Моделирование курса акций AAPL и IBM
Подходы к моделированию временных рядов. Построение полиномиальной модели тренда для курса акции AAPL и ее корректирование с учетом автокорреляции остатков. Модель для курса акции IBM с учетом структурных изменений. Адаптивные модели для курса акции AAPL.
Рубрика | Экономика и экономическая теория |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 14.11.2012 |
Размер файла | 3,0 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru
Размещено на http://www.allbest.ru
Содержание
- Введение
- 1. Теоретико-методологические подходы к моделированию временных рядов
- 1.1 Временной ряд и его структура
- 1.2 Методы выделения тренда и трендовые модели
- 1.3 Оценка качества построенной модели
- 2. Исследование курса акций AAPL и IBM
- 2.1 Курсовая стоимость акции
- 2.2 Общая характеристика и историческое развитие компаний
- 2.3 Моделирование тенденции временного ряда акции AAPL
- 2.4 Моделирование тенденции временного ряда акции IBM при наличии структурных изменений
- 2.4.1 Подбор трендовой модели
- 2.4.2 Тест Чоу для анализа структурных изменений
- 3. Прогнозирование курса акции aapl на основе адаптивных моделей
- 3.1 Построение модели ARMA (p,q)
- 3.2 Модель ARIMA (p,d,q)
- 3.3 Анализ моделей и прогнозирование
- Заключение
- Список использованных источников
- Приложения
Введение
В каждой сфере экономики встречаются явления и процессы, которые интересно и важно изучать в их развитии (например, цены, курсы валют, режим протекания производственного процесса). Совокупность измерений подобного рода показателей в течение некоторого периода времени и представляет собой временной ряд. Если такую наблюдаемую совокупность определенным образом обработать, при некоторых условиях возможно с большой точностью произвести оценку будущего значения временного ряда, зная только предыдущие. Кроме того можно попытаться выяснить механизм, лежащий в основе процесса. Для того чтобы управлять им необходимо уметь освобождать временной ряд от компонент, которые затемняют его динамику.
Целью дипломной работы является моделирование курса акций AAPL и IBM и их прогнозирование на основе полученных моделей. Для достижения поставленной цели необходимо решить следующие задачи:
1) изучение теоретико-методологического подхода к моделированию временных рядов;
2) построение полиномиальной модели тренда для курса акции AAPL и ее корректирование с учетом автокорреляции остатков;
3) построение модели для курса акции IBM с учетом структурных изменений;
4) построение адаптивных моделей для курса акции AAPL.
Объектом исследования являются ряды значений курса акций AAPL и IBM за один торговый год по данным бирж NASDAQ и NYSE.
В процессе исследования применялся метод эконометрического моделирования.
Методологическую основу исследования при написании дипломной работы составили труды Суслова В. И, Лукашина Ю.П., Елисеевой И.И., Канторовича Г.Г. и других специалистов.
Структура работы состоит из трех разделов, введения и заключения.
В первом разделе раскрываются теоретико-методологические подходы к моделированию временных рядов. Рассмотрены составляющие временного ряда, проверка существования и методы выделения тренда, указан алгоритм оценки качества построенной модели. Указаны особенности построения моделей при нарушении условий Гаусса-Маркова.
Второй раздел посвящен исследованию курса акций AAPL и IBM, построению и оценке качества трендовых моделей без учета и с учетом структурных изменений. Предложено историческое развитие компаний.
В третьей части прогнозируется курс акции AAPL на основе адаптивных моделей ARMA и ARIMA и модели тренда. Сравнение моделей осуществляется по соответствующим критериям. По наилучшей модели построен краткосрочный прогноз.
курс акция моделирование тренд
1. Теоретико-методологические подходы к моделированию временных рядов
1.1 Временной ряд и его структура
Временным рядом называют ряд наблюдаемых значений исследуемых переменных, расположенных в хронологическом порядке или в порядке возрастания времени, хотя возможно упорядочение и по какому-либо другому параметру. Основной чертой, выделяющей анализ временных рядов среди других видов статистического анализа, является существенность порядка, в котором производятся наблюдения [6].
Различают два вида временных рядов. Пусть измерение некоторых величин (температуры, напряжения и т.д.) производится непрерывно, по крайней мере, теоретически. При этом наблюдения можно фиксировать в виде графика. Но даже в том случае, когда изучаемые величины регистрируются непрерывно, практически при их обработке используются только те значения, которые соответствуют дискретному множеству моментов времени. Следовательно, если время измеряется непрерывно, временной ряд называется непрерывным, если же время фиксируется дискретно, т.е. через фиксированный интервал времени, то временной ряд дискретен. В дипломной работе в дальнейшем мы будем иметь дело только с дискретными временными рядами. Дискретные временные ряды получаются двумя способами:
выборкой из непрерывных временных рядов через регулярные промежутки времени, т.е. в определенный момент времени (например, численность населения, величина собственного капитала фирмы, объем денежной массы, курс акции), - такие временные ряды называются моментными;
накоплением переменной в течение некоторого периода времени, т.е. за определенный момент времени (например, объем производства какого-либо вида продукции, количество осадков, объем импорта), - в этом случае временные ряды называются интервальными.
Также в теории и реже в практике рассматриваются производные временные ряды, в которых наблюдаемые значения являются производными величинами, т.е. средними или относительными показателями.
В эконометрии принято моделировать временной ряд как случайный процесс, называемый также стохастическим процессом, под которым понимается статистическое явление, развивающееся во времени согласно законам теории вероятностей. Случайный процесс - это случайная последовательность. Временной ряд - это лишь одна частная реализация такого теоретического стохастического процесса:
где - длина временного ряда.
Временной ряд вида (1.1) также часто неформально называют выборкой, хотя, по формальному определению, выборка должна состоять из независимых, одинаково распределенных случайных величин.
Обычно стоит задача по данному ряду сделать какие-то заключения о свойствах лежащего в его основе случайного процесса, оценить параметры, т.е. исследовать характеристики структуры временного ряда, а также сделать прогнозы на основе прошлых и настоящих значений временного ряда и т.п.
Возможные значения временного ряда в данный момент времени описываются с помощью случайной величины и связанного с ней распределения вероятностей . Тогда наблюдаемое значение временного ряда в момент рассматривается как одно из множества значений, которые могла бы принять случайная величина в этот момент времени. Следует отметить, однако, что, как правило, наблюдения временного ряда взаимосвязаны, и для корректного его описания следует рассматривать совместную вероятность .
Для удобства можно провести классификацию случайных процессов и соответствующих им временных рядов на детерминированные и случайные процессы (временные ряды). Детерминированным называют процесс, который принимает заданное значение с вероятностью единица. Например, его значения могут точно определяться какой-либо математической функцией от момента времени . Обычно, когда идет речь о случайном процессе и случайном временном ряде, то подразумевается, что он не является детерминированным.
Стохастические процессы подразделяются на стационарные и нестационарные процессы. Стохастический процесс является стационарным, если он находится в определенном смысле в статистическом равновесии, т.е. его свойства с вероятностной точки зрения не зависят от времени. Процесс не стационарен, если эти условия нарушаются.
Важное теоретическое значение имеют гауссовские процессы. Это такие процессы, в которых любой набор наблюдений имеет совместное нормальное распределение. Как правило, термин "временной ряд" сам по себе подразумевает, что этот ряд является одномерным (скалярным).
При анализе экономических временных рядов традиционно различают разные виды эволюции (динамики). Эти виды динамики могут, вообще говоря, комбинироваться. Тем самым задается разложение временного ряда на составляющие или компоненты, которые с экономической точки зрения несут разную содержательную нагрузку. Различают два вида компонент: систематические (это результат воздействия на временной ряд постоянно действующих факторов) и случайные (это случайный шум или ошибка, нерегулярно воздействующие на ряд).
Перечислим наиболее важные компоненты. К систематическим относятся следующие:
тенденция - соответствует медленному изменению, происходящему в некотором направлении, которое сохраняется в течение значительного промежутка времени. Тенденцию называют также трендом или долговременным движением;
циклические колебания - это более быстрая, чем тенденция, квазипериодическая динамика, выходящая за рамки одного периода и в которой есть фаза возрастания и фаза убывания. Промежуток времени между двумя вершинами или впадинами считается длиною цикла. На циклические компоненты оказывают влияние трудно идентифицируемые формальными методами факторы (изменение политической ситуации, прирост или истощение ресурсов и др.). Наиболее часто цикл связан с флуктуациями экономической активности;
сезонные колебания - соответствуют изменениям, которые происходят регулярно в течение года, недели или суток, т.е. внутри одного выделенного периода. Они связаны с сезонами и ритмами человеческой активности;
календарные эффекты - это отклонения, связанные с определенными предсказуемыми календарными событиями, такими, как праздничные дни, количество рабочих дней за месяц, високосный год и т.п.
Систематические компоненты могут одновременно все присутствовать во временном ряде.
Случайные компоненты включают в себя следующие виды:
случайные флуктуации - беспорядочные движения относительно большой частоты. Они порождаются влиянием разнородных событий на изучаемую величину (несистематический или случайный эффект). Часто такую составляющую называют шумом (этот термин пришел из технических приложений).
выбросы - это аномальные движения временного ряда, связанные с редко происходящими событиями, которые резко, но лишь очень кратковременно отклоняют ряд от общего закона, по которому он движется.
структурные сдвиги - это аномальные движения временного ряда, связанные с редко происходящими событиями, имеющие скачкообразный характер и меняющие тенденцию.
Некоторые экономические ряды можно считать представляющими те или иные виды таких движений почти в чистом виде. Но большая часть их имеет очень сложный вид. В них могут проявляться, например, как общая тенденция возрастания, так и сезонные изменения, на которые могут накладываться случайные флуктуации. Часто для анализа временных рядов оказывается полезным изолированное рассмотрение отдельных компонент.
Для того чтобы можно было разложить конкретный ряд на эти составляющие, требуется сделать какие-то допущения о том, какими свойствами они должны обладать. Желательно построить сначала формальную статистическую модель, которая бы включала в себя в каком-то виде эти составляющие, затем оценить ее, а после этого на основании полученных оценок вычленить составляющие. Однако построение формальной модели является сложной задачей. В частности, из содержательного описания не всегда ясно, как моделировать те или иные компоненты. Например, тренд может быть детерминированным или стохастическим. Аналогично, сезонные колебания можно комбинировать с помощью детерминированных переменных или с помощью стохастического процесса определенного вида. Компоненты временного ряда могут входить в него аддитивно или мультипликативно, либо в смешенном виде. Более того, далеко не все временные ряды имеют достаточно простую структуру, чтобы можно было разложить их на указанные составляющие. Существует два основных подхода к разложению временных рядов на компоненты. Первый подход основан на использовании множественных регрессий с факторами, являющимися функциями времени, второй основан на применении линейных фильтров.
1.2 Методы выделения тренда и трендовые модели
Существует три основных типа трендов.
Первым и самым очевидным типом тренда представляется тренд среднего, когда временной ряд выглядит как колебания около медленно возрастающей или убывающей величины.
Второй тип трендов - это тренд дисперсии. В этом случае во времени меняется амплитуда колебаний переменной. Иными словами, процесс гетероскедастичен. Часто в экономике различные процессы с возрастающим средним имеют и возрастающую дисперсию.
Третий и более тонкий тип тренда, визуально не всегда наблюдаемый, - изменение величины корреляции между текущим и предшествующим значениями ряда, т.е. тренд автоковариации и автокорреляции [6].
Проводя разложение ряда на компоненты, как правило, подразумевается под трендом изменение среднего уровня переменной, т.е. тренд среднего. На практике часто необходимо оценить выборку на наличие тенденции. Поскольку не всегда удается это сделать визуально, существует множество тестов на определение наличия тренда. Приведем некоторые из них, которые являются наиболее простыми и удобными в применении: метод Форстера-Стюарта.
Данный метод помимо возможности определения наличия тренда позволяет обнаружить тренд дисперсии уровней ряда, что важно знать при анализе и прогнозировании экономических явлений.
Метод предполагает выполнение следующих шагов:
1) каждый уровень ряда сравнивается со всеми предыдущими. На основании результатов сравнения определяются вспомогательные величины
где - индикатор событий, означающий, что все предыдущие уровни меньше текущего, - индикатор событий, означающий, что все предыдущие уровни больше текущего;
2) рассчитываются :
3) рассчитываются величины
4) проверяются гипотезы об отсутствии (наличии) тренда:
: тренд отсутствует при альтернативной гипотезе : тренд присутствует. Используется t-статистика
где и - постоянные метода, которые приводятся в специальных таблицах для временных рядов в зависимости от объема выборки .
Если , то нулевая гипотеза отклоняется и тренд присутствует; тест Чоу.
Данный тест используется для проверки гипотезы о стабильности временного ряда, т.е. существовании стабильного тренда.
Рассмотрим алгоритм метода:
1) предполагается, что временной ряд можно представить в виде двух непересекающихся выборок до и после "переломного" момента. По выборочным данным строиться общее уравнение регрессии для значений и частные уравнения для выделенных выборок;
2) находится величина - сумма квадратов остатков общей модели регрессии. Также находятся и - суммы квадратов остатков частных моделей соответственно;
3) проверяется гипотеза временной ряд не содержит стабильную тенденцию при альтернативной гипотезе временной ряд содержит стабильную тенденцию.
Используется F-статистика
с распределением Фишера и степенями свободы где и - число параметров уравнений не считая свободный член.
Если то временной ряд не содержит стабильной тенденции и необходимо построение кусочно-непрерывной модели. При выполнении обратного условия: - временной ряд может быть описан с помощью общего уравнения.
Довольно часто возникает потребность в корректировке или сглаживании исследуемого ряда значений. Сглаживание временного ряда выполняется с помощью специальных функций, описывающих закономерности во времени исследуемых экономических явлений. Целью сглаживания является устранение случайных всплесков, т.е. построение плавных временных зависимостей для выявления тренда. В теории обработки временных рядов существует множество способов их сглаживания [9]: фильтрация с использованием преобразования Фурье, кусочная аппроксимация многочленами, экспоненциальное и медианное сглаживание, метод скользящего окна и др. Выбор той или иной функции в качестве тренда является наиболее важным этапом анализа, т.к. ошибки приводят к погрешностям в прогнозе. Основным инструментом, позволяющим отдать предпочтение той или иной модели, являются приросты уровней (значений) ряда и их производные. Прирост определяется как
.
Темп роста:
темп прироста:
В рамках анализа тренда среднего выделяют следующие основные способы аппроксимации временных рядов и соответствующие основные виды трендов среднего [10]: полиномиальный тренд:
,
где - параметры модели, - независимая переменная.
характеризует уровень ряда в момент времени - скорость роста, - ускорение роста, - изменение ускорения.
Частные случаи:
1) :
В данном случае имеет место линейный тренд:
,
Тогда
.
Используется для описания временных рядов, уровни которого постоянно убывают или возрастают;
2) :
,
.
Т.е. - приросты первого порядка имеют линейный вид, - приросты второго порядка являются константами. Используются, когда приросты постоянно убывают или возрастают; экспоненциальный тренд:
.
Используется для описания уровней временных рядов с постоянными темпами роста и прироста.
,
т.е. зависит от самих уравнений.
При кривая растет во времени, при кривая убывает. Параметры и находятся по методу наименьших квадратов (МНК) линеаризованного уравнения
логарифмическая парабола:
.
Темпы прироста являются линейной функцией от времени. Для его изучения исходная модель преобразовывается в модель вида
,
тогда ; гармонический тренд:
,
где - амплитуда колебаний, - угловая частота, - фаза;
S-образный тренд:
Подобного рода кривыми описываются демографические, страховые и другие процессы. Различают:
1) кривую Гомперца:
,
;
2) кривую Перла-Рида:
3) логистическую кривую:
Оценивание параметров полиномиального и экспоненциального трендов (после введения обозначения - в первом случае и логарифмирования функции во втором случае) производится с помощью обычного МНК.
Гармонический тренд оправдан, когда в составе временного ряда отчетливо прослеживаются периодические колебания. При этом если частота известна (или ее можно оценить), то функцию несложно представить в виде линейной комбинации синуса и косинуса:
и, рассчитав значения векторов и , также воспользоваться МНК для оценивания параметров и .
1.3 Оценка качества построенной модели
Оценка качества модели подразумевает проверку ее достоверности или адекватности. Эта проверка заключается в определении степени соответствия модели некому реальному процессу. Адекватность модели проверяется путем статистического тестирования.
Понятия достоверности и адекватности являются условными, поскольку мы не можем рассчитывать на полное соответствие модели реальному объекту, иначе это был бы сам объект, а не модель. Поэтому в процессе моделирования следует учитывать адекватность не модели вообще, а именно тех ее свойств, которые являются существенными с точки зрения проводимого исследования.
В первую очередь оценивается значимость коэффициентов построенной модели по выборочным данным, а также сама модель в целом. Для этого, в частности, используются t-критерий Стьюдента и F-критерий Фишера [5]: t-критерий Стьюдента:
Для коэффициента определяется фактическое значение t-критерия Стьюдента
причем
где
является остаточной дисперсией (стандартной ошибкой регрессии), - в данном случае независимая объясняющая переменная (фактор времени).
Затем полученное фактическое значение сравнивается с табличным значением при заданном уровне значимости и при числе степеней свободы ( - длина выборки, - порядок регрессии). Число степеней свободы показывает, сколько независимых отклонений от возможных требуется для образования данной суммы квадратов. Если выполняется неравенство , то гипотеза о не значимости коэффициента отклоняется, т.е. коэффициент значим, , где - количество регрессоров; F-критерий Фишера:
Формула для вычисления F-распределения со степенями свободы имеет вид:
где - порядок регрессии, - длина ряда,
Затем полученное фактическое значение сравнивается с табличным значением . Если выполняется неравенство , то гипотеза о не значимости уравнения регрессии в целом отклоняется, т.е. уравнение значимо.
Следующим этапом в оценивании качества построенной модели может служить разносторонний анализ значений остатков. Например, для подтверждения предположения о нормальном законе распределения остатков используется критерий Жака-Бера, который предполагает вычисление коэффициентов асимметрии
и эксцесса
Статистика Жака-Бера выражается следующей формулой:
где - объем выборки, - порядок регрессии.
Статистика подчиняется распределению c степенями свободы при справедливости гипотезы о нормальности распределения.
Если статистика принимает значение , то гипотеза о нормальном распределении остатков не отклоняется.
Для проверки остатков на случайность используется критерий "поворотных точек" [7], который состоит в проверке следующего условия при уровне значимости :
где - длина ряда, - число поворотных точек. Точка считается поворотной, если сравниваемый остаток модели, рассматриваемый в качестве данной точки, больше или меньше одновременно двух соседних элементов ряда остатков. Если неравенство выполняется, то это свидетельствует о случайности остатков.
Для проверки наличия гетероскедастичности Гетероскедастичность остатков - это неоднородность дисперсии остатков, т е. дисперсия для каждого из них различна и меняется от наблюдения к наблюдению. зачастую используется ранговый коэффициент корреляции Спирмена, значение которого рассчитывается по формуле:
где - абсолютная разность между рангами значений остатков и , - длина выборки.
Далее оценивается статистическая значимость вычисленного с помощью t-критерия:
Если при уровне значимости выполняется неравенство , то гипотеза об отсутствии гетероскедастичности остатков отклоняется.
Для проверки автокорреляции Автокорреляция остатков - это взаимосвязь последовательных элементов ряда остатков. используется критерий Дарбина-Уотсона, значение которого рассчитывается формуле:
где - остатки модели.
Полученное значение критерия сравнивается с нижним и верхним критическими значениями и соответственно, определяемыми по статистическим таблицам. Делается вывод об автокорреляции:
если - положительная автокорреляция и гипотеза об отсутствии автокорреляции отклоняется;
если или , то нельзя сделать определенный вывод об автокорреляции;
если , то гипотеза об отсутствии автокорреляции не отклоняется;
если - отрицательная автокорреляция, гипотеза об отсутствии автокорреляции отклоняется:
если , то автокорреляция отсутствует.
Широкое применение для проверки автокорреляции и проверки ряда на "белый шум" «Белый шум" - случайный процесс, т. е. ряд из независимых, одинаково распределенных случайных величин, удовлетворяющих свойствам постоянства математического ожидания и дисперсии. получил Q-тест Льюинга-Бокса. Данная статистика может быть определена следующим образом. Выдвигаются две конкурирующие гипотезы: : выборка представляет собой "белый шум" при альтернативной : выборка не является "белым шумом".
Проводится статистическое испытание
где - число наблюдений для рассматриваемой первой подвыборки, - автокорреляция - го порядка, и - число проверяемых лагов. Если где - квантили распределения с степенями свободы, то нулевая гипотеза отклоняется и признается наличие автокорреляции до - го порядка во временном ряду.
Имеет место интеграционный критерий Дарбина-Уотсона, который используется для проверки ряда на стационарность. Значение статистики критерия вычисляется по формуле:
где - выборочное среднее остатков модели.
Выводы о стационарности или не стационарности делаются аналогично выводам об отсутствии или наличии автокорреляции соответственно для обычного критерия Дарбина-Уотсона.
Проверкой ряда на стационарность также является тест Дики-Фуллера, для которого обычно оценивается модель авторегрессии [9] следующего вида:
.
При заданном уровне значимости выдвигается гипотеза о значимости единичного корня : (временной ряд нестационарный) и альтернативная ей гипотеза : (временной ряд нестационарный). Для проверки гипотезы используется t-статистика Дики-Фуллера:
где - оценка коэффициента по выборочным данным;
- стандартная ошибка коэффициента .
Различным вариантам моделей соответствуют различные критические значения статистики относительно . Если , то гипотеза не отклоняется и ряд является нестационарным.
Практически всегда возникает ситуация, когда точная спецификация модели для рассматриваемого процесса или явления неизвестна, причем построено несколько моделей, оценка качества которых выявила их адекватность и хорошую аппроксимацию к фактическим данным. Выходом из положения служат критерии, позволяющие выбирать из некоторого множества моделей наилучшую. Наиболее распространенными критериями являются информационные критерии Акаики и Шварца [5].
Статистика Акаики находится по следующей формуле:
Статистика Шварца:
где - остатки модели, ,
- объем рассматриваемой выборки,
- число оцениваемых параметров или число ограничений на степени свободы, т.е. значение в этом случае равно числу независимых переменных, включая свободный член.
Первое слагаемое представляет собой штраф за большую дисперсию, второе - штраф за использование дополнительных переменных. При сравнении двух различных моделей предпочтение отдается той, которая имеет наименьшие значения критериев.
2. Исследование курса акций AAPL и IBM
Мировая практика анализа статистических данных показывает, что меньше подвержены резким изменениям акции предприятий, производство которых образовано на местном сырье и материалах. Конечно, существуют и непредвиденные обстоятельства, катаклизмы, которые могут внести панику в биржевую жизнь, тем самым повлияв на цену акции.
И все-таки динамика курса акций подчиняется определенным правилам и тенденциям, которые можно и нужно принимать в расчет тем, кто профессионально работает на рынке ценных бумаг.
Существенное влияние на изменение спроса на акции определенных предприятий также оказывает сезонность. Банковские данные акционерных обществ значительно меняют картину в зависимости от сезона. Например, для сельхозпредприятий это связано с периодом выращивания, т.е. затратным периодом реализации продукции, и сбора урожая, т.е. доходным. Совершенно очевидно, что в период выращивания урожая трудно уверенно сказать, какой будет финансовый результат деятельности. И конечно, на этот вопрос легко ответить, когда продукция получена и реализуется.
Рассмотрим более детально формирование курса акции под влиянием различных факторов.
2.1 Курсовая стоимость акции
Акция - это ценная бумага, которая удостоверяет право на участие в собственном капитале ее эмитента. Акции принадлежат к классу паевых ценных бумаг и не имеют установленных сроков обращения, которое необходимо учитывать во время исчисления их теоретической стоимости. Номинал акции может быть разным, но в большинстве случаев эмитенты отдают предпочтение выпуску акций небольшого номинала, который разрешает расширить рынок и повысить их ликвидность. Как правило, номинал акции не отображает ее реальной стоимости, а потому для анализа доходности акций используют курсовую, т.е. текущую рыночную цену [4].
Курсовая цена акций зависит от разнообразных факторов: величины и динамики дивидендов, общей конъюнктуры рынка, рыночной нормы прибыли. На курс акций могут существенно повлиять управленческие решения относительно реструктуризации компании-эмитента. Так, например, решение о слиянии компаний большей частью повышают курсовую цену их акций.
Хотя внутреннюю стоимость акций можно определить разными способами, но все они базируются на общем принципе, который заключается в сопоставлении сгенерированных данной ценной бумагой доходов с рыночной нормой прибыли. Показателем доходности может служить или уровень дивидендов, или величина чистой прибыли в расчете на одну акцию. Второй показатель используют тогда, когда дивиденды по какой-то причине не выплачиваются, а полученная прибыль полностью реинвестируется, например, в процессе становления, расширение или реорганизации акционерного предприятия. В последнее время инвесторы предоставляют преимущество такому показателю, как чистый денежный поток в расчете на одну акцию, считая его объективным.
Текущая внутренняя стоимость акции в общем виде в рамках фундаментального анализа может быть рассчитана по формуле:
где - дивиденд на акцию в момент времени ;
- цена продажи акции;
- норма доходности;
- горизонт прогнозирования,
т.е. дисконтированием денежного потока, генерируемого анализируемой ценной бумагой.
Как видно из формулы (2.1), оценка теоретической стоимости акции зависит от трех параметров: ожидаемые денежные поступления, которые состоят из ожидаемых дивидендов и предполагаемой цены продажи , горизонта прогнозирования и норма доходности . Последний параметр оценивается достаточно просто, и для его оценки существуют множество подходов. Второй параметр непосредственно зависит от предполагаемого срока инвестирования. Первый вероятно наиболее существенен, поскольку он непосредственно связан с активом и от точности его определения зачастую зависит эффективность инвестиций на рынке акций.
Собственно практически все существующие на сегодняшний момент модели оценки стоимости акций являются следствием из формулы (2.1), которая видоизменяется в зависимости от целей инвестирования. Выделяют две основные цели - получение доходов в виде дивидендов и получение дохода от прироста курсовой стоимости ценной бумаги. Рассмотрение всех методов не представляется целесообразным, поскольку их большое количество и тема данной работы не предусматривает полное их рассмотрение. Приведем лишь некоторые, наиболее употребляемые из них.
Допустим, что инвестор собирается купить акции некоторой компании и владеть ими всегда. В этом случае для инвестора естественно определить цену акции как текущее значение последовательности дивидендов, которые он надеется получить. Таким образом, цена акции с точки зрения инвестора должна быть равна
где - дивиденд на акцию в момент времени ;
- норма доходности;
- горизонт прогнозирования.
Размер дивидендов может изменяться произвольно, но чаще это изменение происходит систематически, т.е. дивиденды либо возрастают, либо убывают, либо остаются постоянными. Ниже будут рассмотрены методы оценки акций нулевого и постоянного роста.
Допустим, что дивиденды по обыкновенным акциям некоторой компании по прогнозам останутся постоянными, т.е. Тогда после подстановки вместо значения в уравнение (2.2) оно преобразуется к виду
где - дивиденд на акцию;
- норма доходности,
т.е. цена акции нулевого роста равна текущему значению бессрочной ренты с выплатами . Следовательно, уравнение (2.3) сводится к уравнению (2.4), которое имеет вид
Наиболее частой практикой в западных компаниях является политика стабильно растущих дивидендов, поскольку, таким образом, повышается привлекательность акций, во-первых, с точки зрения защищенности будущих дивидендов от инфляционного воздействия, а, во-вторых, стабильно растущие дивиденды на протяжении длительного периода являются символом постоянного развития компании. В данном случае стоимость обыкновенной акции, чаще всего, оценивается при помощи формулы
где - дивиденд на акцию в момент времени t;
- предполагаемый темп роста дивидендов;
- норма доходности.
Если предприятие не выплачивает дивиденды, внутреннюю стоимость акции можно оценить с использованием следующей факторной модели:
где - свободный член;
- чувствительность цены к - му фактору, ;
- предсказанное значение - го фактора;
- случайная ошибка.
При использовании факторных моделей вида (2.6) возникает ряд проблем. Во-первых, факторные модели строятся на анализе прошлой информации, однако, не всегда те факторы, которые оказывали влияние на цену акции в прошлом, будут аналогичным образом действовать и в будущем. Во-вторых, очень трудно выделить именно те факторы, которые оказывали максимальное влияние на цену акции. Также не стоит забывать, что значение случайной ошибки выбирается случайным образом, она может достигать достаточно больших величин.
Тем не менее, факторная модель представляет собой попытку учесть основные экономические силы, систематически воздействующие на курсовую стоимость ценной бумаги.
2.2 Общая характеристика и историческое развитие компаний
В данном разделе далее будут изложены основные этапы исторического развития и направленность деятельности двух американских конкурирующих компаний, акции которых взяты для исследования в дипломной работе.
Как известно, до середины 1980-х гг. компании IBM и Apple не являлись прямыми конкурентами, поскольку IBM доминировала на рынке больших электронных вычислительных машин, а Apple занималась созданием первых персональных компьютеров. Затем в 1984 г. компания IBM, обеспокоенная сокращением объемов продаж и данными о росте числа покупок различными клиентами персональных компьютеров (ПК) у Apple, выпустила свой ПК. Прямое столкновение лидеров резко усилило конкуренцию, что привело к уходу с рынка более слабых соперников.
IBM (International Business Machines) - транснациональная корпорация со штаб-квартирой в Армонке, штат Нью-Йорк (США), один из крупнейших в мире производителей и поставщиков аппаратного и программного обеспечения, а также IT-сервисов и консалтинговых услуг [15].
Компания, известная сейчас под именем IBM, была основана 16 июня 1911 года и называлась CTR (Computing Tabulating Recording). Она включила в себя Computing Scale Company of America, Tabulating Machine Company (TMC - бывшая компания Германа Холлерита) и International Time Recording Company. Объединённая фирма выпускала широкий ассортимент электрического оборудования. После компания начала специализироваться на создании больших табуляционных машин. В 1924 году с выходом на канадский рынок и расширением ассортимента продукции, CTR меняет название на International Business Machines или, сокращённо, IBM.
В годы Второй мировой войны компания производила стрелковое оружие (М1 Carbine и Browning Automatic Rifle).
В 1943 году началась история компьютеров IBM - был создан "Марк I" весом около 4,5 тонн. Но уже в 1952 году появляется "IBM 701", первый большой компьютер на лампах.
В 1959 году появились первые компьютеры IBM на транзисторах, достигшие высокого уровня надёжности и быстродействия. Чуть раньше, в 1957 году, IBM ввела в обиход язык FORTRAN ("FORmula TRANslation"), применявшийся для научных вычислений.
В 1964 году было представлено семейство IBM System/360, являвшееся первыми универсальными компьютерами с байтовой адресацией памяти. Совместимые с System/360 компьютеры IBM System Z выпускаются до сих пор, это абсолютный рекорд совместимости.
В 1971 году компания представила гибкий диск, который стал стандартом для хранения данных. В 1972 году был представлен обновлённый логотип (буквы из синих полосок) компании, используемый до настоящего времени.
1981 год прочно вошёл в историю человечества как год появления персонального компьютера "IBM PC".64 килобайт оперативной памяти и одного или двух флоппи-дисководов вполне хватало, чтобы исполнять операционную систему DOS, предложенную небольшой компанией Microsoft, и некоторое количество приложений.
Ориентировочно, в 1990 году была предпринята попытка захватить рынок персональных компьютеров, выпустив компьютеры PS/2 с операционной системой OS/2, несовместимые ни аппаратно, ни программно с PC и DOS. В машинах были применены прогрессивные технологии, но, несмотря на инновационность, рынок отверг данный продукт.
Последней попыткой восстановить контроль над рынком был выпуск операционной системы OS/2 Warp V3.0, которая работала на обычных PC и должна была конкурировать с проектом Microsoft Windows 95. Несмотря на массированную рекламную компанию, и весьма хорошие характеристики, проект провалился.
В 2002 году компания приобрела консалтинговое подразделение аудиторской компании PricewaterhouseCoopers за $3,5 млрд. В настоящее время этот бизнес, влившийся в подразделение IBM Global Services, является самым доходным в структуре IBM, приносящим больше половины дохода компании.
Рассмотрим компанию-конкурента IBM и ее основные этапы развития.
Apple (Apple Incorporated) - американская корпорация, основанная Стивом Джобсом и Стивом Возняком, являющаяся производителем персональных и планшетных компьютеров, аудиоплееров, телефонов, программного обеспечения. Один из пионеров в области персональных компьютеров и современных многозадачных операционных систем с графическим интерфейсом. Штаб-квартира - в Купертино, штат Калифорния [14].
Благодаря эстетичному дизайну и применению инновационных технологий Apple создала уникальную репутацию в индустрии потребительской электроники и имеет большую популярность, особенно в США. До 9 января 2007 года официальным названием корпорации на протяжении более 30 лет было Apple Computer. Отказ от слова "Computer" в названии демонстрирует смену основного фокуса корпорации с традиционного для неё рынка компьютерной техники на рынок бытовой электроники.
В середине 1970-х Джобс и Возняк собрали свой первый ПК на базе процессора MOS Technology 6502. Продав несколько десятков таких компьютеров, молодые предприниматели получили финансирование и официально зарегистрировали фирму 1 апреля 1976 года.
"Apple I", выпущенный в 1976 году, был не первым программируемым микрокомпьютером. Право первенства принадлежало компьютеру "Альтаир 8800", который был создан любителем и распространялся через каталоги в 1974 году. Однако, "Альтаир" не был технически квалифицирован как ПК, поскольку не давал возможности накапливать и вызывать данные при помощи программ пользования.
С 1977 по 1993 годы фирмой Apple выпускались различные модели из линейки 8 (позднее 8/16) разрядных компьютеров "Apple II". В конце 1970-х и начале 1980-х годов "Apple II" и их клоны были самыми распространёнными в мире персональными компьютерами. Было продано более 5 млн. компьютеров "Apple II" по всему миру. Теперь принято считать, что именно "Apple II" раз и навсегда открыл широкую дорогу перед новой индустрией - производством персональных компьютеров. 1980 год в истории Apple ознаменовался провальным по ряду причин проектом "Apple III". В марте 1981 года Возняк попал в авиакатастрофу и на время оставил работу. Проблемы с продажами "Apple III" привели к тому, что Джобсу пришлось уволить 40 сотрудников. В прессе уже говорили о скором конце компании Apple. В 1984 году фирма Apple впервые представила новый 32-разрядный компьютер "Macintosh". В дальнейшем выпуск компьютеров этой серии стал основным бизнесом компании. На протяжении двух десятилетий компания выпускала компьютеры "Macintosh" на базе процессоров Motorola, оснащённые фирменной операционной системой. Эта платформа выпускается только Apple. Apple - публичная компания, её акции торгуются на бирже NASDAQ и Лондонской фондовой бирже. Общее количество выпущенных акций на начало 2011 года составляло 921,28 млн. шт. По состоянию на 26 мая 2010 года рыночная стоимость компании Apple превысила таковую у компании Microsoft. По состоянию на март 2011 года рыночная капитализация компании оценивалась в $309,5 млрд.
2.3 Моделирование тенденции временного ряда акции AAPL
Рассматривается временной ряд, составленный из 252 значений цены акции AAPL (приложение А), взятых за год, за период с 4 января 2010 г. по 31 декабря 2010 г. Значения являются ежедневными, в неделе 5 дней торгов.
В первую очередь приведем график исходных данных (значение цены акции, приходящееся на определенную дату торгов), который имеет вид:
Рисунок 2.1 - График исходных данных для курса акции AAPL
Рассматриваемый ряд данных характеризуется возрастающей тенденцией. Динамика представляет собой постепенное возрастание цены с небольшими спадами в период с 29 января по 4 февраля и с 24 по 31 августа 2010 года. Наиболее экстремальные скачки в цене проявляются в период с 20 апреля по 2 июля.
После публикации финансовых результатов компании Apple стало известно, что подобный результат явился следствием успешной продажи новых моделей компьютеров Mac, телефонов и плееров IPhone и IPod, а также планшетов IPad.
Кроме того ряд содержит большое количество мелких и более крупных скачков, что свойственно курсам акций, которые являются достаточно ликвидными и, благодаря своей высокой волатильности, привлекают инвесторов и спекулянтов.
Вначале проверим ряд на наличие тренда методом Форстера-Стюарта. На основании результатов сравнения каждого из уровней со всеми предыдущими по формулам (1.2) и (1.3) получили две вспомогательные выборки и , которые были преобразованы в ряды вида (1.4) и (1.5). Рассчитав величины и , а также t-статистику для каждой из них по формуле (1.7) получили, что и . Следовательно, нулевая гипотеза отклоняется и тренд присутствует. Теперь подберем его для данного ряда.
При добавлении линий тренда к графику исходных данных видно (рисунок 2.2), что линейный тренд и полиномиальный тренд пятой степени наиболее точно соответствуют тенденции исследуемого ряда.
Рисунок 2.2 - График линейной и полиномиальной моделей для курса AAPL
Модели имеют вид: линейный тренд
полиномиальный тренд 5-го порядка
Коэффициенты детерминации для линейной и полиномиальной модели равны соответственно и . Следовательно, построенная полиномиальная модель (2.8) аппроксимирует исходные данные на 94.8%, остальные 5.2% приходятся на ошибки. Т.е. полиномиальный тренд 5-го порядка очень хорошо описывает ряд, линейная модель (2.7) - также хорошо, т.к. в обоих случаях. Будем рассматривать полиномиальную модель 5-го порядка как более точную.
Используем критерий Стьюдента для проверки значимости коэффициентов и критерий Фишера с уровнем значимости 0.05 для проверки значимости уравнения полиномиальной регрессии в целом.
При уровне значимости получили, что , в свою очередь фактические значения, вычисленные по (1.9) для соответствующего коэффициента, равны:
Видно, что для любого . Т.е. для модели (2.8) все коэффициенты уравнения регрессии значимы.
Значение критерия Фишера (1.11) , что намного больше табличного значения . Поскольку статистика , то можно сделать вывод о значимости уравнения регрессии по данному критерию на заданном уровне значимости.
После построения модели необходимо проверить 5 предпосылок Гаусса-Маркова: равенство нулю математического ожидания остатков; подчинение остатков нормальному закону распределения; случайный характер остатков модели; гомоскедастичность дисперсии остатков; отсутствие автокорреляционной зависимости в остатках.
При выполнении всех пяти предпосылок оценки коэффициентов регрессии будут обладать свойствами несмещенности Несмещенные оценки - это оценки, выборочное математическое ожидание которых равно оцениваемому параметру всей совокупности значений ряда. , эффективности Эффективные оценки - оценки, характеризующиеся наименьшей линейной дисперсией по сравнению с остальными оценками параметра. и состоятельности Состоятельные оценки - точечные оценки, сходящиеся по вероятности к оцениваемому параметру при увеличении объема рассматриваемых значений выборки. . График остатков представлен на рисунке 2.3:
Рисунок 2.3 - График остатков полиномиальной модели для курса AAPL
1. Математическое ожидание остатков имеет значение , которое очень близко к нулю. Отличие от нуля обусловлено погрешностью вычислений.
2. Вычислим - стандартную ошибку регрессии, используя формулу (1.10). Значение
По правилу трех сигм при заданном уровне значимости можно считать, что случайная величина, распределенная по нормальному закону, принадлежит интервалу . Поскольку математическое ожидание близко к нулю, то остатки принадлежат интервалу . Следовательно, на данном этапе нельзя отклонить гипотезу о нормальном распределении остатков. Вычислим коэффициенты асимметрии и эксцесса и воспользуемся статистикой Жака-Бера по формуле (1.15). Значение статистики , что меньше квантили распределения . Следовательно, гипотеза о нормальном распределении остатков не отклоняется.
3. Для проверки остатков на случайность используем критерий "поворотных точек".
C помощью MS Excel вычисляем для ряда остатков:
.
Правая часть неравенства (1.16) в свою очередь при уровне значимости 0.05 принимает значение 166.373. Следовательно, выборка остатков неслучайна.
4. Для проверки наличия гетероскедастичности используем ранговый коэффициент корреляции Спирмена.
Для рассматриваемого ряда остатков по формуле (1.17). Оценим статистическую значимость с помощью t-критерия по формуле (1.18): . Сравнив эту величину с табличной при уровне значимости , получили, что . Следовательно, гипотеза об отсутствии гетероскедастичности остатков отклоняется.
5. Для проверки наличия автокорреляции в остатках воспользуемся критерием Дарбина-Уотсона.
Используя формулу (1.19) получаем . Сравнивая рассчитанную величину с нижним значением критерия и принимая во внимание значение , делаем вывод - в остатках присутствует положительная автокорреляция.
Подведем итоги анализа ряда остатков. Последние три предпосылки Гаусса-Маркова: случайный характер остатков модели, гомоскедастичность дисперсии остатков и отсутствие автокорреляционной зависимости в остатках - оказались не соблюденными, что говорит о том, что построенные по МНК оценки коэффициентов уравнения регрессии не являются состоятельными и эффективными. Следовательно, данную модель необходимо корректировать.
Для того чтобы избавиться от автокорреляционной зависимости, попробуем улучшить модель (2.8), построив для ряда остатков модель авторегрессии AR (p), где - параметр, определяющий порядок авторегрессии.
Порядок модели AR (p) определяется исходя из внешнего вида графиков автокорреляционной (АКФ) и частной автокорреляционной (ЧАКФ) функций ряда остатков.
Вычислим коэффициенты автокорреляции уровней ряда по формуле:
где - значения ряда остатков,
Вычислим коэффициенты частной автокорреляции по формулам:
АКФ и ЧАКФ ряда представлены на рисунке 2.4 АКФ экспоненциально убывает и имеет достаточно много положительных значений, величина которых вероятнее всего обусловлена "распространением" автокорреляции при лаге 1, что подтверждается графиком ЧАКФ, из которого видно, что значимым является лишь значение ЧАКФ при лаге 1. Следовательно, для ряда будем строить модель AR (1) в виде:
Рисунок 2.4 - АКФ и ЧАКФ ряда остатков модели (2.8)
Построение модели проводилось в программе Statistica 6.0 [2,13]. Оценка параметров проведена с помощью метода наименьших квадратов. Получена следующая модель:
Теперь объединим модели (2.8) и (2.12) и построим график получившейся модели (рисунок 2.5):
Рисунок 2.5 - График модели (2.13) и фактических значений акции AAPL
Анализ остатков модели (2.13) показал, что ряд остатков удовлетворяет всем пяти предпосылкам регрессионного анализа. В частности статистика , что больше Следовательно, удалось избавиться от автокорреляции остатков. По критерию поворотных точек получили , что указывает на случайность остатков и, как следствие, адекватность построенной трендовой модели. Также для рассматриваемого ряда остатков скорректированной модели . Значит, . Следовательно, удалось получить гомоскедастичные остатки.
Проверим уравнение (2.13) на значимость по F-критерию Фишера.
Для модели (2.13) значение критерия Фишера (1.11) равно , что во много раз превышает табличное значение , следовательно, построенное уравнение (2.13) значимо.
Коэффициент детерминации получившейся модели равен , что говорит о высокой точности приближения построенной модели к исходному ряду данных, всего 1.2% приходится на ошибку.
2.4 Моделирование тенденции временного ряда акции IBM при наличии структурных изменений
Рассматривается временной ряд, составленный из 252 значений цены акции IBM (приложение А), взятых за год, за период с 4 января 2010 г. по 31 декабря 2010 г. Значения являются ежедневными, в неделе 5 дней торгов.
В первую очередь приведем график исходных данных (зависимость цены акции от даты торгов), он имеет вид:
Рисунок 2.6 - График исходных данных для курса акции IBM
Рассматриваемый ряд данных характеризуется нестабильной тенденцией. Ряд содержит значительное количество мелких скачков. Динамика представляет собой три периода развития. В начальный период цена интенсивно колеблется и имеет среднее значение около 127$, во втором периоде на протяжении двух месяцев с 6 сентября по 5 ноября цена стремительно растет, несмотря на один резкий скачок 18 октября. Цена становится достаточно стабильной без резких "перепадов" (около 146$) только в третий период, приходящийся на последний месяц.
Резкие "перепады", как правило, происходят в результате воздействия на исследуемый ряд внешних факторов, в том числе изменения в политике компании. Всплески зависят от экономических и политических стратегий на финансовом рынке. К примеру, неожиданный всплеск произошел с 6 сентября по 5 ноября 2010 года.
После публикации финансовых результатов корпорации IBM стало известно, что получить подобный результат удалось за счет того, что бизнес-клиенты IBM по всему миру активно стали внедрять у себя дорогое серверное оборудование в целом и дорогие мейнфреймы семейства System Z в частности.
Метод Форстера-Стюарта, примененный к ряду курса акции IBM, выявил наличие тренда, поскольку вычисленные по формуле (1.7) статистики и . Поэтому подберем тренд и построим модель, не принимая для начала во внимания структурное изменение.
2.4.1 Подбор трендовой модели
При подборе линий тренда к графику исходных данных было выявлено (рисунок 2.7), что лишь полиномиальный тренд пятой степени наиболее точно соответствуют тенденции исследуемого ряда.
Рисунок 2.7 - График общей полиномиальной модели для курса IBM
Модель имеет следующий вид:
Коэффициенты детерминации . Значит, построенная полиномиальная модель (2.14) аппроксимирует исходные данные на 88.6%, остальные 11.4% приходятся на ошибки. Т.е. полиномиальный тренд 5-го порядка достаточно хорошо описывает ряд. При рассмотрении полиномов более высокого порядка можно заметить, что с увеличением степени полинома, величина коэффициента детерминации практически не меняется: для полиномиальной модели 6-й степеней коэффициент детерминации равен 0.887. Таким образом, будем рассматривать полиномиальную модель 5-го порядка.
Подобные документы
Теоретические основы формирования валютного курса. Сущность валютного курса как экономической категории. Факторы, влияющие на формирование валютного курса. Режим валютного курса, его эволюция в России. Методы государственного валютного регулирования.
курсовая работа [1,3 M], добавлен 06.12.2010Изучение динамики общественных явлений. Классификация рядов динамики, правила их построения и показатели анализа. Основные показатели вариации курса акций АО "Газпром". Расчетная таблица для определения параметров линейной функции. Анализ тенденции.
курсовая работа [184,1 K], добавлен 10.02.2013Подходы к сущности инфляции. Социально-экономические последствия инфляции. Понятие и функции валютного курса, факторы на него влияющие. Классификация и режимы валютных курсов. Государственное регулирование валютного курса с учетом показателей инфляции.
курсовая работа [49,2 K], добавлен 24.05.2014Национальная валюта как главный элемент валютной системы страны, используемая система обменного курса. Виды валютного курса и понятие обменного курса. Валютная политика и государственное регулирование валютного курса, его динамика в Республике Беларусь.
курсовая работа [647,0 K], добавлен 25.03.2012Порядок учреждения акционерного общества, его виды и структура. Преимущества акционерной формы организации предприятия. Сущность акции и ее роль в формировании капитала. Состояние и перспективы российского рынка акций, лидирующие отрасли промышленности.
курсовая работа [1,1 M], добавлен 28.11.2010Понятие и формы валютного курса, факторы, его определяющие, роль в развитии экономики. Специфика российской политики валютного курса. Обзор состояния внутреннего рынка. Спрос физических лиц на наличную иностранную валюту. Пропорции обмена денежных единиц.
курсовая работа [1,2 M], добавлен 08.04.2014Понятие валюты и валютных операций. Классификация валют. Понятие валютного курса. Классификация видов валютных курсов. Факторы, определяющие динамику валютного курса и механизм их влияния. Макроэкономические последствия колебаний валютного курса.
контрольная работа [38,9 K], добавлен 04.01.2009Привилегированные акции и особенности их оценки. Некоторые особенности определения рыночной стоимости привилегированных акций доходным подходом. Определение ставки дисконтирования. Экономический анализ привилегированных акций российских предприятий.
курсовая работа [317,5 K], добавлен 01.10.2008Понятие и основные причины изменения валютного курса, влияние конъюнктурных и структурных (долгосрочных) факторов на его динамику. Политика валютного регулирования в период валютно-финансового кризиса в Украине. Негативные последствия валютного коридора.
контрольная работа [27,0 K], добавлен 17.10.2012Функции Центрального банка в эволюции кредитно-денежной системы. Инструменты кредитно-денежного регулирования в переходной экономике. Роль обменного курса в переходной экономике. Выбор системы обменного курса. Модель процесса долларизации в экономике.
реферат [32,7 K], добавлен 04.12.2008