Теория статистики
Определение основных задач статистического и выборочного наблюдения. Графическое изображение абсолютных и относительных величин. Общая характеристика счетов образования, перераспределения и использования доходов, накопления и внешнеэкономических связей.
Рубрика | Экономика и экономическая теория |
Вид | курс лекций |
Язык | русский |
Дата добавления | 02.01.2012 |
Размер файла | 293,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Счётный контроль заключается в проверке точности арифметических расчётов, применявшихся при составлении отчётности или заполнении формуляров обследования.
Логический контроль заключается в проверке ответов на вопросы программы наблюдения путём их логического осмысления или путём сравнения полученных данных с другими источниками по этому же вопросу.
Указанные приемы проверки статистических данных путем счетного и логического контроля могут быть использованы при проверке как материалов специальных статистических наблюдений, так и отчетности.
Лекция 3. Статистическая сводка, группировка и таблицы
3.1. Задачи сводки и ее содержание
Важнейшим этапом исследования социально-экономических явлений и процессов является систематизация первичных данных и получение на этой основе сводной характеристики всего объекта при помощи обобщающих показателей, что достигается путем сводки и группировки первичного статистического материала.
Сводка - это научная обработка первичных данных с целью получения обобщающих характеристик изучаемого социально-экономического явления по ряду существенных для него признаков с целью выявления типичных черт и закономерностей, присущих изучаемому явлению в целом.
По глубине и точности обработки материала различают сводку простую и сложную. Простая сводка - это операция по подсчету общих итогов по совокупности единиц наблюдения и оформление этого материала в статистических таблицах.
Сложная сводка - это комплекс последовательных операций, включающих группировку полученных при наблюдений материалов, составление системы показателей для характеристики типичных групп и подгрупп изучаемой совокупности явлений, подсчет числа единиц и итогов по каждой группе и подгруппе, и по всему объекту и представление результатов в виде статистических таблиц.
По форме обработки материалов сводка бывает:
- централизованная, когда весь первичный материал поступает в одну организацию, подвергается в ней обработке от начала до конца;
- децентрализованная, когда отчеты предприятий сводятся областными статистическими органами, а полученные итоги поступают в Агентство по статистике РК и там определяются итоговые показатели в целом по народному хозяйству республики.
3.2. Метод группировки, виды, принципы построения группировок и классификаций
Группировкой называется разбиение общей совокупности единиц объекта наблюдения по одному или нескольким существенным признакам на однородные группы, различающиеся между собой в количественном и качественном соотношении и позволяющие выделить социально-экономические типы, изучить структуру совокупности и проанализировать связи между отдельными признаками. Группировки являются важнейшим статистическим методом обобщения статистических данных, основой для правильного исчисления статистических показателей.
С помощью метода группировок решаются следующие задачи:
- выделение социально-экономических типов явлений;
- изучение структуры явления и структурных сдвигов, происходящих в нем;
- выявление взаимосвязи и взаимозависимости между явлениями.
В соответствии задачами группировки различают следующие ее виды: типологическая, структурная, аналитическая.
Типологическая группировка - это разбиение разнородной совокупности единиц наблюдения на отдельные качественно однородные группы и выявление на этой основе социально-экономических типов явлений. При построении группировки этого вида основное внимание должно быть уделено идентификации типов и выбору группировочного признака. Решение вопроса об основании группировки должно осуществляться на основе анализа сущности изучаемого социально-экономического явления.
Типологические группировки широко применяются в экономических, социальных и других исследованиях.
Структурной называется группировка, которая предназначена для изучения состава однородной совокупности по какому-либо варьирующему признаку, а также структуры и структурных сдвигов, происходящих в нем.
Примером могут служить группировки предприятий по проценту выполнения плана, по числу рабочих и т.д. Значение такого рода группировок заключается в том, что с их помощью могут быть выделены и изучены группы предприятий передовых, средних, отстающих; выявлены неиспользованные резервы производства, например, в области улучшения использования основных фондов, повышение производительности труда, улучшение качества продукции и т.д.
Группировка, выявляющая взаимосвязи между изучаемыми явлениями и признаками, их характеризующими, называется аналитической группировкой.
В статистике признаки можно разделить на факторные и результативные. Факторными называют признаки, оказывающие влияние на изменение результативных. Результативными называют признаки, изменяющиеся под влиянием факторных. Взаимосвязь проявляется в том, что с возрастанием значения факторного признака систематически возрастает или убывает значение признака результативного.
Особенностями построения аналитической группировки является:
единицы статистической совокупности группируются по факторному признаку;
каждая выделенная группа характеризуется средними величинами результативного признака.
Все рассмотренные группировки могут быть рассмотрены по какому-то одному или нескольким существенным признакам.
По способу построения группировки бывают простые и комбинационные.
Простой называется группировка, в которой группы образованы по одному признаку.
Комбинационной называется группировка, в которой разбиение совокупности на группы производится по двум или более признакам, взятым в сочетании (комбинации).
Сначала группы формируются по одному признаку, затем группы делятся на подгруппы по другому признаку, а эти в свою очередь делятся по третьему и т.д. Таким образом, комбинационные группировки дают возможность изучить единицы совокупности одновременно по нескольким взаимосвязанным признакам.
При построении комбинационной группировки возникает вопрос о последовательности разбиения единиц объекта по признакам. Как правило, рекомендуется сначала производить группировку по атрибутивным признакам, значения которых имеют ярко выраженные качественные различия.
Построение группировки начинается с определения группировочного признака.
Группировочным признаком называется признак, по которому проводится разбиение единиц совокупности на отдельные группы. От правильного выбора группировочного признака зависят выводы статистического исследования. В качестве основания группировки необходимо использовать существенные, теоретически обоснованные признаки.
В основание группировки могут быть положены как количественные, так и качественные признаки. Количественные признаки - это признаки, которые имеют числовое выражение (объем выпускаемой продукции, возраст человека, доходы населения и т.д.). Качественные признаки отражают состояние единицы совокупности (пол, отраслевая принадлежность предприятия, форма собственности и т.д.)
3.3. Ряды распределения
Результаты сводки могут быть представлены в виде статистических рядов распределения.
Статистическим рядом распределения называют упорядоченное распределение единиц совокупности на группы по изучаемому признаку. В зависимости от признака ряды могут быть вариационными (количественными) и атрибутивными (качественными).
Количественные признаки -- это признаки, имеющие количественное выражение у отдельных единиц совокупности, например, заработная плата рабочих, стоимость продукции промышленных предприятий, возраст людей, урожайность отдельных участков посевной площади и т.д.
Атрибутивные признаки -- это признаки, не имеющие количественной меры. Например, пол (мужской, женский), вид продукции, профессия рабочего и т.д.
Вариационные ряды могут быть дискретными или интервальными.
Дискретный ряд распределения -- это ряд, в котором варианты выражены целым числом.
Интервальный ряд распределения -- это ряд, в котором значения признака заданы в виде интервала. Статистические ряды распределения позволяют систематизировать и обобщать статистический материал. Однако они не дают всесторонней характеристики выделенных групп. Чтобы решить ряд конкретных задач, выявить особенности в развитии явления, обнаружить тенденции, установить зависимости, необходимо произвести группировку статистических данных.
3.4. Статистические таблицы
Статистические таблицы - это наиболее рациональная форма представления результатов статистической сводки и группировки. Значение статистических таблиц состоит в том, что они позволяют охватить материалы статистической сводки в целом. Статистическая таблица, по существу, является системой мыслей об исследуемом объекте, излагаемых цифрами на основе определенного порядка в расположении систематизированной информации.
По внешнему виду статистическая таблица представляет собой ряд пересекающихся горизонтальных и вертикальных линий, образующих по горизонтали строки, а по вертикали - графы (столбцы, колонки), которые в совокупности составляют как бы скелет таблицы. Таблица, состоящая из строк и граф, которые еще не заполнены цифрами, называется макетом таблицы. Каждая статистическая таблица имеет подлежащее и сказуемое.
Подлежащее таблицы - это объект нашего изучения (название района, города, предприятия). Сказуемое - это система показателей, которыми характеризуется объект изучения, т.е. подлежащее таблицы.
Обычно подлежащее располагается слева, в виде наименования горизонтальных строк, а сказуемое - справа, в виде наименования вертикальных граф. В таблице могут быть подведены итоги по графам и строкам.
Обязательная часть таблицы - заголовок, показывающий, о чем идет речь в таблице, к какому месту и времени она относится.
В зависимости от построения подлежащего, таблицы делятся на три вида: простые, групповые и комбинационные. Простые таблицы получили большое распространение во многих экономических разработках.
Простыми таблицами называются такие, в подлежащем которых нет группировок, а дается лишь перечень единиц совокупности (перечневые таблицы), административных районов (территориальные таблицы) или периодов времени (хронологические таблицы).
Наличие таких данных имеет важное информативное значение. Сведения о простой таблице применяют для оценки измерения какого - либо явления во времени. Для этого в подлежащем таблицы приводятся периоды времени или даты, а в сказуемом - ряд показателей.
Хронологическую таблицу можно составлять за любые по величине отрезки времени или на моменты, отстоящие друг от друга по времени на различную длину.
Таблицы, в подлежащем которых приводится перечень территорий (районов, областей и т.п.), называются перечневыми территориальными.
Довольно часто применяются и территориально-хронологические таблицы, в которых сказуемое также содержит показатели по годам, кварталам и т.д., а подлежащее - показатели по районам, областям.
Групповые статистические таблицы дают более информативный материал для анализа изучаемых явлений, благодаря образованным в их подлежащем группам по существенному признаку или выявлению связи между рядом показателей.
Комбинационными таблицами называются такие, в которых подлежащее содержит группировку единиц совокупности по двум или более признакам, взятым в сочетании. Комбинационная таблица устанавливает взаимное действие на результативные признаки существующую связь между факторами группировки.
Лекция 4. Абсолютные и относительные величины и их графическое изображение
4.1. Абсолютные статистические показатели
Обобщающие статистические показатели отражают количественную сторону изучаемой совокупности общественных явлений, представляет собой их величину, выраженную соответствующей единицей измерения.
Практически статистическая информация начинает формироваться с абсолютных величин, ими измеряются все стороны общественной жизни.
Абсолютные величины, выражающие размеры (уровни, объемы) явлений и процессов, получают в результате статистического наблюдения и сводки исходной информации.
По способу выражения размеров изучаемых явлений абсолютные величины подразделяются на индивидуальные и суммарные, которые представляют собой один из видов обобщающих величин.
Индивидуальные -- характеризуют размеры количественных признаков у отдельных единиц.
Этот вид показателей служит основанием при статистической сводке для включения единиц объекта в группы.
На их базе получают абсолютные величины, из которых, в свою очередь, можно выделить показатели численности совокупности и показатели объема признаков совокупности.
Абсолютные величины -- всегда числа именованные, имеющие определенную размерность, единицы измерения.
В зависимости от различных причин и целей анализа применяются натуральные, денежные (стоимостные) и трудовые единицы измерения.
Изучая экономические явления, статистика не может ограничиваться исчислением только абсолютных величин, в анализе статистической информации важное место занимают производные обобщающие показатели -- средние и относительные величины.
4.2. Относительные показатели
Относительные величины в статистике представляют собой частное от деления двух статистических величин и характеризуют количественное соотношение между ними.
При расчете относительных величин следует иметь в виду, что в числителе всегда находится показатель, отражающий то явление, которое изучается, т.е. сравниваемый показатель, а в знаменателе -- показатель, с которым производится сравнение, принимаемый за основание или базу сравнения. База сравнения выступает в качестве своеобразного измерителя. В зависимости от того, какое числовое значение имеет база сравнения, результат отношения может быть выражен либо в форме коэффициента и процента, либо в форме промилле и децимилле.
Если значение основания или базы сравнения принимается за единицу, то относительная величина является коэффициентом и показывает, во сколько раз изучаемая величина больше основания.
Если значение основания или базу сравнения принять за 100%, результат вычисления относительной величины будет выражаться также в процентах. В тех случаях, когда базу сравнения принимают за 1000, результат сравнения выражается в промилле .
Виды относительных величин. Относительные величины структуры характеризуют состав изучаемой совокупности. Исчисляются они как отношение абсолютной величины каждого из элементов совокупности к абсолютной величине всей совокупности, т.е. как отношение части к целому, и представляют собой удельный вес части в целом. Относительные величины структуры выражаются в процентах (база сравнения принимается за 100) или в долях (база сравнения принимается за 1).
Относительные величины динамики характеризуют изменение изучаемого явления во времени, выявляют направление развития, измеряют интенсивность развития. Расчет относительных величин выполняется в виде темпов роста и других показателей динамики.
Относительные величины сравнения характеризуют количественное соотношение одноименных показателей, относящихся к различным объектам статистического наблюдения.
Относительные величины координации применяются для характеристики соотношения между отдельными частями статистической совокупности и показывают, во сколько раз сравниваемая часть совокупности больше или меньше части, которая принимается за основание или базу сравнения.
Относительные величины интенсивности показывают, насколько широко распространено изучаемое явление в той или иной среде, т.е. сколько единиц одной совокупности приходится на единицу другой совокупности.
Одним из условий правильного использования статистических показателей является изучение абсолютных и относительных показателей в их единстве. Если это условие не соблюдено, можно прийти к неправильному выводу. Только комплексное применение абсолютных и относительных величин дает всестороннюю характеристику изучаемого явления.
4.3. Статистические графики
Важное значение при изучении статистики имеет графическое изображение статистической информации. Правильно построенный график делает статистическую информацию более выразительной, запоминающейся и удобно воспринимаемой.
Статистические графики - это одно из самых наглядных средств представления информации. Статистический график представляет собой чертеж, на котором при помощи условных геометрических фигур изображаются статистические данные. В результате этого достигается наглядная характеристика изучаемой статистической совокупности. Правильно построенный график делает статистическую информацию более выразительной, запоминающейся и удобно воспринимаемой.
В статистическом графике различают следующие основные элементы:
поле графика;
графический образ;
пространственные и масштабные ориентиры;
экспликация графика.
Полем графика является место, на котором он выполняется. Это листы бумаги, географические карты, план местности и т.п. Поле графика характеризуется его форматом (размерами и пропорциями сторон). Размер поля графика зависит от его назначения.
Графический образ -- это символические знаки, с помощью которых изображаются статистические данные (линии, точки, прямоугольники, квадраты, круги и т.д.). В качестве графического образа выступают и объемные фигуры. Иногда в графиках используются негеометрические фигуры в виде силуэтов или рисунков предметов.
Пространственные ориентиры определяют размещение графических образов на поле графика. Они задаются координатной сеткой или контурными линиями и делят поле графика на части, соответствующие значениям изучаемых показателей.
Масштабные ориентиры статистического графика придают графическим образам количественную значимость, которая передается с помощью системы масштабных шкал.
Масштаб графика -- это мера перевода численной величины в графическую (например, 1 см соответствует 100 тыс. тенге.). При этом чем длиннее отрезок линии, принятой за числовую единицу, тем крупнее масштаб.
Масштабной шкалой является линия, отдельные точки которой читаются как определенные числа. Шкала, по которой отсчитываются уровни изучаемых показателей, как правило, начинается с 0. Последнее число, наносимое на шкалу, несколько превышает максимальный уровень, отсчет которого проводится по этой шкале. При построении графика допускается разрыв масштабной шкалы. Этот прием используется для изображения статистических данных, имеющих значения лишь в определенных значениях.
Экспликация графика -- это пояснение его содержания, включает в себя заголовок графика, объяснения масштабных шкал, пояснения отдельных элементов графического образа.
Заголовок графика в краткой и четкой форме поясняет основное содержание изображаемых данных. Помимо заголовка, на графике дается текст, делающий возможным чтение графика. Цифровые обозначения шкалы дополняются указанием единиц измерения.
При всем своем многообразии статистические графики классифицируются по ряду признаков: способу построения, форме применяемых графических образов, характеру решаемых задач.
По способу построения статистические графики подразделяются на диаграммы, картограммы и картодиаграммы.
Диаграмма представляет чертеж, на котором статистическая информация изображается посредством геометрических фигур или символических знаков.
Диаграмма сравнения -- показывает соотношение признака статистической совокупности.
Статистическая карта - вид графика, который иллюстрирует содержание статистических таблиц, где подлежащим является административное или географическое деление совокупности. Статистическая карта называется картограммой, вся информация на ней отображается в виде штриховки, линий, точек, окраски, отражающих изменение какого-либо показателя.
На картодиаграмме, на фоне карты, присутствуют элементы диаграммных фигур. Преимущество картодиаграммы перед диаграммой состоит в том, что она не только дает представление о величине изучаемого показателя на различных территориях, но и изображает пространственное размещение изучаемого показателя.
В зависимости от формы применяемых графических образов статистические графики могут быть точечными, линейными, плоскостными и фигурными.
В точечных графиках в качестве графических образов применяется совокупность точек. В линейных графиках графическими образами являются линии. Для плоскостных графиков графическими образами являются геометрические фигуры: прямоугольники, квадраты, окружности.
Лекция 5. Средние величины и показатели вариации
5.1. Сущность и значение средних показателей
Большое распространение в статистике имеют средние величины. Средние величины характеризуют качественные показатели коммерческой деятельности: издержки обращения, прибыль, рентабельность и др.
Средняя - это один из распространенных приемов обобщений. Правильное понимание сущности средней определяет ее особую значимость в условиях рыночной экономики, когда средняя через единичное и случайное позволяет выявить общее и необходимое, выявить тенденцию закономерностей экономического развития.
Средняя величина - это обобщающие показатели, в которых находят выражение действия общих условий, закономерностей изучаемого явления.
Статистические средние рассчитываются на основе массовых данных правильно статистически организованного массового наблюдения (сплошного и выборочного). Однако статистическая средняя будет объективна и типична, если она рассчитывается по массовым данным для качественно однородной совокупности (массовых явлений). Например, если рассчитывать среднюю заработную плату в частных и на госпредприятиях, а результат распространить на всю совокупность, то средняя фиктивна, так как рассчитана по неоднородной совокупности, и такая средняя теряет всякий смысл.
При помощи средней происходит как бы сглаживание различий в величине признака, которые возникают по тем или иным причинам у отдельных единиц наблюдения.
Например, средняя выработка продавца зависит от многих причин: квалификации, стажа, возраста, формы обслуживания, здоровья и т.д. Средняя выработка отражает общее свойство всей совокупности. Средняя величина является отражением значений изучаемого признака, следовательно, измеряется в той же размерности, что и этот признак.
Каждая средняя величина характеризует изучаемую совокупность по какому-либо одному признаку. Чтобы получить полное и всестороннее представление об изучаемой совокупности по ряду существенных признаков, в целом необходимо располагать системой средних величин, которые могут описать явление с разных сторон.
Существуют различные средние: средняя арифметическая, средняя геометрическая, средняя гармоническая, средняя квадратическая, средняя хронологическая.
Рассмотрим некоторые виды средних, которые наиболее часто используются в статистике.
Средняя арифметическая. Средняя арифметическая простая (невзвешенная) равна сумме отдельных значений признака, деленной на число этих значений.
Отдельные значения признака называют вариантами и обозначают через х (); число единиц совокупности обозначают через n, среднее значение признака - через . Следовательно, средняя арифметическая простая равна:
Простая средняя арифметическая применяется в случаях, когда имеются отдельные значения признака, т.е. данные не сгруппированы. Если данные представлены в виде рядов распределения или группировок, то средняя исчисляется иначе:
- Полученная формула называется средней арифметической взвешенной.
Из нее видно, что средняя зависит не только от значений признака, но и от их частот, т.е. от состава совокупности, от ее структуры. Изменим в условии задачи состав рабочих и исчислим среднюю в измененной структуре.
Статистический материал в результате обработки может быть представлен не только в виде дискретных рядов распределения, но и в виде интервальных вариационных рядов с закрытыми или открытыми интервалами.
Исчисление средней по сгруппированным данным производится по формуле средней арифметической взвешенной:
В практике экономической статистики иногда приходится исчислять среднюю по групповым средним или по средним отдельных частей совокупности (частным средним). В таких случаях за варианты (х) принимаются групповые или частные средние, на основании которых исчисляется общая средняя как обычная средняя арифметическая взвешенная.
Средняя гармоническая. Наряду со средней арифметической, в статистике применяется средняя гармоническая величина, обратная средней арифметической из обратных значений признака. Как и средняя арифметическая, она может быть простой и взвешенной.
Средняя гармоническая простая определяется по формуле:
Среднюю гармоническую взвешенную можно представить в общем виде:
5.2. Структурные средние величины
К структурным средним величинам, характеризующим вариационные ряды, наряду со средними, являются мода и медиана.
Мода - это величина признака (варианта), наиболее часто повторяющаяся в изучаемой совокупности. Для дискретных рядов распределения модой будет значение варианта с наибольшей частотой.
Для интервальных рядов распределения с равными интервалами мода определяется по формуле:
где - начальное значение интервала, содержащего моду;
- величина модального интервала;
- частота модального интервала;
- частота интервала, предшествующего модальному;
- частота интервала, следующего за модальным.
Медиана - это варианта, расположенная в середине вариационного ряда. Если ряд распределения дискретный и имеет нечетное число членов, то медианой будет варианта, находящаяся в середине упорядоченного ряда (упорядоченный ряд - это расположение единиц совокупности в возрастающем или убывающем порядке).
Если упорядоченный ряд состоит из четного числа членов, то медианой будет средняя арифметическая из двух вариант, расположенных в середине ряда:
Ме = (n + 1) / 2
Медиана интервального вариационного ряда распределения определяется по формуле
где -- начальное значение интервала, содержащего медиану; -- величина медианного интервала; -- сумма частот ряда; -- сумма накопленных частот, предшествующих медианному интервалу; -- частота медианного интервала.
5.3. Показатели вариации и анализ частотных распределений
Различие индивидуальных значений признака внутри изучаемой совокупности в статистике называется вариацией признака. Она возникает в результате того, что его индивидуальные значения складываются под совокупным влиянием разнообразных факторов, которые по-разному сочетаются в каждом отдельном случае. Колеблемость отдельных значений характеризуют показатели вариации.
Термин "вариация" произошел от латинского variatio -"изменение, колеблемость, различие". Однако не всякие различия принято называть вариацией. Под вариацией в статистике понимают такие количественные изменения величины исследуемого признака в пределах однородной совокупности, которые обусловлены перекрещивающимся влиянием действия различных факторов. Различают вариацию признака: случайную и систематическую.
Анализ систематической вариации позволяет оценить степень зависимости изменений в изучаемом признаке от определяющих ее факторов. Например, изучая силу и характер вариации в выделяемой совокупности, можно оценить, насколько однородной является данная совокупность в количественном, а иногда и качественном отношении, а следовательно, насколько характерной является исчисленная средняя величина. Степень близости данных отдельных единиц хi к средней измеряется рядом абсолютных, средних и относительных показателей.
Абсолютные и средние показатели вариации способы их расчета
Для характеристики совокупностей и исчисленных величин важно знать, какая вариация изучаемого признака скрывается за средним. Для характеристики колеблемости признака используется ряд показателей. Наиболее простой из них - размах вариации.
Размах вариации - это разность между наибольшим () и наименьшим () значениями вариантов.
Этот показатель улавливает только крайние отклонения и не отражает отклонений всех вариант в ряду.
Чтобы дать обобщающую характеристику распределению отклонений, исчисляют среднее линейное отклонение d, которое учитывает различие всех единиц изучаемой совокупности.
Среднее линейное отклонение определяется как средняя арифметическая из отклонений индивидуальных значений от средней, без учета знака этих отклонений:
Если данные наблюдения представлены в виде дискретного ряда распределения с частотами, среднее линейное отклонение исчисляется по формуле средней арифметической взвешенной:
Расчет дисперсии и среднего квадратического отклонения по индивидуальным данным и в рядах распределения. Основными обобщающими показателями вариации в статистике являются дисперсии и среднее квадратическое отклонение.
Дисперсия - это средняя арифметическая квадратов отклонений каждого значения признака от общей средней. Дисперсия обычно называется средним квадратом отклонений и обозначается . В зависимости от исходных данных дисперсия может вычисляться по средней арифметической простой или взвешенной:
-- дисперсия невзвешенная (простая);
-- дисперсия взвешенная.
Среднее квадратическое отклонение представляет собой корень квадратный из дисперсии и обозначается S:
-- среднее квадратическое отклонение невзвешенное;
-- среднее квадратическое отклонение взвешенное.
Среднее квадратическое отклонение - это обобщающая характеристика абсолютных размеров вариации признака в совокупности. Выражается оно в тех же единицах измерения, что и признак (в метрах, тоннах, процентах, гектарах и т.д.).
Среднее квадратическое отклонение является мерилом надежности средней. Чем меньше среднее квадратическое отклонение, тем лучше средняя арифметическая отражает собой всю представляемую совокупность.
Расчет дисперсии по формуле по индивидуальным данным и в рядах распределения. Техника вычисления дисперсии сложна, а при больших значениях вариант и частот может быть громоздкой. Расчеты можно упростить, используя свойства дисперсии.
Показатели относительного рассеивания
Для характеристики меры колеблемости изучаемого признака исчисляются показатели колеблемости в относительных величинах. Они позволяют сравнивать характер рассеивания в различных распределениях (различные единицы наблюдения одного и того же признака в двух совокупностях, при различных значениях средних, при сравнении разноименных совокупностей). Расчет показателей меры относительного рассеивания осуществляют как отношение абсолютного показателя рассеивания к средней арифметической, умножаемое на 100%.
1. Коэффициент осцилляции отражает относительную колеблемость крайних значений признака вокруг средней.
2. Относительное линейное отклонение характеризует долю усредненного значения абсолютных отклонений от средней величины.
)
3. Коэффициент вариации
Учитывая, что среднеквадратическое отклонение дает обобщающую характеристику колеблемости всех вариантов совокупности, коэффициент вариации является наиболее распространенным показателем колеблемости, используемым для оценки типичности средних величин. При этом исходят из того, что если V больше 40 %, то это говорит о большой колеблемости признака в изучаемой совокупности.
Лекция 6. Выборочное наблюдение
6.1. Значение и теоретические основы выборочного наблюдения
Статистическое исследование может осуществляться по данным не сплошного наблюдения, основная цель которого состоит в получении характеристик изучаемой совокупности по обследованной ее части. Одним из наиболее распространенных в статистике методов, применяющих не сплошное наблюдение, является выборочный метод.
Под выборочным понимается метод статистического исследования, при котором обобщающие показатели изучаемой совокупности устанавливаются по некоторой ее части на основе положений случайного отбора. При выборочном методе обследованию подвергается сравнительно небольшая часть всей изучаемой совокупности (обычно до 5 -- 10%, реже до 15 -- 25%). При этом подлежащая изучению статистическая совокупность, из которой производится отбор части единиц, называется генеральной совокупностью. Отобранная из генеральной совокупности некоторая часть единиц, подвергающаяся обследованию, называется выборочной совокупностью или просто выборкой.
Значение выборочного метода состоит в том, что при минимальной численности обследуемых единиц проведение исследования осуществляется в более короткие сроки и с минимальными затратами труда и средств. Это повышает оперативность статистической информации, уменьшает ошибки регистрации.
В проведении ряда исследований выборочный метод является единственно возможным, например, при контроле качества продукции (товара), если проверка сопровождается уничтожением или разложением на составные части обследуемых образцов (определение сахаристости фруктов, клейковины печеного хлеба, установление носкости обуви, прочности тканей на разрыв и т.д.).
В генеральной совокупности доля единиц, обладающих изучаемым признаком, называется генеральной долей (обозначается р), а средняя величина изучаемого варьирующего признака -- генеральной средней (обозначается ).
В выборочной совокупности долю изучаемого признака называют выборочной долей, или частостью (обозначается ), а среднюю величину в выборке -- выборочной средней (обозначается ).
Выборочная доля, или частость, определяется из отношения единиц, обладающих изучаемым признаком m, к общей численности единиц выборочной совокупности n:
Ошибка выборки -- это объективно возникающее расхождение между характеристиками выборки и генеральной совокупности. Она зависит от ряда факторов: степени вариации изучаемого признака, численности выборки, методом отбора единиц в выборочную совокупность, принятого уровня достоверности результата исследования.
Определение ошибки выборочной средней.
При случайном повторном отборе средняя ошибка выборочной средней рассчитывается по формуле:
,
где -- средняя ошибка выборочной средней;
-- дисперсия выборочной совокупности;
n -- численность выборки.
При бесповторном отборе она рассчитывается по формуле:
,
где N -- численность генеральной совокупности.
Определение ошибки выборочной доли.
При повторном отборе средняя ошибка выборочной доли рассчитывается по формуле:
,
где -- выборочная доля единиц, обладающих изучаемым признаком;
-- число единиц, обладающих изучаемым признаком;
-- численность выборки.
При бесповторном способе отбора средняя ошибка выборочной доли определяется по формулам:
Предельная ошибка выборки связана со средней ошибкой выборки отношением:
.
При этом t как коэффициент кратности средней ошибки выборки зависит от значения вероятности Р, с которой гарантируется величина предельной ошибки выборки.
Предельная ошибка выборки при бесповторном отборе определяется по следующим формулам:
,
.
Предельная ошибка выборки при повторном отборе определяется по формуле:
,
.
6.2. Виды выборочного наблюдения
Малая выборка. При контроле качества товаров в экономических исследованиях эксперимент может проводиться на основе малой выборки.
Под малой выборкой понимается несплошное статистическое обследование, при котором выборочная совокупность образуется из сравнительно небольшого числа единиц генеральной совокупности.
Средняя ошибка малой выборки вычисляется по формуле:
,
где -- дисперсия малой выборки.
При определении дисперсии число степеней свободы равно n-1:
.
Предельная ошибка малой выборки определяется по формуле
При этом значение коэффициента доверия t зависит не только от заданной доверительной вероятности, но и от численности единиц выборки n. Для отдельных значений t и n доверительная вероятность малой выборки определяется по специальным таблицам Стьюдента, в которых даны распределения стандартизированных отклонений:
.
Способы отбора единиц из генеральной совокупности
В статистике применяются различные способы формирования выборочных совокупностей, что обусловливается задачами исследования и зависит от специфики объекта изучения.
Основным условием проведения выборочного обследования является предупреждение возникновения систематических ошибок, возникающих вследствие нарушения принципа равных возможностей попадания в выборку каждой единицы генеральной совокупности. Предупреждение систематических ошибок достигается в результате применения научно обоснованных способов формирования выборочной совокупности.
Существуют следующие способы отбора единиц из генеральной совокупности:
1) индивидуальный отбор -- в выборку отбираются отдельные единицы;
2) групповой отбор -- в выборку попадают качественно однородные группы или серии изучаемых единиц;
3) комбинированный отбор -- это комбинация индивидуального и группового отбора.
Способы отбора определяются правилами формирования выборочной совокупности.
Выборка может быть:
-- собственно-случайная;
-- механическая;
-- типическая;
-- серийная;
-- комбинированная.
Собственно-случайная выборка состоит в том, что выборочная совокупность образуется в результате случайного (непреднамеренного) отбора отдельных единиц из генеральной совокупности. При этом количество отобранных в выборочную совокупность единиц обычно определяется исходя из принятой доли выборки.
Доля выборки есть отношение числа единиц выборочной совокупности n к численности единиц генеральной совокупности N, т.е.
Механическая выборка состоит в том, что отбор единиц в выборочную совокупность производится из генеральной совокупности, разбитой на равные интервалы (группы). При этом размер интервала в генеральной совокупности равен обратной величине доли выборки.
Таким образом, в соответствии с принятой долей отбора, генеральная совокупность как бы механически разбивается на равновеликие группы. Из каждой группы в выборку отбирается лишь одна единица.
Важной особенностью механической выборки является то, что формирование выборочной совокупности можно осуществить, не прибегая к составлению списков. На практике часто используют тот порядок, в котором фактически размещаются единицы генеральной совокупности. Например, последовательность выхода готовых изделий с конвейера или поточной линии, порядок размещения единиц партии товара при хранении, транспортировке, реализации и т.д.
Типическая выборка. При типической выборке генеральная совокупность вначале расчленяется на однородные типические группы. Затем из каждой типической группы собственно-случайной или механической выборкой производится индивидуальный отбор единиц в выборочную совокупность.
Типическая выборка обычно применяется при изучении сложных статистических совокупностей. Например, при выборочном обследовании производительности труда работников торговли, состоящих из отдельных групп по квалификации.
Важной особенностью типической выборки является то, что она дает более точные результаты по сравнению с другими способами отбора единиц в выборочную совокупность.
Для определения средней ошибки типической выборки используются формулы:
повторный отбор
,
бесповторный отбор
,
Дисперсия определяется по следующим формулам:
,
Серийная выборка. При серийной выборке генеральную совокупность делят на одинаковые по объему группы -- серии. В выборочную совокупность отбираются серии. Внутри серий производится сплошное наблюдение единиц, попавших в серию.
При бесповторном отборе серий средняя ошибка выборочной серии определяется по формуле:
,
где -- межсерийная дисперсия средних;
R -- число серий в генеральной совокупности;
r -- число отобранных серий.
При бесповторном серийном отборе средняя ошибка выборки для доли определятся по формуле:
,
где -- межсерийная дисперсия доли.
В статистике различают одноступенчатые и многоступенчатые способы отбора единиц в выборочную совокупность.
При одноступенчатой выборке каждая отобранная единица сразу же подвергается изучению по заданному признаку. Так обстоит дело при собственно-случайной и серийной выборке.
При многоступенчатой выборке производят подбор из генеральной совокупности отдельных групп, а из групп выбираются отдельные единицы. Так производится типическая выборка с механическим способом отбора единиц в выборочную совокупность.
Комбинированная выборка может быть двухступенчатой. При этом генеральная совокупность сначала разбивается на группы. Затем производят отбор групп, а внутри последних осуществляется отбор отдельных единиц.
В настоящее время выборочное наблюдение находит достаточно широкое применение в обследованиях промышленных и сельскохозяйственных предприятий, изучении цен на потребительском рынке, в обследованиях бюджетов и занятости населения. Выборочный метод является важнейшим источником информации в маркетинговых и социологических исследованиях, в контроле качества продукции; разработанные методологические подходы к применению выборочного наблюдения в аудите.
Лекция 7. Статистическое изучение динамики общественных явлений
7.1. Понятие, классификация и показатели рядов динамики.
Социально-экономические явления общественной жизни находятся в непрерывном развитии. Их изменение во времени статистика изучает при помощи построения и анализа рядов динамики.
Ряд динамики - числовые значения статистического показателя, представленные во временной последовательности. Они состоят из двух граф: в первой указываются периоды (или даты), во второй - показатели, характеризующие изучаемый объект за эти периоды (или на эти даты).
Показатели второй графы носят название уровней ряда: первый показатель называется начальным уровнем, последний - конечным. Уровни ряда могут быть выражены абсолютными, средними или относительными величинами. Ряды динамики относительных и средних величин строятся в основном на основе рядов абсолютных величин. Для наглядного представления ряда динамики широко используются графические изображения, чаше всего линейные диаграммы.
Ряды динамики могут быть двух видов: интегральные и моментные.
В интервальном ряду приводятся данные, характеризующие величину показателя за определенные периоды (сутки, месяц, квартал, год и т.д.). Особенностью интегральных рядов из абсолютных величин является то, что их уровни можно суммировать, получая новые численные значения объема явления, относящиеся к более длительным периодам.
В моментом ряду динамики приводятся данные, характеризующие размеры явления на определенные моменты (даты) времени. Уровни динамичных моментных рядов суммировать нельзя; сумма не имеет смысла, так как каждый последующий уровень полностью или частично включает в себя предыдущий уровень. Однако разность уровней имеет смысл, характеризуя увеличение или уменьшение уровня ряда между датами учета.
Уровни рядов динамики отображают количественную оценку (меру) развития во времени изучаемого явления. Они могут выражаться абсолютными, относительными или средними величинами.
Ряды динамики могут быть полными и неполными.
Полный ряд - ряд динамики, в котором одноименные моменты времени или периоды времени строго следуют один за другим в календарном порядке или равноотстоят друг от друга.
Неполный ряд динамики - ряд, в котором уровни зафиксированы в неравноотстоящие моменты или периоды времени.
Приведение рядов динамики в сопоставимый вид.
Ряды динамики, изучающие изменение статистического показателя, могут охватывать значительный период времени, на протяжении которого могут происходить события, нарушающие сопоставимость отдельных уровней ряда динамики (изменение методологии учета, изменение цен и т.д.).
Для того, чтобы анализ ряда был объективен, необходимо учитывать события, приводящие к несопоставимости уровней ряда и использовать приемы обработки рядов для приведения их в сопоставимый вид. Наиболее характерные случаи несопоставимости уровней ряда динамики:
Территориальные изменения объекта исследования, к которому относится изучаемый показатель (изменение границ городского района, пересмотр административного деления области и т.д.). Разновеликие интервалы времени, к которым относится показатель. Так, например, в феврале - 28 дней, в марте - 31 день, анализируя изменения показателя по месяцам, необходимо учитывать разницу в количестве дней.
Изменение даты учета. Например, численность поголовья скота в разные годы могла определяться по состоянию на 1 января или на 1 октября, что в данном случае приводит к несопоставимости. Изменение методологии учета или расчета показателя. Изменение цен. Изменение единиц измерения.
Показатели изменения уровней ряда динамики
Одним из важнейших направлений анализа рядов динамики является изучение особенностей развития явления за отдельные периоды времени.
С этой целью для динамических рядов рассчитывают ряд показателей:
К - темпы роста;
- абсолютные приросты;
- темпы прироста.
Темп роста - относительный показатель, получающийся в результате деления двух уровней одного ряда друг на друга. Темпы роста могут рассчитываться как цепные, когда каждый уровень ряда сопоставляется с предшествующим ему уровнем: , либо как базисные, когда все уровни ряда сопоставляются с одним и тем же уровнем , выбранным за базу сравнения:. Темпы роста могут быть представлены в виде коэффициентов либо в виде процентов.
Абсолютный прирост - разность между двумя уровнями ряда динамики, имеет ту же размерность, что и уровни самого ряда динамики. Абсолютные приросты могут быть цепными и базисными, в зависимости от способа выбора базы для сравнения:
цепной абсолютный прирост -
базисный абсолютный прирост -
Для относительной оценки абсолютных приростов рассчитываются показатели темпов прироста.
Темп прироста - относительный показатель, показывающий на сколько процентов один уровень ряда динамики больше (или меньше) другого, принимаемого за базу для сравнения.
Базисные темпы прироста: .
Цепные темпы прироста:
.
и - абсолютный базисный или цепной прирост;
- уровень ряда динамики, выбранный за базу для определения базисных абсолютных приростов;
- уровень ряда динамики, выбранный за базу для определения i-го цепного абсолютного прироста.
Существует связь между темпами роста и прироста: К = К - 1 или К = К - 100 % (если темпы роста определены в процентах).
Если разделить абсолютный прирост (цепной) на темп прироста (цепной) за соответствующий период, получим показатель, называемый - абсолютное значение одного процента прироста:
7.2. Расчет среднего уровня в ряде динамике
В качестве обобщенной характеристики уровней ряда динамики служит средний уровень ряда динамики . В зависимости от типа ряда динамики используются различные расчетные формулы.
Интервальный ряд абсолютных величин с равными периодами (интервалами времени):
Моментный ряд с равными интервалами между датами:
Моментный ряд с неравными интервалами между датами:
где - уровни ряда, сохраняющиеся без изменения на протяжении интервала времени .
Определение среднего абсолютного прироста, средних темпов роста и прироста
По показателям изменения уровней ряда динамики (абсолютные приросты, темпы роста и прироста), полученным в результате анализа исходного ряда, могут быть рассчитаны обобщающие показатели в виде средних величин - средний абсолютный прирост, средний темп роста, средний темп прироста.
Средний абсолютный прирост может быть получен по одной из формул:
или ,
где n - число уровней ряда динамики;
- первый уровень ряда динамики;
- последний уровень ряда динамики;
- цепные абсолютные приросты.
Средний темп роста можно определить, пользуясь формулами:
где n - число рассчитанных цепных или базисных темпов роста;
- уровень ряда, принятый за базу для сравнения;
- последний уровень ряда;
- цепные темпы роста (в коэффициентах);
- первый базисный темп роста;
- последний базисный темп роста.
Между темпами прироста и темпами роста К существует соотношение:
= К - 1, аналогичное соотношение верно и для средних величин.
Лекция 8. Экономические индексы
8.1. Понятие об индексах. Индивидуальные и общие индексы.
Индексы относятся к важнейшим обобщающим показателям. Слово "индекс" имеет несколько значений: указатель, показатель, опись, реестр. Оно используется как понятие в математике, экономике и других науках.
В статистике под индексом понимается относительный показатель, который выражает соотношение величин какого-либо явления во времени, в пространстве или дает сравнение фактических данных с любым эталоном (план, прогноз, норматив и т.д.).
По степени охвата явления индексы бывают индивидуальные и сводные.
Индивидуальные индексы служат для характеристики изменения отдельных элементов сложного явления. Общие индексы строят для количественных (объемных) и качественных показателей. В зависимости от цели исследования наличия исходных данных используют различную форму построения общих индексов: агрегатную или взвешенную.
Индивидуальный индекс цен, себестоимости, затрат рабочего времени на единицу продукции характеризуют изменение цен, себестоимости, затрат рабочего времени по каждому виду продукции:
ip = p1 : pо ; iz = z1 : zо; it = t1 : tо,
где p1 и pо - цена за единицу продукции каждого вида соответственно в текущем и базисном периодах;
z1 и zо - себестоимость единицы продукции каждого вида соответственно в текущем и базисном периодах;
t1 и tо - затраты рабочего времени продукции каждого вида соответственно в текущем и базисном периодах.
Индекс стоимости продукции или товарооборота (Ipq) представляет собой соотношение стоимости продукции текущего периода (? p1 q1) к стоимости продукции в базисном периоде (? pо qо) и определяется по формуле:
Подобные документы
Оформление результатов сводки и группировки материалов статистического наблюдения в виде рядов распределения (атрибутивных и вариационных). Расчет средних величин и показателей вариации, моды и меридианы. Графическое изображение статистических данных.
контрольная работа [226,8 K], добавлен 31.07.2011Сущность статистического анализа и выборочного метода. Правила группировки данных выборочного наблюдения по величине объема инвестиций. Графическое представление вариационного ряда (гистограмма, кумулята, кривая Лоренца). Расчет асимметрии и эксцесса.
курсовая работа [70,7 K], добавлен 26.10.2011Статистика внешнеэкономических связей (ВЭС) как отрасль экономической статистики. Особенности статистики внешней торговли, предмет ее наблюдения и изучения. Товары и услуги, составляющие экспорт и импорт любой страны, - объект учета в статистике ВЭС.
презентация [86,0 K], добавлен 05.12.2013Изучение с количественной стороны массовых явлении и их закономерностей (статистика). Понятия статистической совокупности, наблюдения, группировки, абсолютных и относительных величин, средней арифметической, отклонения, индексов, тренда рядов динамики.
шпаргалка [36,8 K], добавлен 15.12.2009Составление программы проведения статистического наблюдения. Расчет относительных величин структуры розничного товарооборота, базисных темпов роста и среднегодовых темпов роста и прироста показателей по Российской Федерации , построение графика динамики.
задача [70,0 K], добавлен 10.11.2010Система показателей статистики населения. Организация статистического наблюдения за наличием и движением населения, динамика абсолютных и относительных показателей. Возрастно-половая структура населения. Анализ нагрузки на трудоспособное население.
курсовая работа [186,3 K], добавлен 17.12.2015Сущность понятий выборки и выборочного наблюдения, основные виды и категории отбора. Определение объема и численности выборки. Практическое применение статистического анализа выборочного наблюдения. Расчет ошибок выборочной доли и выборочной средней.
курсовая работа [132,8 K], добавлен 17.02.2015Понятие выборочного наблюдения. Определение объема и численности выборки. Практическое применение в статистическом анализе выборочного наблюдения. Формулы предельных ошибок выборочной доли и среднего показателя. Значения гарантийного коэффициента.
курсовая работа [123,0 K], добавлен 11.02.2015Цель выборочного наблюдения и формирование выборки. Особенности организации различных видов выборочного наблюдения. Ошибки выборочного отбора и методы их расчета. Применение выборочного метода для анализа предприятий топливно-энергетического комплекса.
курсовая работа [71,7 K], добавлен 06.10.2014Сущность, виды и задачи статистических группировок, особенности их построения. Понятие и виды относительных величин. Определение дисперсии, этапы выборочного наблюдения. Определение и расчет среднегодового производства и плана выпуска продукции.
контрольная работа [283,4 K], добавлен 18.08.2011