Исследование аварийной экотоксикологической ситуации и меры по ее устранению (хром)

Общая характеристика токсиканта (хрома). Физические и химические свойства. Определение тяжелых металлов в почвах сельскохозяйственных угодий, продукции растениеводства и кормах. Токсикологические методы оценки воздействия токсиканта на компоненты биоты.

Рубрика Экология и охрана природы
Вид курсовая работа
Язык русский
Дата добавления 28.03.2010
Размер файла 122,3 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Из объединенной пробы сена отбирают среднюю пробу для анализа. Для этого не менее чем из 10 различных мест по всей площади и толщине слоя отбирают пучки сена массой 60 - 120 г. Отобранную пробу (среднюю) массой около 1 кг упаковывают в плотную бумагу, бумажный или полиэтиленовый пакет, туда же помещают этикетку.

Методы отбора всех видов круп, бобовых, семян и т.д. аналогичны методам отбора проб зерна; яблоки, помидоры, баклажаны и т.п. отбираются по методам отбора корнеплодов. Из небольших партий продуктов (ягоды, зеленые культуры и т.п.) точечные пробы берутся в 4-5 местах. Объединенная проба по массе или объему должна быть в 3 раза больше массы или объема, необходимого для подготовки к анализам.

ГЛАВА 4 АНАЛИТИЧЕСКИЕ МЕТОДЫ ОПРЕДЕЛЕНИЯ ТОКСИКАНТА В ОБРАЗЦАХ

В настоящее время для анализа остатков химических веществ в объектах окружающей среды и биологическом материале используют современные физико-химические методы, такие, как тонкослойную и газожидкостную хроматографию, ультрафиолетовую инфракрасную и атомно-абсорбционную спектрометрию, масс-спектрометрию и хромас-спектрометрию.

Современные методы исследования должны быть по возможности специфичными, т. е. позволяли бы открывать искомое вещество в присутствии других аналогичных соединений, быть достаточно чувствительными и позволяли бы определять миллионные доли вещества в 1 кг субстрата. Особенно это важно для методов, предназначенных для санитарной оценки кормов и продуктов животноводства, а также для изучения динамики остатков пестицидов в воде, растениях и организме животных.Степень определения химических токсикантов должна составлять не менее 60 % от количества стандартного вещества, внесенного в пробу. Методы должны быть удовлетворительно точными (не менее ±20 %) и хорошо воспроизводимыми.

Методы определения токсических веществ в патологическом материале, объектах окружающей среды, кормах и продуктах питания животного происхождения включают в себя выделение токсического вещества из пробы. Выделение яда из пробы может быть проведено путем мокрого или сухого озоления, отгонки с водяным паром или же экстракцией одним или несколькими органическими растворителями.

Сухое озоление проводят под действием высоких температур (до 500°С) в муфельной печи. Этот метод в основном используют для выделения металлов. Мокрое озоление применяют значительно чаще и проводят при помощи концентрированных неорганических кислот, чаще всего смеси азотной, серной кислот и окислителей.

Выделение токсических веществ методом отгонки с водяным паром или дистилляции используют для легколетучих химических соединений. Сущность метода заключается в том, что пробу тщательно измельчают до кашицеобразного состояния или же разрушают неорганической кислотой, разбавляют водой, а затем воду перегоняют, нагревая колбу или подавая в нее пар от парообразователя. Токсические вещества переводятся в дистиллят.

Чаще других в ветеринарной практике выделяют токсические вещества путем их экстракции из пробы органическими растворителями. Для этого пробу тщательно измельчают, помещают в колбу, а затем заливают одним или несколькими органическими растворителями. Объем органического растворителя должен быть не менее чем в 2 раза больше массы или объема пробы. Экстракцию токсиканта проводят путем выдерживания пробы с органическим растворителем в течение 20-24 ч, перемешивания на шюттель-аппарате в течение 1-2 ч или смешивания в течение нескольких минут при большой скорости вращения перемешивающего устройства (ультратораксы, омнимиксары и др.). Последний способ предпочтителен, так как при этом образуется гомогенная масса, в которой создается наиболее тесный контакт органического растворителя с субстратом, а следовательно, наиболее полно извлекаются токсические вещества, содержащиеся в пробе. Для этой цели также используют аппарат Соксклета, в котором токсическое вещество экстрагируется при многократном промывании субстрата кипящим органическим растворителем. Аппарат Соксклета обеспечивает более полное извлечение токсиканта из пробы по сравнению с другими методами.

При любом способе выделения токсического вещества в экстракт переходит значительное количество примесей, мешающих распределению: жиры, пигменты, воск, белки, соли и др. Для освобождения экстракта от этих веществ используют различные способы очистки: путем омыления, вымораживания, осаждения, перераспределения из одного органического растворителя в другой с помощью специальных колонок и др. Последние зависят от вида анализируемого соединения и субстрата, в котором он находится.

Для того чтобы повысить чувствительность метода анализа, экстракты концентрируют до небольшого объема, достаточного для проведения исследований данным методом. Обычно конечные объемы экстрактов составляют 0,5-5 мл. Для концентрирования используют специальные аппараты Кудерна-Данича, вакуум-ротационные испарители.

Концентрирование также можно проводить в токе воздуха или азота. В практических условиях наиболее приемлемым способом является концентрирование в токе воздуха. Для этого экстракт заливают в фарфоровую выпарительную чашку, ставят ее под шторку вытяжного шкафа и включают тягу. При определении высоколетучих веществ при концентрировании возможны значительные потери яда, поэтому при этой операции необходимо выполнять следующие требования: не концентрировать конечные экстракты при повышенной (выше 40°С) температуре, не упаривать досуха очищенные экстракты.

Индикацию токсических веществ проводят следующими физико-химическим методами.

Тонкослойную хроматографию наиболее широко применяют в практических лабораториях. Принцип полуколичественного метода состоит в том, что смесь химических веществ, содержащихся в анализируемой пробе, наносят на пластинку и разделяют в тонком слое инертного порошка (селикагель, окись алюминия и др.) с помощью смеси органических растворителей (подвижный растворитель). Пластинку опрыскивают раствором проявляющего реактива, в результате чего на ней появляются в виде окрашенных пятен исследуемые химические соединения. Идентифицируют открытые вещества по величине Rf- частному от деления расстояния, пройденного искомым веществом от точки нанесения (линия старта) до места дислокации, к расстоянию, пройденному подвижным растворителем. Количество открываемого вещества определяют по интенсивности окраски пятна и его размерам.

В практике ветеринарных химико-токсикологических исследований тонкослойная хроматография используется для определения многих пестицидов, алкалоидов, микотоксинов, органических соединений тяжелых металлов. Метод прост по технике использования, не требует сложного оборудования, обладает достаточно высокой специфичностью и чувствительностью (0,05-1,0 мкг в пробе).

Атомно-абсорбционная спектрометрия основана на поглощении отдельными атомами химических элементов световых лучей в определенной области спектра. Поэтому исследуемые химические вещества вначале минерализуются, а затем в состоянии раствора подвергаются воздействию лучами определенной длины, соответствующей поглощающей способности того или иного элемента. По степени поглощения лучей определяют его количественное содержание. Этот метод находит широкое применение главным образом при определении металлов и металлоидов (ртуть, свинец, кадмий, медь, цинк и др.).

Нейтронно-активационный анализ основан на облучении пробы нейтронами, в результате чего возникает наведенная радиация, по степени которой и определяют количественный уровень содержания исследуемого элемента. Однако метод требует сложного оборудования, поэтому малоприемлем в практических условиях.

Критерии оценки методов определения остатков токсических веществ

Методы определения остатков токсических веществ в объектах обычно характеризуют по чувствительности, точности и определяемости.

Чувствительность метода- наименьшее количество химического вещества, открываемое при заданных условиях метода. Она может быть абсолютной и относительной. Абсолютная чувствительность - наименьшее количество вещества, которое можно определить данным методом или реакцией, лежащей в ее основе. Так, с помощью жидкостной хроматографии можно определить 0,05 нг ТХМ-3. Однако для исследования используют лишь часть аликвоты, предназначенной для анализа, которая соответствует определенной части пробы. Поэтому для полной характеристики метода целесообразно ввести такое понятие, как относительная чувствительность - чувствительность по отношению к одному и тому же объему или массе. Обычно относительную чувствительность принято выражать в мг/кг пробы.

Точность метода. Под точностью метода, как правило, понимают различие между истинной и экспериментальной величиной. При этом за истинную величину может быть принято количество вещества, вносимого в пробу из стандартного раствора. Поэтому точность метода может быть охарактеризована как разница между количеством вещества, внесенного в пробу и определенного данным методом аналитического исследования. Точность- это величина стандартного относительного отклонения, установленного по результатам воспроизведения методики при внесении данного количества вещества в пробу.

Точность метода соответствует величине стандартного относительного отклонения и вычисляется по формуле

у(стандартное отклонение)= ?(X-X)2

N-1

где N- число измерений; X- примерная величина; Х- среднее арифметическое; ? - знак суммирования.

Сначала рассчитывают среднее арифметическое, затем абсолютную величину разности между средним арифметическим и значением отдельного измерения; разность возводят в квадрат и эту величину суммируют. Сумму делят на N-1. Квадратный корень из полученного результата представляет собой стандартное отклонение у.

Однако точность метода может быть вычислена применительно к определяемости. Поэтому сначала устанавливают определяемость метода, а затем его точность по показателю относительного стандартного отклонения.

Определяемость метода - средняя величина, показывающая процент открытия вещества в пробе после его внесения из стандартного раствора в количествах, соответствующих пределу определения и максимально возможному уровню содержания. (Жуленко с соавторами, 2002)

ГЛАВА 5 ВЫБОР ВИДА ИНДИКАТОРА

На современном этапе обращает на себя внимание бурное развитие методов биомониторинга как единственного подхода адекватной оценки состояния биологических и экологических систем (Криволуцкий, 1991; Егорова, Сынзыныс, 1997; Петухова, Доронина, 1999; Евсеева, Гераськин, 2000; Егорова, Белолипецкая, 2000; Колупаев, 2000). В связи с этим разработка, совершенствование и внедрение методов биомониторинга в сеть контроля окружающей среды как отдельных ведомств, так и конкретных АЭС является актуальной задачей (Егорова с соавт., 2002). Методы биотестирования и биоиндикации позволяют диагностировать состояние экосистемы по откликам на стрессовое воздействие извне отдельных 13 компонентов биоты. Экологическая диагностика на уровне биотестирования и биомониторинга дает интегральную адекватную оценку качества среды обитания любой биологической популяции, включая человека. Биотесты могут быть рекомендованы для непрерывного экспресс-контроля состояния окружающей среды промышленных районов и природно-хозяйственных комплексов, контроля залповых вредных выбросов предприятий, для оценки эффективности применяемых методов детоксикации окружающей среды и работы очистных сооружений, а так же экологической паспортизации предприятий и отдельных районов (Richardson, 1996; Rathinam, Mohanan, 1996).

Современный биомониторинг насчитывает несколько определений понятию «биотестирование». Биотестирование представляет собой методический прием, основанный на оценке действия фактора среды, в том числе токсического, на организм, его отдельную функцию или систему организмов (Методы биотестирования…, 1989). Согласно Морозовой (2001) биотестирорвание - это метод моделирования последствий воздействия фактора, обладающего общебиологическим действием на живое. Главная задача, решаемая биотестированием ? это получение быстрого ответа - есть или отсутствует токсичность (Тарасенко, 1999). Евгеньев (1999) под биотестированием понимает приемы исследования, при котором о качестве среды, факторах, действующих самостоятельно или в сочетании u1089 с другими, судят по выживаемости, состоянию и поведению специально помещенных в эту среду организмов - тест-объектов. Тест-объекты должны отвечать следующим требованиям:

1. Высокая чувствительность к воздействиям даже малых доз мутагена.

2. Быстрота и экономичность методов тестирования.

3. Воспроизводимость (возможность получения аналогичных результатов на этой же тест-системе).

4. Чувствительность не только к мутагенам, но и к их метаболитам. 14

5. Возможность экстраполировать данные, полученные при исследованиях in vitro на условия in vivo (Дмитриева, Парфёнов, 1991).

Биотестирование не отменяет систему аналитических и аппаратурных методов контроля природной среды, а лишь дополняет ее качественно новыми биологическими показателями, так как с экологической точки зрения сами по себе результаты определения концентрации токсикантов имеют относительную ценность (Патин, 1981). По мнению Оливернусовой (1991), использование биологических тест-систем позволяет определить изменения в экосистемах на очень ранней стадии, когда они еще не проявляются в виде морфологических и структурных изменений и их нельзя выявить другими методами. Это дает возможность предвидеть нарушения экосистемы и вовремя принять меры. Кроме того, состояние биоиндикаторов можно использовать как дополнительную информацию при оценке здоровья населения. По словам Егоровой (2002) кумулятивный эффект всего многообразия сочетаний различных воздействий возможно оценить лишь с помощью биотестирования. Тарасенко (1999) рассматривает биотестирование как введение в более тщательный и всесторонний анализ химического состава воды. Вопросам биотестирования загрязненности воды поллютантами посвящены многие работы (Илющенко, Щегольков, 1990; Морозова с соавт., 2001; Христова, Безруков, 1994).

Несмотря на некоторые недостатки биотестирования (трудностью учета адаптационно-приспособительных изменений тест-организмов; фазностью и сезонностью их реагирования, вызванной стимуляцией физиологических функций под воздействием малых концентраций загрязняющих веществ и их угнетением под воздействием больших концентраций; различием метаболизма водных растений и животных и др.) (Бутаев с соавт., 2002). Перспективность контроля антропогенного загрязнения природных вод с помощью биотестов обоснована многочисленными исследованиями, и в Российской Федерации с 1991 г. Оно 15 стало обязательным элементом экологического мониторинга (Правила охраны поверхностных вод…, 1991). Кроме того, методы биотестирования нашли свое отражение в таких нормативных документах, как РД 118-02-90; РД 52.18.344-93; ПНД Ф Т 14.1:2:3:4.4-99; СП 2.1.7.1386-03 и др). В 15 субъектах продолжался эксперимент, направленный на внедрение методов биотестирования в области оценки качества возвратных вод и определения платы за сброс с учетом суммарной токсичности загрязняющих веществ. На основе результатов эксперимента подготовлена "Инструкция по расчету платы за сброс в водные объекты загрязняющих веществ с учетом их суммарной токсичности", которая направлена на рассмотрение в Минфин России и Минэкономики России (Государственный доклад …, 1999)

Биоиндикация - родственный биотестированию прием, использующий для этих же целей организмы, обитающие в исследуемой среде. При выборе таких организмов приходится соблюдать определенные требования, среди которых возможность фиксировать четкий, воспроизводимый и объективный отклик на воздействие внешних факторов, чувствительность этого отклика на малые содержания загрязнителей и др. (Егоров, Егорова, 1999; Волков 2001; Егоров с соавт., 2001; Михайлуц с соавт., 2001; Федорова 2002).

Известен пример биотестирования, основанный на использовании канареек для индикации появления рудничного газа в горных выработках горняками в средние века. Поведение птицы или ее гибель оповещали шахтеров о грозящей им опасности.

Биоиндикацию можно проводить на уровне молекул, клеток, органов (систем органов), организмов, популяций и даже биоценоза. Повышение уровня организации живой природы может приводить к усложнению, неоднозначности взаимосвязи биологического u1086 отклика антропогенными факторами исследуемой среды, поскольку на них могут накладываться и природные факторы. Поэтому в качестве биотестов выбирают наиболее чувствительные к исследуемым загрязнителям организмы.

Использование биохимических реакций (молекулярный уровень индикации) связано с тем, что они наиболее чувствительны к воздействию внешних загрязнителей. В присутствии загрязнителей окружающей среды, например, происходит уменьшение содержания хлорофилла в мембранах хлоропластов растений или понижается способность фитопланктона к продуцированию кислорода в процессе фотосинтеза. Это может служить индикаторным признаком воздействия на живую природу газопылевых выбросов предприятий или токсичных компонентов сточных вод (Евгеньев, 1999).

При проведении биологического тестирования на уровне организмов выбор биологических переменных предполагает, что отклик должен коррелировать с изменениями на экосистемном уровне. Выявить такую зависимость на практике достаточно сложно. Однако такие показатели организмов, как рост особей, их продуктивность, выживаемость, состояние органов дыхания, состава крови и плазмы, удается использовать для биологического тестирования состояния среды (Евгеньев, 1999).

Чувствительность отклика биотестов на содержание биологически активных веществ в испытуемой среде можно проиллюстрировать на примерах. Многие организмы способны аккумулировать (накапливать) химические загрязнители выше их естественного содержания в воде и почве без быстро проявляющихся нарушений. Такая способность тест-организмов оказалась полезной в качестве индикаторного признака загрязнения окружающей среды и используется для аккумулятивной биоиндикации. Этот прием биотестирования применяют при исследовании процессов миграции токсичных веществ в окружающей среде. В качестве тест-организмов выбирают те из них, которые имеют высокий коэффициент биологического накопления (КН) токсикантов из окружающей среды. Величина КН зависит от природных факторов. Бензпирен в гидробиоте Берингова моря накапливается с КН, равным 2,9 " 103, а в теплых водах Средиземного моря накопление возрастает в пять раз. Знание КН оказалось удобным для глобального и регионального мониторинга окружающей среды.

Перечисленные методы не исчерпывают области применения биотестов для оценки загрязнения биосферы и прогноза влияния загрязнителей на живую природу. Несмотря на сложность выявления биологического отклика на воздействие внешних факторов, озабоченность состоянием экологии, очевидно, будет стимулировать дальнейшее развитие этих биоаналитических методов (Евгеньев, 1999).

Итак, несмотря на большое количество физико-химических методов диагностики состояния окружающей среды вопрос об использовании методов биотестирования остается открытым и требует детального рассмотрения вопросов применения конкретных тест-систем к конкретным случаям.

ГЛАВА 6 ТОКСИКОЛОГИЧЕСКИЕ МЕТОДЫ ОЦЕНКИ ВОЗДЕЙСТВИЯ ПРИСУТСТВУЮЩЕЙ ДОЗЫ ТОКСИКАНТА НА КОМПОНЕНТЫ БИОТЫ

В решении экологических задач наиболее эффективным остается химический эксперимент, и не только эвристический, при котором учащиеся работают по четким инструкциям учителя и под его наблюдением, но и исследовательский. При таком эксперименте возможна различная степень самостоятельности учащихся. Ученическое исследование сочетает в себе использование теоретических знаний и эксперимента, требует умения прогнозировать, строить план исследования, а в некоторых случаях учащийся сам формулирует проблему, выдвигает гипотезу и разрабатывает эксперимент для ее проверки. Таким образом, при данной форме эксперимента от учащихся требуется максимальная самостоятельность. В настоящее время учителя используют много опытов с экологическим содержанием, часть которых посвящена изучению влияния различных антропогенных факторов на живой организм, в частности на белки, в том числе и на ферменты. Предлагаю опыт по исследованию влияния токсиканта на уреазу. Рассматриваемый фермент широко распространен в растительном мире, особенно высока активность уреазы в семенах некоторых бобовых. Для проведения эксперимента рекомендуем использовать уреазу арбузных семечек. В них активность этого фермента сохраняется в течение трех лет. Можно взять семечки кабачка, в них активность уреазы сохраняется в течение одного года. Лучше же брать семечки из свежих плодов. Уреаза катализирует гидролиз мочевины с образованием оксида углерода(IV) и аммиака:

Метод определения активности уреазы основан на тестировании выделяющегося аммиака фенолфталеином. Наглядность данного опыта обеспечивается быстрым появлением интенсивной розовой окраски индикатора.

Реактивы и оборудование: ступка с пестиком, пробирки, пипетки, 1 % раствор мочевины, 0,02 % спиртовой раствор фенолфталеина, дистиллированная вода, экстракт фермента, рабочие растворы токсикантов.

Приготовление экстракта уреазы

Очистить 3-4 арбузных семечка от кожуры и растереть ядра в ступке с 10 мл воды. Данный экстракт слить в пробирку и использовать для проведения опытов.

Ход опыта

Для опытов взять 2 мл суспензии ферментативного препарата. В пробирку добавить 1 мл воды или токсиканта (соли тяжелого металла), встряхнуть и добавить 2 мл раствора мочевины. Следует подчеркнуть, что необходимо добавлять реагенты в той последовательности, о которой сказано выше. Затем в пробирку добавить 2-3 капли спиртового раствора фенолфталеина, оставить при комнатной температуре на 3-5 мин. По интенсивности появляющейся окраски фенолфталеина судят об ингибировании фермента. Если окраска появляется, значит, уреаза сохраняет свою активность, так как выделяется аммиак, а если окраска индикатора не появляется, значит, реагент ингибирует фермент. В опытах используются различные концентрации токсикантов. Готовить растворы солей и фенола необходимо с учетом разбавления при проведении опыта. Токсиканты в одних концентрациях ингибируют фермент, в других нет. Исследовательский компонент эксперимента состоит в нахождении такой концентрации фактора, при которой начинается ингибирование уреазы.

Влияние катионов тяжелых металлов на активность фермента

Поступая в биосферу, тяжелые металлы активно включаются в различные миграционные циклы эко- и геосистем и представляют потенциальную опасность для всего живого. Соединения тяжелых металлов способны сохранять токсичность практически бесконечно, так как при их превращении металл остается без изменений. Катионы металлов, поступающие в организм человека или животного из окружающей среды, образуют прочные связи с карбоксил-анионами и часто вызывают разрывы ионных взаимодействий между ионизированными боковыми радикалами аминокислотных остатков в глобуле, что приводит к потере активной структуры белка. Они снимают электрическую поляризацию белка, уменьшая его растворимость. Вследствие этого находящийся в растворе белок выпадает в осадок. Попадая в клетки, хром, как и многие другие тяжелые металлы, дезактивирует ферменты, взаимодействуя с SH - группами белков - составляющих ферментов.

Опыт

Изучение влияния солей тяжелых металлов на активность уреазы. В качестве токсиканта надо использовать раствор двухромовокислого калия К2Сr2O7 в различных концентрациях (10-6, 10-7, 10-8, 10-9 моль/л). Эксперимент следует проводить по вышеприведенной методике.

Результаты опыта занести в таблицу.

Таблица 3 Результаты опыта

Концентрация, моль/л

К2Сr2O7

Контроль

10-6

10-7

10-8

10-9

В таблице ставят знаки:

"+" - реагент ингибирует фермент;

"-" - реагент не ингибирует фермент.

ВЫВОДЫ И ПРЕДЛОЖЕНИЯ

Неконтролируемое загрязнение окружающей среды тяжелыми металлами угрожает здоровью людей.

В связи с этим необходимо максимально снизить уровень поступления тяжелых металлов в организм человека. В частности, путем получения продукции растениеводства (пищи для человека и сельскохозяйственных животных, которые в свою очередь также являются источником продуктов питания для человека) свободной от загрязнения тяжелыми металлами. Следовательно, необходимо проводить химический анализ почв на содержание каждого из наиболее опасных металлов.

В Нидерландах разработана нормативная база концентрации тяжелых металлов. Установлено три уровня содержания их в почве: А - фоновые концентрации; В - концентрации, указывающие на необходимость проведения дополнительных исследований и мероприятий; С - пороговые концентрации, свидетельствующие о необходимости проведения срочных мер по очистке почв. В таблице 4 представлены уровни содержания тяжелых металлов в почве:

Таблица 4 Уровни содержания тяжелых металлов в почве

Металл

Концентрация (мг/кг)

Фоновая (А)

Повышенная (В)

Пороговая (С)

Хром

100

250

800

Кобальт

20

50

300

Никель

50

100

500

Медь

50

100

500

Цинк

200

500

3000

Молибден

10

40

500

Кадмий

1

5

20

Олово

20

50

300

Барий

200

400

2000

Ртуть

0,3

2

10

свинец

50

150

600

Для получения продукции растениеводства, свободной от тяжелых металлов, на почвах с повышенным их содержанием необходимо:

§ провести агрохимическое обследование пашни, определить содержание тяжелых металлов в почве

§ сопоставить содержание тяжелых металлов с содержанием калия и кальция

§ произвестковать кислые почвы

§ повысить содержание обменного калия в почве

§ исключить применение минеральных удобрений, содержащих тяжелые металлы

§ подобрать культуры, минимально потребляющие эти элементы; на сильно загрязненных полях можно выращивать культуры для технической переработки

§ периодически проводить контроль продукции на содержание тяжелых металлов

Кроме того, снизить воздействие тяжелых металлов на здоровье населения можно путем решения следующих задач:

1. организация точного и оперативного контроля выбросов тяжелых металлов в атмосферу и воду;

2. прослеживание цепей миграции тяжелых металлов от источников до человека;

3. налаживание широкого и действенного контроля (на различных уровнях, вплоть до бытового) содержания тяжелых металлов в продуктах питания, воде и напитках.

4. проведение выборочных, а затем и массовых обследований населения на содержание тяжелых металлов в организме.

Подобные меры применяются в ряде развитых стран. В США реализуется национальная программа массовых обследования детей на содержание свинца в крови, государством финансируются разработки необходимых технических средств.

Сложности решения указанных задач состоят в том, что 1) миграция и токсичность элементов зависят от физико-физических форм, поэтому методы анализа должны давать возможность определять связанные и лабильные формы вещества, степень окисления элементов; 2) средства контроля должны обладать низким порогом обнаружения, высокой селективностью и низкой стоимостью.

Наиболее сложной и слабо изученной проблемой является медико-санитарное нормирование воздействия элементов на жизнедеятельность. ПДК и другие нормы выведены эмпирически, при отсутствии общей теории вопроса. Они не учитывают даже главные особенности химизма природных и техногенных систем, для которых предназначены, и не всегда привязаны к определенным соединениям или формам нахождения элементов.

Не решены вопросы суммарного влияния нескольких элементов - эффектов их антагонистического (снижающегося) или синергетического (увеличивающегося) взаимодействия. Эта проблема наиболее остра, так как обычно в экогеохимических системах присутствуют ассоциации большого числа элементов.

СПИСОК ЛИТЕРАТУРЫ

1. Волков Ю. В. Мониторинг окружающей среды с помощью годичных колец деревьев // Проблемы геологии и освоения недр/ Тез. Докл. V Международный научный симпозиум имени академика М.А. Усова студентов, аспирантов и молодых ученых, посвященный 100-летию горно Ї геологического образования в Сибири, 9 Ї 13 апр., 2001 Ї Томск, Ї С. 597 Ї 598 .

2. Государственный доклад о состоянии окружающей природной среды Российской Федерации в 1998 году.: М, Ї 1999. Ї 265 с.

3. Дмитриева С.А., Парфенов В.И. Кариология флоры как основа цитогенетического мониторинга: на примере Березовского биосферного заповедника. Ї Минск: Наука и техника. Ї 1991. Ї 231с

4. Евгеньев М.И. Тест Ї методы и экология // Соросовский образовательный журнал. Ї 1999. Ї № 11. Ї С.29 Ї 34.

5. Евсеева Т. И., Гераськин С.А. Использование традесканции для оценки токсичности, тератогенности и мутагенности проб талой воды, содержащих тяжелые металлы // Международный экологический конгресс "Новое в экологии и безопасности жизнедеятельности", Санкт Ї Петербург , 14 Ї 16 июня, 2000 . СПб, 2000 Ї Т. 2. С. 178 Ї 181

6. Егоров Д.О., Егорова А.О Оценка уровня загрязненности окружающей среды с использованием биоиндикаторов // "Современные проблемы

экологии, микробиологии и иммунологии" Тез. докл. регион. Конференции молодых ученых, 18 Ї 20 янв., 1999. Ї Пермь, Ї С. 25 Ї 27

7. Егоров Ю. А., Николаевский В. С., Суздалева А. Л. Место биоиндикации в системе обеспечения экологической безопасности человеческой деятельности: На примере атомной энергетики // Современные проблемы

биоиндикации и биомониторинга" Тез. Докл. Международн. симпозиума по биоиндикаторам 17 Ї 21 сент., 2001 . Ї Сыктывкар, 2001 Ї С. 58, 246

8. Егорова Е.И., Козьмин Г.В., Трофимов А.И. Проблемы экологической оценки состояния природной среды в районах размещения атомных электростанций // Вестник Российской Академии Естественных Наук. Ї 2002. Ї №2. Ї С. 4 Ї 8.

9. Егорова Е.И., Сынзыныс Б.И. Биотестирование объектов окружающей среды. Лабораторный практикум по курсу «Биотестирование». Ї Обнинск: ИАТЭ, 1997. Ї 88с

10. Жуленко В.Н., Рабинович М.И., Таланов Г.А. Ветеринарная токсикология. -- М.: Колос, 2002. - 384с.

11. Илющенко В.П., Щегольков В.Н. Чувствительность Allium Ї теста к присутствию тяжелых металлов в водной среде // Химия и технология воды. Ї 1990. Ї Т. 12. Ї №3. Ї С. 275 Ї 278

12. Колупаев В. Б. Парамеции и черви как индикаторы загрязнения почв городских территорий // Международная научная конференция" Экологические и гидрометеорологические проблемы больших городов и промышленных зон"., Санкт Ї Петербург , 18 Ї 20 окт., 2000 . СПб, 2000 Ї С. 73 Ї 74 .

13. Криволуцкий Д.А. Биоиндикация экологических последствий аварии на ЧАЭС // Биотестирование в решении экологических проблем. Зоол. Ин Ї т РАН. С Ї Пб, 1991. Ї С.27 Ї 118

14. Методические указания по определению тяжелых металлов в почвах сельхозугодий и продуктов растениеводства. Утв. Минсельхозом РФ 10.03.1992

15. Методы биотестирования качества водной среды: Сб.ст./Под ред. О.Ф. Филенко. М., 1989. 132 с.

16. Михайлуц А. П., Зайцев В. И., Галенда И. Л. Биотестирование объектов окружающей среды и биоиндикация в городе с развитой химической

промышленностью // Вестн. Рос. акад. естеств. наук. Зап. Ї Сиб. Отд-ние , 2001. Ї . № 4 . Ї C. 82 Ї 91, 203 Ї 204.

17. Морозова О.Г., Бабаева Н.Н., Морозов С.В., Репях С.М. Влияние затопленных растительных остатков на формирование гидрохимического режима водоема Ї охладителя Березовской ГРЭС Ї 1.3. Оценка

токсичности воды методом биотестирования // Химия растительного сырья, 2001. Ї №1. Ї С. 89 Ї 92

18. Нечаев А.П., Траубенберг С.Е., Кочеткова А.А. Учебник для студентов вузов, обучающихся по направлениям: «Технология продуктов питания»// -- СПб.: ГИОРД, 2003. -- 640 с.

19. Оливернусова Л. Оценка состояния окружающей среды методом комплексной биоиндикации. // Биоиндикация и биомониторинг. Ї М:

Наука. Ї 1991

20. Патин С.А. Биотестирование, как метод изучения и предотвращения загрязнения водоемов // Биотестирование природных и сточных вод. М.: Наука, 1981. Ї С.7 Ї 16.

21. Петухова Г.А., Доронина С.А Оценка опасности эффектов последействия нефти и продуктов нефтедобычи с помощью модельных тест Ї объектов // Научные проблемы Западно Ї Сибирского нефтегазового региона:

гуманитарные, естественные и технические аспекты: научно Ї техническая конференция, Тюмень , 14 Ї 17 дек., 1999. Тезисы докладов. Тюмень, 1999

Ї С.298 Ї 299

22. Правила охраны поверхностных вод. Типовые положения. М.: Изд. Госкомприроды СССР. 1991. 38 с

23. Тарасенко И.Н. К вопросу о биотестировании // Экология и охрана окружающей среды. Ї 1999. Ї № 5. Ї С. 563

24. Федорова А. И. Биоиндикация загрязнения городской среды // Изв. РАН. Сер. геогр. Ї 2002 . Ї № 1 . Ї С. 72 Ї 80

25. Христова М.В., Безруков М.Е. Характеристика токсикологической активности триэтиларсина в системе трофических взаимодействий «хищник Ї жертва» // Экология и охрана окружающей среды. Ї 1994. Ї № 5. Ї С.

55 Ї 64

26. Шеуджен А.Х. Биогеохимия // Майкоп: ГУРИПП «Адыгея», 2003. -- 1028 с

27. Rathinam K., Mohanan P.V. Micritox system, a new approach to the safety evaluation of medical devices // Biomater. Appl. Ї 1996. Ї 13 (2). Ї P. 166 Ї 171.

28. Richardson M. Ecitoxity monitoring use of Vibrio fisheri // Arh Hig Rada Toxicol. Ї 1996. Ї 47(4). Ї P. 389 Ї 396.

29. http://www.edu.yar.ru/russian/pedbank/sor_uch/chem/proskur/, Разработка химического эксперимента с экологическим содержанием, Проскурина И.К. 30. http://www.iemrams.spb.ru/russian/ecologru/ecotoxic.htm, Экотоксиканты, Институт экспериментальной медицины РАМН, Санкт- Петербург.

31. http://n-t.ru/ri/ps/pb024.htm, Популярная библиотека химических элементов, Хром.


Подобные документы

  • Физические и химические свойства тяжелых металлов, нормирование их содержания в воде. Загрязнение природных вод в результате антропогенной деятельности, методы их очистки от наличия тяжелых металлов. Определение сорбционных характеристик катионитов.

    курсовая работа [1,2 M], добавлен 23.02.2014

  • Понятие тяжелых металлов, их биогеохимические свойства и формы нахождения в окружающей среде. Подвижность тяжелых металлов в почвах. Виды нормирования тяжелых металлов в почвах и растениях. Аэрогенный и гидрогенный способы загрязнения почв городов.

    курсовая работа [1,9 M], добавлен 10.07.2015

  • Биологический мониторинг окружающей среды. Преимущества, сферы применение, средства и методы биоиндикации. Роль и токсикологическое влияние тяжелых металлов (хрома, кобальта, никеля, свинца) на паростки вики - род цветковых растений семейства Бобовые.

    дипломная работа [820,7 K], добавлен 19.04.2013

  • Исследование основных экологических и химических аспектов проблемы распространения тяжелых металлов в окружающей среде. Формы содержания тяжелых металлов в поверхностных водах и их токсичность. Тяжелые металлы в почвах и растениях. Микробный ценоз почв.

    реферат [33,2 K], добавлен 25.12.2010

  • Нитраты, нитриты и методы их определения в сельскохозяйственной продукции. Критерии оценки концентрации пестицидов и тяжелых металлов в почве и растениях. Белково-витаминные концентраты, определение ее предельных показателей для различных культур.

    реферат [22,7 K], добавлен 28.11.2011

  • Мониторинг состояния окружающей среды. Общие принципы биоиндикации. Биологическая роль и токсикологическое влияние тяжелых металлов. Сравнение влияния концентраций соединения ионов хрома, кобальта, свинца и никеля на контролируемые параметры тест-объекта.

    дипломная работа [2,1 M], добавлен 19.04.2013

  • Основные пути поступления загрязняющих веществ в водоемы и водотоки. Анализ факторов, определяющих степень накопления хрома в донных отложениях водоемов города Гомеля. Оценка миграционной способности хрома в различные компоненты водных экосистем.

    дипломная работа [191,4 K], добавлен 26.08.2013

  • Характеристика тяжелых металлов и их распространение в окружающей среде. Клиническая и экологическая токсикология тяжелых металлов. Атомно-абсорбционный метод определения содержания тяжелых металлов, подготовка и взятие органических проб гидробионтов.

    научная работа [578,6 K], добавлен 03.02.2016

  • Свойства природных вод. Антропогенное воздействие на гидросферу. Определение химических свойств природных вод. Химические показатели воды. Содержание тяжелых металлов в воде и донных отложениях озера "Яльчик". Обобщающие показатели качества воды.

    курсовая работа [406,1 K], добавлен 02.10.2014

  • Гигиенические требования к почвам сельскохозяйственных угодий. Оценка почв сельскохозяйственного назначения и рекомендации по их использованию. Исследование содержания опасных для человека химических, биологических и радиоактивных веществ в почвах.

    реферат [43,1 K], добавлен 10.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.