные попаданием орг. загрязнений, приняли такие масштабы, что, «оно стало уже слишком густым, чтобы по нему плавать, но еще слишком жидким, чтобы его пахать». В Токио в 1973 г. было 328 дней со смогом; дорожная полиция Токио несла службу в кислородных масках, а на улицах устанавливались автоматы по продаже порций чистого воздуха.
О подобных явлениях в СССР (высокий уровень загрязнения воздуха промышленных городов Урала и Сибири, деградация почв и малых рек многих с/х районов, разливы нефти и загрязнение подземных вод в районах нефтедобычи, гибель Аральского моря и др.) общественность узнала позже, из перестроечной публицистики конца 1980-х годов.
Почти во всех странах, вступавших в современный этап природопользования и охраны окружающей среды, принятию и реализации эффективных природоохранных законов предшествовали бурно протекавшие общественные дискуссии, активные выступления ученых, общественности (зеленое движение). Во многих случаях развитию общественных движений способствовали крупномасштабные экологи. катастрофы и загрязнения ОС, о к/х становилось известно: болезнь Минамата и другие «экологические заболевания» в Японии, авария танкера «Торри каньон» в Великобритании, катастрофическое состояние р. Рейн в ФРГ, Великих озер в США, чернобыльская катастрофа в СССР.
Содержание современного этапа охраны окружающей среды:
принятие эф-х национ-х природоохр. законов и создание для их реализации ведомств, минестерств, комитетов наделённых полномочиями контроля всех компанентов ОС;
введение эконом. мех-ма при-ия на основе принципа «загрязняющий платит» Пр.ресурсы, используемые для получения продукции, должны отражаться на её стоимости;
введение на госуд. и межгосуд. уровнях эколог. стандартов на выхлопы автомобилей, на содерж. ЗВ в воздухе, воде, почве и продуктах и т.д;
международ-е сотрудничество в решении глоб. проблем: парн. эф-та, охр. озон. слоя, кислот. деждей - заключение и соглашений и контроля над их выполнением, вкл. санкции за невыполнение.
В рез-те принятых мер ситуация улучшилась, но достигается из-за переноса гразных пр-в в страны «третьего мира»где нет эколог. закон-ва, контроля, соврем. этап пр-ия и охраны ОС ещё не наступил.
6. Осн. уровни организации живых и биокостных систем. Способность к поддержанию гомеостаза, саморегуляции и эволюции, эмерджентные свойства
Живая материя представляет собой высокоупорядоченную, иерархически организованную суперсистему, подразделяющуюся на ряд структурно-организационных уровней:
макромолекулярный - изучает строение молекул, клеток, хим. состав, генетич. код и тд;
клеточный - изучает клетки (прокариотный, доядерний, эукариотный,ядерный);
организменный - изучает одноклеточ.и многоклеточ., способность их сущ-ия;
популяционно-видовой - изучает популяции, вид, пол, возраст, отношения внутривидовые;
биоценотический - уровень сообществ всех видов, насел-х ту или иную терр. или акваторию, законы межвидовых отношений;
биосферный - охватывает ниж. часть атмосферы, всю гидросферу, поверхность суши и верхние слои литосферы. Вкл. в себя жив. орг. взаимодействующие др. с др., сост. единую целостную сист.
Каждый из этих уровней может рассматриваться как иерархия более простых уровней. Н-р, могут выделяться уровни клеточных органелл, тканевый и органный среди многоклеточных организмов, уровни экосистем и биомов.
Части живой сист. любого уровня объединяются в единое целое особыми связями, которые имеют различную природу на разных уровнях.
Способность к поддержанию гомеостаза.
Отн. гомеостаз. Все живые системы способны поддерживать отн. стабильность своего внутреннего состояния в условиях, к/е не бывают абсолютно постоянными. Гомеостаз живых систем проявляет себя в надежности функционирования генетических систем, постоянстве внутренней среды клетки или многоклеточного организма, в отн. стабильности осн. характеристик популяций, биоразнообразия биоценозов, продуктивности надорганизменных биосистем, климат. характеристик в биосфере и т.д.
Гомеостаз (гомеорез) - динамическое, сбалансированное равновесие м/ду ее подсистемами и разнонаправленными процессами, реакциями на внешние воздействия или отн. стабильный процесс закономерных изменений, происходящих в ограниченных пределах. Таковы онтогенез индивидума, динамика популяции, ряд сукцессионных изменений экосистемы.
Способность к поддержанию саморегуляции и эволюции.
Саморегуляция - способность экосист. к восстановлению внутр. св-в и структур после прекращения ест. пр. или антропогенного внеш. воздействия. Часть её - самоочищением - ест. разрушение загрязнителя в среде, происходящие в рез-те пр-х фих.-хим. и биол. процессов.
Эволюция - наследумые изменения и их отбор под влиянием факторов среды обуславливает генетт. адаптации, видообразование и увел биоразнообразия. Если изменяются усл. жизни, разнообр. видов обеспечивает большую вероятность сохр. жизни за счёт форм, отн. лучше приспособленным к нов. усовиям.
Эмерджентные свойства возникновение при взаимодействии 2х или неск-х обьектов или явлений - нов. св-в, не являющихся суммой исходных. «Целое больше суммы его частей».
Системная организованность обнаруживается на любом уровне организации живых объектов: вирусов, макромолекул, органелл клетки и т.д. Новые качества свойственны также и другим системам - абиотическим и искусственным. Достаточно сравнить свойства атома со свойствами элементарных частиц, или убедиться в отличии автомобиля от груды частей для сборки такого же автомобиля. Но живые системы проявляют не только физические, хим. и количественные свойства: наряду с этим у них есть и особые, биологические особенности организации.
Каждая биосистема входит как часть в состав биосистемы более высокого уровня - надсистемы. Эта же биосистема состоит из более простых систем (подсистем), в чем выражается иерархичность живой материи.
7. Учение о популяции. Демографический и генетический состав популяций. Территориальность и коммуникативные механизмы популяций. Основные количественные характеристики популяций. Динамика популяций и её типы. Управление популяциями
Понятие о популяции. Совокупность особей, обладающих наследственным сходством морфологических, физиологических и биохимических особенностей, способных к скрещиванию с образованием плодовитого потомства, приспособленных к определенным условиям жизни и занимающих в природе определенную область (ареал), называется видом. Виды часто занимают большой ареал, в пределах которого особи распределены неравномерно, группами -- популяциями. Целостность вида поддерживается связями между популяциями.
Популяция -- совокупность особей одного вида, способных к самовоспроизводству, к/я длительно существует в опред. части ареала относительно обособленно от других совокупностей того же вида. Контакты между особями одной популяции чаще, чем между особями разных популяций.
Ареал - область распространения, пространство, на к/м популяция или вид в целом встречается в течение всей своей жизнедеятельности. Ареал м.б. сплошным или разорванным, если м/ду его частями возникают различные преграды (водные, орографические и др.).
Классификация популяций - различаются по размерам и степени генетической самостоятельности, длительности существования, способу размножения особей и т.д.
Популяции - обладают рядом специф. св-в, к/е не присущи каждой отдельной особи: численность, плотность, рождаемость, смертность, скорость роста и др. Кроме того, популяции свойственна определенная организация: половая, возрастная, генетическая, пространственная и другие структуры.
Демографический состав. - сост. из половой и возрастной стр-ры популяций.
Половая - соотношение полов разного пола: первичное (при оплодотворении), вторичное (при рождении), и третичное (в период размножения). В популяциях обычно представлены особи двух полов. Как правило, при рождении мужских и женских особей бывает примерно поровну, хотя возможны отклонения. Н-р, у млекопитающих чаще доля самцов повышена. У так называемых гаремных видов среди особей, участвующих в размножении, на каждого из самцов приходится несколько самок.
Возрастная стр-ра - соотношение особей разного возраста. Отражает интенсивность размножения, уровень смертности, скрость смены поколений. Факторы: - время достижения полов. зрелости; продолжительность жизни; длительность периода размножения; частоты приплодов.
Генетический состав популяций - опред. изменчивостью и разнообразием генотипов. Согласно А.С. Серебровскому вся совокупность генов популяции называется генофондом. Один и тот же генотип в разных условиях способен привести к появлению различающихся фенотипов. Чем больше популяция генетически разнообразна, тем выше её адаптивность, пластичность
Территориальность - все особи и их группы обладают индивидуальным или групповым пространством, возникающим в рез-те активного физ.-хим. или поведенческого разобщения. Территориальность сочетается с агрегацией особей, к/я усиливает конкуренцию м/ду индивидами, способствует выживанию групп. Образуются стаи, колонии стада и тд. Различают: скученное, случайное, равномерное, радиусы репродуктивной активности.
Коммуникативные системы популяций обеспечивают обмен сигналами между членами популяции, с помощью которых особи избегают нежелательных встреч с конкурентом или опасным самцом или, напротив, находят друг друга при необходимости образовать стаю.
Количественные характеристики. Осн. количественные характеристики популяции - численность, плотность, биомасса, продукция и продуктивность. Абсолют. численность выражается в общем, количестве особей популяции. Отн. численность выражают в условных единицах, она позволяет следить за динамикой численности или сравнивать ее в разных популяциях. Плотность выражается в кол-ве особей, приходящихся в среднем на единицу площади или объёма.
Важной характеристикой является биомасса популяции. Прирост биомассы за единицу времени называют продукцией. Урожай, или продуктивность, выражают в биомассе, произведённой популяцией за единицу времени на единице площади.
Динамика популяции -- поддержание определенной численности (плотности). Изменение численности зависит от целого ряда факторов среды - абиотических, биотических и антропогенных. Однако всегда можно выделить ключевой фактор, наиболее сильно влияющий на рождаемость, смертность, миграцию особей и т.д.
Под рождаемостью опред. число новых особей (выражаемое в относ. или абсолют. показателях) в популяции, родившихся за некий промежуток времени, рассчитанное на определённое количество самок. Выделяется: макс. рождаемость - теоретички возможная в идеальных условиях; эколог. рождаемость - прирост при факт. условиях среды.
Смертность число особей, погибших в популяции за 1у времени по различным причинам. Бывает важно различать смертность зигот, эмбрионов, детенышей, самцов и самок.
Выживаемость доля (%) выживших на опред. момент времени особей (яиц, зигот, эмбрионов) от первоначального числа.
Типы:
экспоненциальный - числен-ть быстро увел. в благопри. усл.ОС;
мальтузианский - спад числен. из-за голода, эпидемий и тд;
тип с постепенной стабилизацией - лонгистическим ростом, б. м/ду 1) и 2). Называется поддерживающей ёмкостью среды.
циклические колебания - подъёмы и спады численности чередуются с определённой периодичностью.
8. Учение о биоценозе. Границы и экотоны, пограничный эффект. Доминанты и эдификаторы. Ярустность, трофические уровни, цепи и сети. Биоразнообразие и его факторы
Биоценоз - совокупность популяций разных видов, обитающих на определённой терр. Растительный компонент биоценоза - фитоценозом, животный - зооценозом, микробный - микробоцеоноз, грибов - микоценоз.
Биотоп - однород. пр. жизненное пространство занятое биоценозом, входят все сферы. Масштаб от моховой кочки, до населения целых ланд-ов. Границы не всегда чётко выражены.
Экотон - переходная пограничная полоса перехода 1го биоценоза в др., часто выделяют в отдельный биоценоз, повышенное разнообразие видов. Пограничный эффект - тенденция к увел. разнообразию и плотности жив. орг. на границах биоценозов. Проявляется отчётливо в зонах - лес-луг, лес-болото и тд.
Доминанты - преобладающие виды, если 2-3 - сододоминанты. Эдификаторы - вид строитель, к/й значительно влияет на всё.
Ярустность - виды могут по разному распределятся в пространстве в соответствии с потребностями и усл. местообитания. Ярустность - расчлененность биоценоцов по вертикале. Ярус - совместно произрастающие гр. видов растений, различающие по высоте и положению в биоценозе ассимилирующих органов (листья, стебли, подземн. органы).
Лесн. биоценоз: древесные, подпологовые, подлесок, подрост, травяно-кустарниковый, мохово-лишайниковый.
Трофические уровни, цепи и сети
Продуцентами - автотрофные организмы (зеленые растения, фототрофные и хемотрофные бактерии), к/е создают орг. в-во, используя вещество и энергию неорг. природы. Они играют роль входа в биоценоз потоков вещества и энергии из среды обитания.
Консументы - организмы гетеротрофного типа питания, к/е питаются за счет готовых орг. в-в, синтезированных продуцентами или др. консументами. Так питаются животные, грибы, многие микроорганизмы. Различают консументов первого порядка (консументов-1), консументов второго порядка (консументов-2) и тд. Консументами-1 являются растительноядные организмы, консументами-2 - плотоядные животные, паразиты. В качестве кэнсументов-3 и более высоких порядков могут выступать более крупные хищники или паразиты.
Редуценты - организмы сапротрофного типа питания. Разлагают тела организмов, их фрагменты и сложные орг. в-ва до неорг. в-в или сравнительно более простых органических. К редуцентам относятся разнообразные микроорганизмы, грибы.
Члены биоценоза, связанные потоками вещества и энергии (через питание), составляют пищевую цепь. Злаки поедаются сусликами, которых съедает лисица; за счет лисицы питаются гельминты. Пищевые цепи часто ветвятся (сусликами питаются также светлый хорь, дневные хищные птицы, специфические гельминты; злаки поедаются многими копытными млекопитающими и грызунами) - образуются пищевые сети.
Пищевые (трофические) цепи и сети являются путями, по которым разнообразные поллютанты широко и далеко (благодаря мигрирующим организмам) распространяются в ОС. Пестицид ДДТ, который применяли фермеры США, через трофические цепи и сети оказался в жировой ткани антарктических пингвинов. При этом содержание поллютантов может меняться в сторону повышения концентрации, поскольку многие организмы обладают свойствами концентраторов: в плодовых телах шляпочных грибов содержание ртути может быть в 30-550 раз выше, чем в местной почве.
Типы пищевых цепей: - пастбищные - на вершине стоят зел. раст.; - детритная - начинается с отмерших остатков.
Трофические уровни - совокупность организмов объед-х одним типом питания и занимающих опред. положение в пищевой цепи (автотрофы, раст. яд. живот., хищники, паразиты хищников)
Биоразнообразие - разнообразие видов, свойственных какой-либо части биосферы. Зависит от географ. положения биоценозов. Обычно различают локальное, регион. и глоб. биоразнообразие, хотя можно говорить о биоразнообразии любого подразделения биосферы: океана, моря, приливно-отливной зоны, континента, его определенной зоны, биома, ландшафта, биоценоза любого ранга и т.д.
При оценке биоразнообразия в экосистемах и сообществах принято учитывать видовое богатство и относительную численность видов. В более широком смысле в понятие биоразнообразия должно включаться также наличие организмов с разными типами питания (хемотрофы, фототрофы и другие); количество и разветвленность трофических цепей и сетей; количество трофических уровней и экол. ниш; разнообразие биоценотических связей и их количество, приходящееся на отдельные популяции или на отдельную особь; множество конкурентов и разнообразные видовые особенности, позволяющие им выживать, несмотря на конкуренцию. В богатых биоценозах насчитывают тысячи и десятки тысяч видов. Это троп. леса, коралловые рифы троп. морей, эстуарии рек, мангровые леса, саванны, оазисы в субтроп. пустынях. На 1 га троп. лесов м.б. встречено только деревьев до 200 и более разных видов.
9. Типы отношений в биоценозах (хищник - жертва и др.) и их учёт в практике. Учение об экол. нишах. Закон конкурентного исключения Г.Ф.Гаузе. Сукцессия и основные её типы
Типы отношений в биоценозах
Хищник - жертва: животное-хищник использует свою жертву как источник питания. Очень редко встречаются хищные растения (росянка, венерина мухоловка) и почвенные грибы, питающиеся почвенными нематодами. Сверххищник (тигр) способен съесть более слабого хищника (волка). Стареющего льва обычно убивают и съедают гиены.
Паразит - хозяин: паразит использует хозяина как источник пищи и место постоянного или временного обитания. Различаются эктопаразиты (кровососущие двукрылые, клещи, блохи, вши) и эндопаразиты (гельминты, бактерии). Сверхпаразиты паразитируют на других паразитах (наездники - паразиты клещей). Паразитизм очень широко распространен в природе: около 20 % всех биологических видов относится к паразитам, формы паразитизма разнообразны. Гиены Африки нередко отнимают добычу у других хищников: леопарда, гепарда, гиеновых собак.
Комменсализм - один из видов получает пользу, не принося заметного вреда другому. Рыбы-прилипалы используют акулу как средство передвижения и источник питания (остатки жертв акулы). Растения-эпифиты поселяются на деревьях. Укрытие в бобровой норе находят мелкие млекопитающие, жабы, мокрицы, жуки.
Мутуализм - это взаимовыгодное взаимодействие разновидовых организмов. Крайний вариант такого взаимодействия - симбиоз которого жизнеспособность организмов понижена. Таковы лишайники, жгутиковые простейшие в рубце жвачных млекопитающих.
Кооперация (сотрудничество) полезна обоим партнерам, но не обязательна. Мелкие цапли располагаются на носорогах и буйволах, склевывая эктопаразитов и улучшая для себя обзор окружающей среды; взлетая, они дают сигнал носорогу о грозящей опасности.
Аменсализм - одностороннее подавляющее воздействие одного вида (хищника, паразита, конкурента) на особей другого вида. Некоторые растения выделяют в ОС в-ва, угнетающие другие растения (аллелопатия). Лотос индийский подавляет лотос желтый. Гиены в саваннах Африки лишают добычи гиеновых собак.
Нейтрализм - отсутствие отношений (волк - капуста).
Конкуренция - взаимное ограничение возникает когда у 2х видов совпадают эколог. условия обитания среды.
Экологические ниши
Введено Дж.Гринеллем и Ч.Элтоном. Эколог. ниша понимается - совокупность факторов среды, в пределах к/го обитает то или иной вид организмов, его место вприроде, в пределах к/го дан. вид м. сущ-ть неограниченно долго.
Закон конкурентного исключения Г.Ф.Гаузе.
Согласно закону конкурентного исключения Г.Ф.Гаузе две разновидовые популяции, конкурирующие из-за одного и того же ресурса (ресурсов), не могут долго существовать совместно. Со временем произойдет вымирание одной из них, или популяции проявят некоторые биологические различия в использовании ресурсов среды, что позволит им снизить напряженность конкуренции.
Сукцессия - последовательная смена биоценозов, выраженная в изменении видового состава и структуры сообщества. Последовательный ряд сменяющих др. др. в сукцессии сообществ называется сукцессионной серией.
Природные сукцессии происходят под действием естественных причин, не связанных с деятельностью человека. Антропогенные сукцессии обусловлены деятельностью человека. В зависимости от первоначального состояния субстрата, на котором развивается сукцессия, различают первичные и вторичные сукцессии. Первичные сукцессии развиваются на субстрате, не занятом живыми организмами. Вторичные сукцессии происходят на месте уже существующих биоценозов.
10. Учение об экосистемах. Типология экосистем. Круговорот вещества, потоки энергии и информации в экосистемах. Эколог. пирамиды. Продуктивность экосистем
Любой биоценоз взаимодействует с факторами физико-хим. среды. Экосистема объединяет е себе биоценоз и биотоп (А.Тенсли). В.Н.Сукачев предложил понятие - биогеоценоз. В экосистеме потоками вещества и энергии объединяются в единое целое все составные части биоценоза, включая трофические уровни, а также почва, грунт, воды и часть атмосферы.
Границы экосистем обычно в такой же степени определенны или условны. Наибольшая экосистема нашей планеты - биосфера. В ней различают отдельные биомы - круп. экосистемы, занимающие ландшафтную зону, высотный пояс в горах или остров. Для земного шара обычно называют несколько десятков осн. биомов, при необходимости кол-во выделяемых биомов м.б. увеличено. В масштабах одного материка м.б. выделено несколько сот экосистем разных типов. В пределах каждого типа выделяемых экосистем, биоценозов или фитоценозов обнаруживается множество вариантов. Каждый конкретный биоценоз обладает своими индивидуальными особенностями. Возможно выделение экосистемы лесной лужицы или экосистемы в масштабе организма жвачного млекопитающего.
Круговорот вещества, потоки энергии и информации в экосистемах. Троф. уровни, пищевые цепи и сети биоценозов представляют собой звенья потоков вещества и энергии, которые объединяют подсистемы экосистем в единое целое. Энергия Солнца в основном и обеспечивает деятельность живых систем биосферы.
Энергия солнечного света и хим. превращений, извлекаемая фотосинтетиками и хемосинтетиками из неорг. природы, переходит с одного троф. уровня на др. с большими потерями. Н-р, раст.ядные животные полностью не съедают всю раст. массу, т.ж. как и хищники обычно не уничтожают полностью популяции своих жертв. Часть биомассы любой популяции идет на жизнедеятельность организмов (рост, развитие, размножение, поиски пищи), аккумулируется в теле многолетних организмов и на следующий троф.уровень попадает (аккумулируется в телах организмов) от 1 до 10% от кол-ва энергии на предыдущем уровне. Потоки энергии в экосистемах подобны пересыхающим рекам и постепенно теряются в пространстве экосистемы.
Вся совокупность организмов, живущих за счет энергиии Солнца, называется фотобиосом. Организмы, использующие хим. энергию, составляют хемобиос.
В пищевых объектах совмещаются энергия и в-во, необходимые для жизнедеятельности биосистем. Однако для лучшего понимания этого процесса полезно рассматривать потоки энергии и вещества порознь. Одно из своеобразий потоков вещества - их частичная замкнутость (цикличность). В экосистемах действуют биогеохимические циклы (по Вернадскому), которые объединяют живую часть экосистемы (биоценоз) с неорг.
В наземных экосистемах хим. в-ва извлекаются органами растений из ОС и входят в состав их тел. Часть растительной массы (менее 10%) потребляется консументами, остальная (свыше 90%) поступает в детритиые пищевые цепи - это опад (листья, ветки, лепестки цветов и т.д.), сухостой, валежник, ветошь трав, к/е подвергаются относительно медленному разложению благодаря деятельности редуцентов. Продукты жизнедеятельности продуцентов, консументов и редуцентов (вода, газы, неорг. и отн. простые орг. вещества) оказываются во внешней среде и вновь могут быть вовлечены в круговорот вещества.
Фитомасса суши обновляется в ср. каждые 14 лет. В лесах скорость круговорота в-в отн. ниже (деревья живут десятки и сотни лет), чем в луговых сообществах. Еще быстрее круговорот в-ва происходит в морских экосистемах, где среди продуцентов велика доля фотосинтезирующих бактерий и одноклеточных водорослей с очень коротким жизненным циклом. Биомасса МО обновляется в среднем за 33 дня, а фитомасса - за 1 день.
Информационные процессы экосистем пока изучены недостаточно. У каждой клетки и многоклеточного организма свои информационные системы, среди которых важное место занимают нуклеиновые кислоты. Популяции имеют свои информационные системы: это их генофонд, коммуникативные системы. Биоценозы и экосистемы включают в себя информационные системы популяций, а также имеют информационные системы своего уровня.
Палеонтолог и палеоэколог познает и реконструирует экосистемы прошлых геолог. эпох, извлекая и "прочитывая" информацию ископаемых отложений. Н-р, амер. ученые извлекли из желудка ископаемой мухи, прекрасно сохранившейся в куске янтаря возрастом 40 млн.л, жизнеспособные споры бактерий. Образец предоставил возможность установить: возраст находки; строение ДНК ископаемой мухи и спор бактерии; пузырьки воздуха в янтаре позволяют уточнить состав атмосферы того времени.
Продуктивность экосистем. Важное значение имеет биолог. продуктивность ест. и искус. экосистем, к/я складывается из продуктивности местных популяций. Продуктивность продуцентов (растений) назыв. первичной, продуктивность консументов - вторичной. Вновь созданная продукция биомассы за вычетом трат на жизнедеятельность называется чистой продукцией. Чистая первичная продук-ть (ЧПП), выражаемая в количестве растительной биомассы, вновь созданной на единице площади в единицу времени. Обычно используются значения воздушно-сухой биомассы.
ЧПП экосистем тундры составляет 0,1-0,5 т/га в год; в широколиственных лесах умеренных широт она варьируется от 0,9 до 2, в дождевых лесах - от 6 до 50 т/ га. Чистая вторичная продуктивность (продуктивность животных) меньше чем ЧПП на 1 - 2 порядка.
Продуктивность биоценозов зависит от кол-ва солнечной энергии, к/е приходит в экосистему, длительности вегетационного сезона, обеспеченности водой и питательными веществами и некоторых других факторов, включая антропогенные.
11. Особенности экосистем разных типов: наземных, водных, зональных (биомов), высотных, антропогенных. Динамика и отн. гомеостаз экосистем. Эколог. русла. Климаксные и вторичные экосистемы. Устойчивость экосистем
Экосист. принято разделять на естест. и антропогенные. Природ. делятся на наземные и водные. Наземные экосист. входят в состав биосферы. Климатически обусловленные крупные совокупности экосистем наз. биомами. Это макросистема, совокупность экосистем, тесно связанных климат. условиями, потоками энергии, круговоротом веществ, миграцией организмов и типом растительности.
Осн. типы биомов - это пустынные, травянистые и лесные. Каждой экосистеме присущи свои типичные сообщества растений, животных и редуцентов, к/е приспособлены к опред. климат. условиям. Сред/год кол-во осадков, сред/год температура и их колебания в течение года - осн. факторы, к/е формируют сообщества пустынь, лугов и лесов в троп., умеренных и полярных широтах. Важными факторами также являются: циркуляция воздуха, распределение солнечного света, сезонность климата, высота и ориентация гор, гидродинамика вод.
Наземные формации в основном определяются растительностью, так как растения теснейшим образом зависят от климата, и именно они образуют основную часть биомассы. Лимитирующим фактором, формир. ее характер на большей части З., является кол-во осадков.
В пустыне. Здесь произрастает скудная, разреженная, низкорослая растительность.
Травянистые экосистемы приурочены к регионам, где сред/год кол-во осадков достаточно для произрастания трав, но выпадают они неравномерно. Периодические засухи и пожары препятствуют развитию древесной растительности.
Леса, состоящие из разнообразных пород деревьев и низкорослой растительности, покрывают ненарушенные терр. со сред. и высок. кол-вом осадков.
Климат. условия местности меняются в зависимости от широты и ее высоты над уровнем моря. Все три типа наземных биомов (пустыни, травянистые сообщества, леса) встречаются практически во всех географ. широтах, кроме ледников. В каждом климате они имеют свои особенности, специфическую растительность, к/е формируют и сообщества животных организмов, адаптированных к этим условиям.
Существуют биомы, занимающие промежуточное положение, например, полувечнозеленый троп. лес с выраженными влажными и сухими сезонами. Границы между биомами чаще размыты и представляют широкие переходные зоны - экотоны. Самый богатый по числу видов наземный биом планеты - это вечнозеленый дождевой троп. лес.
Вод. экосистемы меньше зависят от климата, чем наземные. Они формир. в зависимости от глубины водоема, содержания растворимых солей, глубины проникновения солнечных лучей, кол-ва растворенного в воде О2, доступности питательных элементов, гидродинамики и температуры воды. Эти факторы определяют горизонтальное и вертикальное размещение организмов. По степени солености водные экосистемы подразделяют на морские, солоноватоводные и пресноводные.
Морские экс образуют морские биомы, к к/м относят также эстуарии, т.е. воронкообразные устья рек, где соленые воды смешиваются с пресной водой; прибрежные болота и коралловые рифы. Пресноводные - отличаются низкой соленостью - это внутриматериковые водоемы. Ведущим фактором в этих экосистемах становится скорость циркуляции воды. По этому признаку различают лотические, текучие воды и лентические, стоячие воды, или водоемы (озера, пруды, болота, водохранилища).
Текучие воды играют важную роль в преобразовании земной поверхности, вымывая глубокие овраги и каньоны. С другой стороны, равнинные реки за счет аккумуляции наносов образуют холмы, и даже горы. Озера - это пресноводные ест. водоемы со стоячей водой. Водохранилища - искус. пресноводные водоемы, к/е сооружаются с целью регулирования стока и аккумуляции воды. Они в большей степени, чем озера, подвержены эвтрофированию, т. е. «цветут» и зарастают.
Антропогенные экосистемы обладают теми же осн. признаками, что и природные: определенной структурой биоценоза (продуценты, консументы, редуценты), потоком энергии и круговоротом веществ. Однако имеются и различия.
Город, особ. промышленный, является гетеротрофной экосистемой, получающей энергию, пищу, воду и другие вещества с больших площадей, находящихся за его пределами. Существование города т.ж поддерживается большим притоком энергии извне, при этом возникает и огромный отток в виде тепла, промышленных и бытовых отходов в городах теплее, повышена облачность, меньше солнца, больше тумана, чем в прилегающей сельской местности. Строительство городов стало основной причиной эрозии почвы.
Агроэкосистемы, в отличие от городов, явл автотрофными экосистемами, получают дополнительную энергию в виде мышечных усилий человека и животных, удобрений, пестицидов, орошающей воды, горючего, механизмов, машин и т. п. Для максимизации выхода какого-либо одного продукта человек резко снижает разнообразие организмов. Виды растений и животных подвергаются искусственному, а не естественному отбору.
Зональные экосистемы - начиная с троп. пустынь до влаж. троп. лесов наблюдается увел. температуры, п/му наблюдается разница в продуктивности этих зон, но имеется провал в этой системе в степях и пустынях, из-за дефицита влажности.
Динамика экосистем. - изменение экосист. во времени в рез-те внеш. и внутр. воздействий. Изменения сообществ отражаются в суточной, сезонной и многолетней динамики.
Суточная динамика - наблюд. в сообществах всех зон от тундры до влаж.троп. лесов. Составляющие любую экосист. виды неоднородны по отнош. к проявлению факторов внеш. среды, одни активны в дневное время, др. в ночное. Сезонная динамика - опред. сменой времени года.
В процессе постепенной динамики происходит сукцессия - последовательная смена в пределах одного биотопа экосистем (или стадий экосистемы) вместе с биоценозами. Среди многих типов сукцессии осн. считаются первичная, циклическая, восстановительная и эволюционная. Первичная - наблюд. на безжизненном субстрате впервые возникли условия для появления живых систем: на свежих скальных обнажениях, в местах оползней, открывших лишенный жизни грунт, на подвижных каменистых осыпях в горах, железнодорожных насыпях, стенах строений и т.д. Восстановительная - после каких-то событий - катастроф, вырубки, пожар.
Циклическая - обычна для вполне сформир. экосистем: отличается правильной повторяемостью состояний экосистем в сезоны года, через десятки, сотни лет и через еще большие отрезки времени. В разные сезоны года могут сменяться доминирующие группы планктонных организмов, на лугах сменяются растения с масс. цветением: или плодоношением, мигрирующие животные перемещаются в удаленные экосистемы и даже биомы. В зимнее время замедлены потоки вещества и энергии экосистем. Многие циклы обусловлены экзогенными (внешними) и эндогенными (внутренними) факторами. В буковых лесах совершаются циклы примерно двухсотлетней периодичности. Крупные буки в ненарушенных лесах затеняют молодые деревья, замедляя их рост.
Эволюционные м. охватывать значительные отрезки времени - многие тысячи и десятки тысяч лет. Считается, н-р, что возраст таежных экосистем Европы, занявших место отступившего ледника, приближается к 10 тыс. лет. Значительно др.-е экосистемы троп. лесов.
Гомеостаз экосистем - совокупность мех-ов направленных на устранение или макс. ограничение действия факторов нарушающих равновесие экосист. Экосистема способная к отн. гомеостазу, значит она, устойчива.
Устойчивость экосистем - способность экосист. сохр. или восстанавливать гомеостаз (устойчивые экосист. - климаксные сообщества к ним относятся буковые леса, в городах - рощи, аллеи, насаждения). Климакс - стабильное сост., достигнутое в рез-те развития сооб-ва, заверщения сукцессии.
Климаксные сообщества характер-я завершенностью приспособления к комплексу факторов ср., устойчивым равновесием м/у биотическими потенциалами входящих в сообщество популяций и сопротивлением ср.
Вторичные экосистемы - постепенное восстановление свойственное дан. местности сообщества после нанесённых повреждений (бури, вырубки, пожара, запуска полей). М. сущ-но отличатся от первоначальной, если изменились эл-ты ланд-та или климат. усл.
Эколог. русла - линейно вытянуты вытянутые элементы ОС, к/е имеют значение для ОС. Н-р. Береговые линии. Они обладают особыми свойствами.
12. Биосфера как среда жизни. Учение В.И. Вернадского о биосфере. Фотобиос и хемобиос. Круговорот вещества, потоки энергии и информации как механизмы интеграции и гомеостаза биосферы. Ноосфера и техносфера, их коадаптивное развитие
Биосфера как среда жизни. Соврем. понятие о биосфере как особой оболочке З. разработано В.И.Вернадским.
Под биосферой понимается совокупность земных сфер, населенных жизнью, представляющая особую глоб. сферу, е к/й ведущую роль играют живые системы. Биосфера - крупнейшая экосистема З. Включает приземную часть атмосферы, всю гидросферу, почвы и верхние горизонты литосферы, которые объединяются в целостную систему круговоротом вещества, потоками энергии и информации.
Наиболее широко в биосфере распространены бактерии, споры которых найдены в атмосфере до высоты 80 км, в толще льда Антарктиды на всех исследованных глубинах. В литосфере они обнаруживаются, по разным данным, на глубинах 4,5 км, 6,82 и даже 10 км. В океане живые организмы обитают на любых глубинах, включая дно глубоководных впадин до 11,5 км. Однако большинство организмов живет в приземном слое атмосферы, на небольших глубинах океана (куда проникает солнечный свет), в почве и на ее поверхности.
В биосфере, подобно экосистемам, функционируют потоки энергии и информации, действует круговорот вещества, к/е и объединяют все подсистемы биосферы в сложнейшую целостную, способную к саморегуляции систему.
Фотобиос и хемобиос. Вся совокупность организмов, живущих за счет энергиии Солнца, называется фотобиосом. Организмы, использующие хим. энергию, составляют хемобиос. На долю хемобиоса приходится около 1% энергии биосферы, остальная принадлежит фотобиосу.
Круговорот веществ и потоки энергии в биосфере. Главная функция биосферы заключается в осуществлении круговорота хим. элементов. Глоб. биот. круговорот совершается при участии всех населяющих планету организмов. Он заключается в циркуляции веществ между почвой, атмосферой, гидросферой и живыми организмами. Благодаря биот.круговороту возможно длительное существование и развитие жизни при ограниченном запасе доступных хим. элементов.
В круговороте веществ различают малый круг биотического обмена (биогеоценотический) и большой (биосферный).
Большой круг биотического обмена -- это безостановочный планетарный процесс циклического, неравномерного во времени и пространстве перераспределения в-ва, энергии и информации, многократно входящих в непрерывно обновляющиеся эколог. системы биосферы. Большой круг биотического обмена наиболее ярко проявляется в круговороте воды и циркуляции атмосферы.
Малый биотический круговорот происходит на основе большого и заключается в циркуляции в-в м/ду почвой, растениями, живот. и микроорганизмами.
Оба круговорота взаимосвязаны и представляют собой как бы единый процесс. Втягивая в свои многочисленные орбиты косную среду, биотический круговорот веществ обеспечивает воспроизводство живого в-ва и оказывает активное влияние на облик биосферы. В основе круговорота веществ лежит наличие в биосфере двух основных типов питания: автотрофного и гетеротрофного.
Круговорот углерода начинается с фиксации атмосферной двуокиси углерода в процессе фотосинтеза. Часть образовавшихся в процессе фотосинтеза углеводов используется самими растениями для получения энергии, другая часть потребляется животными. Углекислый газ выделяется в процессе дыхания растений и животных. Мертвые растения и животные разлагаются, углерод их тканей окисляется и возвращается в атмосферу. Аналогичный процесс происходит и в океане.
Круговорот азота также охватывает все области биосферы. Хотя его запасы в атмосфере практически неисчерпаемы, высшие растения могут использовать азот только после соединения его с водородом или кислородом. Важнейшую роль при этом играют азотфиксирующие бактерии.
Гомеостатическая функция биосферы осуществляется на глоб. уровне. В биосфере поддерживается отн. постоянство физ.-хим. условий (климат., радиационных, геохим., гидрохимических и тд.), пригодных для существования в ней живых систем. Предполагается, что свыше 3,8 млрд. лет жизнь на нашей планете не прерывается. Уже примерно 3 млрд. лет на большей части поверхности Земли поддерживается температура в пределах 0-60°С.
Гомеостат. функция биосферы осущ-ся всеми ее сферами и их взаимодействием, в к/м особое значение принадлежит живым системам. Озон. экран ограничивает проникновение на поверхность планеты губительного УФ излучения; значительная теплоемкость воды придает гидросфере свойство термостабилизатора, вода обеспечивает распределение хим. веществ и перенос тепла; из глубин литосферы поступают свежие порции вещества, вовлекаемого в круговорот. Населенные живыми системами сферы Земли являются средой их обитания и предоставляют разнообразные условия для жизнедеятельности. Живые системы преобразуют среду обитания, делая ее пригодной для других живых форм.
В соответствии с термодинамическим принципом АЛе-Шателье -К.Брауна биосфера способна восстанавливать равновесие, нарушенное воздействием внешних причин. В геолог. истории биосферы были разномасштабные катастрофы, погубивших значительную часть биосферы. Один из них - мел-палеогеновый, широко известный в связи с вымиранием динозавров, аммонитов и ряда др. групп организмов. Однако со временем биосфера восстанавливала свою целостность, частично обновлялась. Катастрофы и последующее восстановление биосферы представляли часть процесса эволюции живой природы и биосферы.
Энергетич. функция биосферы - утилизация и накопление энергии Солнца, формирование потоков энергии. Из 100% энергии Солнца, поступающей на поверхность Земли, отражается 30%, рассеивается в качестве тепловой ~ 46%; на испарение и осадки тратится 23%, на ветер, волны и течения - 0,2%, на фотосинтез тратится 0,8%.
Закон эколог. пирамид, согласно которому при переходе с одного троф. уровня на следующий большая часть энергии теряется. В таком же соответствии находятся биомассы: биомасса потребителя в десятки раз меньше, чем биомасса потребляемого уровня.
Ноосфера и техносфера, коадаптивное развитие.
Ноосфера (сфера разума), по мысли В. И. Вернадского, должна неизбежно возникнуть из биосферы в результате ее эволюции. В ноосфере человек становится крупнейшей геологической силой, он может и должен перестраивать своим трудом и мыслью область своей жизни. Хаотичное саморазвитие, базирующееся на ест. саморегуляции, в ноосфере должно смениться разумной стратегией, на основе прогнозов и планов регулирующей ест. процессы развития.
Техносфера - техн. оболочка, исскуст. преобразованное пространство, планеты, под воздействием производительной деятельности чел. и её продуктов.
Учение о ноосфере, в разработке которого наряду с В. И. Вернадским участвовали известные философы Э. Леруа, П. А. Флоренский, с позиций сегодняшнего дня воспринимается как соц. утопия. Человек, опираясь на научно-технический прогресс, действительно стал геолог. по масштабам воздействия силой, но, силой разрушительной. Идеи переустройства мира на основе технического прогресса и социальной инженерии, весьма популярные во второй половине XIX и первой половине XX вв., при их практическом воплощении вылились в чудовищные эксперименты тоталитаризма и полностью дискредитировали себя. Идея ноосферы, возвышенная, но далекая от практической реализации, избежала этой судьбы и продолжает развиваться. По современному представлению в ноосфере люди научатся управлять не природой, а, прежде всего, сами собой. Такое новое прочтение идеи ноосферы содержит в себе концепция коэволюции (совместной эволюции) человека и биосферы Н. Н. Моисеева. Согласно этой концепции, для своего бескризисного состояния человечество должно потреблять не от 10 до 40% (по разным оценкам) первичной биологической продукции, а не более 1%. Это позволит человеку как биолог. виду вписаться в свою эколог. нишу и в ест. биогеохимические циклы. Для достижения этого человек должен перейти от изменения мира к совершенствованию себя, подобно тому, как при переходе от палеолита к неолиту на смену развитию физического типа человека пришло покорение им природы. Коэволюция рассматривается как согласование «стратегии разума» и «стратегии природы».
Подобные документы
Связь природопользования с экологией и законами взаимодействия различных природных систем. Понятие рационального природопользования. Наиболее эффективные пути приспособления развития социально-экономической системы к изменениям, происходящим в биосфере.
контрольная работа [1,0 M], добавлен 28.03.2013Что такое биосфера, ее особенности и закономерности в теории Вернадского. Идеи о живом веществе, учение Вернадского о биосфере как ключевая, центральная концепция современного естествознания. Учение о ноосфере как качественно новом состоянии биосферы.
реферат [29,4 K], добавлен 03.10.2009Курс "Экология и экономика природопользования" - синтез двух научных систем – естественных и общественных; функции и задачи: системы планирования, прогнозирования, управления и правовой защиты природной среды; финансирование природоохранных мероприятий.
реферат [29,6 K], добавлен 08.02.2011Предмет и задачи экологии. Учение Вернадского о биосфере. Классификация экологических факторов. Абиотические факторы наземной среды. Лучистая энергия солнца. Влажность атмосферного воздуха, атмосферные осадки. Газовый состав атмосферы. Давление атмосферы.
лекция [141,8 K], добавлен 01.01.2009Вопросы воспроизводства плодородия почв. Изучение агрохимической, экономической и экологической эффективности удобрений. Информационные технологии и математическое моделирование в задачах природопользования. Статистические модели агроэкосистем.
реферат [25,9 K], добавлен 21.12.2013Основы, принципы и условия рационального природопользования. Основные типы природных экосистем, их характеристика. Экологические проблемы и специфика воздействия разных видов человеческой деятельности на биосферу в целом и на ее компоненты в частности.
реферат [257,5 K], добавлен 25.01.2011Появление и развитие жизни на Земле - уникальное явление во всей Солнечной системе. Актуальность и необходимость знаний о биосфере в современном мире. Учение Вернадского о биосфере. Процесс качественных изменений организмов в ходе геологического времени.
контрольная работа [23,8 K], добавлен 12.11.2013Предмет, задачи, методы исследования экологи. Структура современной экологии, ее связь с другими науками. Уровни организации живых систем. Взаимодействие природы и общества. Виды и методы экологических исследований. Основные экологические проблемы.
реферат [71,5 K], добавлен 10.09.2013Изучение природопользования - общественно-производственной деятельности, направленной на удовлетворение материальных, культурных потребностей общества путем использования различных видов природных ресурсов и природных условий. Особенности эко-мониторинга.
шпаргалка [48,8 K], добавлен 25.03.2010Структура современной экологии, основные экологические понятия и термины. Учение В.И. Вернадского о биосфере, биогеохимические циклы. Антропогенный фактор в биосфере и основы социоэкологии. Последствия загрязнения атмосферного воздуха и водных ресурсов.
курс лекций [60,7 K], добавлен 15.02.2012