Временные ряды в эконометрических исследованиях

Анализ автокорреляции уровней временного ряда, характеристика его структуры; построение аддитивной и мультипликативной модели, отражающую зависимость уровней ряда от времени; прогноз объема выпуска товаров на два квартала с учетом выявленной сезонности.

Рубрика Экономико-математическое моделирование
Вид лабораторная работа
Язык русский
Дата добавления 23.01.2011
Размер файла 215,7 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Федеральное агентство по образованию российской федерации

Новгородский государственный университет имени Ярослава Мудрого

Институт экономики и управления

Кафедра СЭММ

ОТЧЁТ ПО ЛАБОРАТОРНОЙ РАБОТЕ №4

ВРЕМЕННЫЕ РЯДЫ В ЭКОНОМЕТРИЧЕСКИХ ИССЛЕДОВАНИЯХ

Вариант №16

Выполнил:

Студент группы 8431

Яросвет И.В.

Проверил:

Орлов А.С.

ВЕЛИКИЙ НОВГОРОД 2010

Задание 4:

1. Проанализировать автокорреляцию уровней временного ряда, выявить и охарактеризовать его структуру.

2. Построить аддитивную и мультипликативную модель временного ряда, характеризующую зависимость уровней ряда от времени.

3. На основе лучшей модели сделать прогноз на следующие два квартала с учетом выявленной сезонности.

Таблица 1

Данные о предприятии

№ наблюдения

год

квартал

Стоимость ОПФ на конец квартала, млн.руб.

6

2001

2

898

7

2001

3

794

8

2001

4

1441

9

2002

1

1600

10

2002

2

967

11

2002

3

1246

12

2002

4

1458

13

2003

1

1412

14

2003

2

891

15

2003

3

1061

16

2003

4

1287

17

2004

1

1635

Таблица 2

Вспомогательные расчеты по определению коэффициента автокорреляции первого порядка

Таким образом,

,

Таблица 3

Вспомогательные расчеты по определению коэффициента автокорреляции второго порядка

Таким образом,

,

Таблица 4

Вспомогательные расчеты по определению коэффициента автокорреляции третьего порядка

t

Yt

Yt-3

Yt-Ytср

Yt-3-Yt-3ср

(Yt-Ytср) 2

(Yt-3-Yt-3ср) 2

(Yt-Ytср)*(Yt-3-Yt-3ср)

1

898

-

-

-

-

-

-

2

794

-

-

-

-

-

-

3

1441

-

-

-

-

-

-

4

1600

898

375,83

-291,67

141250,69

85069,44

-109618,0556

5

967

794

-257,17

-395,67

66134,69

156552,11

101752,2778

6

1246

1441

21,83

251,33

476,69

63168,44

5487,444444

7

1458

1600

233,83

410,33

54678,03

168373,44

95949,61111

8

1412

967

187,83

-222,67

35281,36

49580,44

-41824,22222

9

891

1246

-333,17

56,33

111000,03

3173,44

-18768,38889

10

1061

1458

-163,17

268,33

26623,36

72002,78

-43783,05556

11

1287

1412

62,83

222,33

3948,03

49432,11

13969,94444

12

1635

891

410,83

-298,67

168784,03

89201,78

-122702,2222

сумма

14690

10707

x

x

608176,92

736554,00

-119536,67

среднее знач.

1224,17

1189,67

-

-

-

-

-

Таким образом, r3=-0.18,

Таблица 5

Вспомогательные расчеты по определению коэффициента автокорреляции четвертого порядка

t

Yt

Yt-4

Yt-Ytср

Yt-4-Yt-4ср

(Yt-Ytср)^2

(Yt-4-Yt-4ср)^2

(Yt-Ytср)*(Yt-4-Yt-4ср)

1

898

-

-

-

-

-

-

2

794

-

-

-

-

-

-

3

1441

-

-

-

-

-

-

4

1600

-

-

-

-

-

-

5

967

898

-257,17

-329,00

66134,69

108241,00

84607,83333

6

1246

794

21,83

-433,00

476,69

187489,00

-9453,833333

7

1458

1441

233,83

214,00

54678,03

45796,00

50040,33333

8

1412

1600

187,83

373,00

35281,36

139129,00

70061,83333

9

891

967

-333,17

-260,00

111000,03

67600,00

86623,33333

10

1061

1246

-163,17

19,00

26623,36

361,00

-3100,166667

11

1287

1458

62,83

231,00

3948,03

53361,00

14514,5

12

1635

1412

410,83

185,00

168784,03

34225,00

76004,16667

сумма

14690

9816

x

x

466926,22

636202,00

369298,00

среднее знач.

1224,17

1227,00

-

-

-

-

-

Таким образом, r4=0,68,

Таблица 6

Автокорреляционная функция и коррелограмма временного ряда объема выпуска товара фирмой

лаг

коэфавтокорреляции

коррелограмма

1

0,12

*

2

-0,71

*******

3

-0,18

**

4

0,68

*******

Построение аддитивной модели временного ряда с сезонными колебаниями.

Таблица 7

Расчет оценок сезонной компоненты в аддитивной модели

t

Yt

итого за 4 квартала

скольз.сред.

центрсколсред

оценка сезонной компоненты

1

898

-

-

-

-

2

794

4733

1183,25

-

-

3

1441

4802

1200,5

1191,875

249,125

4

1600

5254

1313,5

1257

343

5

967

5271

1317,75

1315,625

-348,625

6

1246

5083

1270,75

1294,25

-48,25

7

1458

5007

1251,75

1261,25

196,75

8

1412

4822

1205,5

1228,625

183,375

9

891

4651

1162,75

1184,125

-293,125

10

1061

4874

1218,5

1190,625

-129,625

11

1287

-

-

-

-

12

1635

-

-

-

-

Таблица 8

Расчет значений сезонной компоненты в аддитивной модели

показатели

год

1 кв

2 кв

3 кв

4 кв

1

-

-

249,125

343

2

-348,625

-48,25

196,75

183,375

3

-293,125

-129,625

-

-

итого за i кв

-641,75

-177,875

445,875

526,375

средняя оценка сезонной компоненты для i квартала, Sср

-320,875

-88,9375

222,9375

263,1875

скорректированная сезонная компонента, Si

-397,19

-88,94

222,94

263,19

Для данной модели имеем:

Определим корректирующий коэффициент:

Проверим условие равенства нулю суммы значений сезонной компоненты:

-397,19-88,94+222,94+263,19=0

Таблица 9

Расчет выровненных значений T и ошибок E в аддитивной модели

,

Рисунок 1 - стоимость ОПФ, млн. руб. (фактические, выровненные и полученные по аддитивной модели значения уровней ряда)

Для оценки качества построенной модели или для выбора наилучшей модели используется ошибка е.

Следовательно, можно сказать, что аддитивная модель объясняет 76,1% общей вариации временного ряда.

Построение мультипликативной модели временного ряда

Таблица 10

Расчет оценок сезонной компоненты в мультипликативной модели

t

Yt

итого за 4 квартала

скольз. сред.

Центр скол. сред

оценка сезонной компоненты

1

898

-

-

-

-

2

794

4733

1183,25

-

-

3

1441

4802

1200,5

1191,875

1,21

4

1600

5254

1313,5

1257

1,27

5

967

5271

1317,75

1315,625

0,74

6

1246

5083

1270,75

1294,25

0,96

7

1458

5007

1251,75

1261,25

1,16

8

1412

4822

1205,5

1228,625

1,15

9

891

4651

1162,75

1184,125

0,75

10

1061

4874

1218,5

1190,625

0,89

11

1287

-

-

-

-

12

1635

-

-

-

-

Таблица 11

Расчет сезонной компоненты в мультипликативной модели

показатели

год

1 кв

2 кв

3 кв

4 кв

1

-

-

1,21

1,27

2

0,74

0,96

1,16

1,15

3

0,75

0,89

-

-

итого за i кв

1,49

1,85

2,37

2,42

средняя оценка сезонной компоненты для i квартала, Sср

0,745

0,925

1,185

1,21

скорректированная сезонная компанента, Si

0,73

0,91

1,17

1,19

Имеем:

0,745+0,925+1,185+1,21=4,07

Определим корректирующий коэффициент:

.

Проверим условие равенства 4 суммы значений сезонной компоненты:

Таблица 12

Расчет выровненных значений Ф и ошибок Е в мультипликативной модели

t

Yt

Si

T*E=Y/S

T

T*S

E=Yt/(T*S)

E^2

(Yt-T*S)^2

1

898

0,73

1230,137

1183,465

863,9295

1,039437

1,0804287

1160,802377

2

794

0,91

872,5275

1190,5

1083,355

0,732908

0,5371548

83726,31603

3

1441

1,17

1231,624

1197,535

1401,116

1,028466

1,0577421

1590,737444

4

1600

1,19

1344,538

1204,57

1433,438

1,116197

1,2458965

27742,79991

5

967

0,73

1324,658

1211,605

884,4717

1,093308

1,1953226

6810,928554

6

1246

0,91

1369,231

1218,64

1108,962

1,123573

1,2624159

18779,30381

7

1458

1,17

1246,154

1225,675

1434,04

1,016708

1,0336956

574,0935801

8

1412

1,19

1186,555

1232,71

1466,925

0,962558

0,9265175

3016,74464

9

891

0,73

1220,548

1239,745

905,0139

0,984515

0,9692704

196,3879918

10

1061

0,91

1165,934

1246,78

1134,57

0,935156

0,8745171

5412,515472

11

1287

1,17

1100

1253,815

1466,964

0,877322

0,7696946

32386,87933

12

1635

1,19

1373,95

1260,85

1500,412

1,089701

1,1874484

18114,06433

итого

14690

12

14665,85

14665,89

14683,2

11,99985

12,140104

199511,5735

Ср знач

1224,17

Т=7,035t+1176,43

Рисунок 2 - стоимость ОПФ, млн. руб. (фактические, выровненные и полученные по мультипликативной модели значения уровней ряда)

Следовательно, ошибка е мультипликативной модели составит:

Таким образом, доля объясненной дисперсии уровней ряда в мультипликативной модели составит 79%

Прогнозирование

Для прогнозирования из двух рассмотренных моделей необходимо выбрать ту, у которой ошибка е наименьшая. Следовательно, при прогнозировании будет использоваться мультипликативная модель, так как

Таким образом, прогнозное значение уровня временного ряда в мультипликативной модели есть сумма трендовой и сезонной компонент.

Объем товаров, выпущенного фирмой в течение первого полугодия ближайшего следующего, т. е. четвертого года, рассчитывается как сумма объемов выпущенных товаров в I и во II кварталах четвертого года, соответственно и . Для определения трендовой компоненты воспользуемся уравнением тренда:

Т=7,035t+1176,43

Получим:

7.035*13+1176.43=1267.885

7.035*14+1176.43=1274.92

Значения сезонной компоненты равны:

(I квартал);

(II квартал)

Таким образом,

;

.


Подобные документы

  • Автокорреляционная функция временного ряда темпов роста производства древесноволокнистых плит в Российской Федерации. Расчет значений сезонной компоненты в аддитивной модели и коэффициента автокорреляции третьего порядка по логарифмам уровней ряда.

    контрольная работа [300,6 K], добавлен 15.11.2014

  • Эффективная оценка по методу наименьших квадратов. Корелляционно-регрессионный анализ в эконометрическом моделировании. Временные ряды в эконометрических исследованиях. Моделирование тенденции временного ряда. Расчет коэффициента автокорреляции.

    контрольная работа [163,7 K], добавлен 19.06.2015

  • Построение графика временного ряда. Тренд - устойчивое систематическое изменение процесса в течение продолжительного времени. Динамика продаж бензина на АЗС. Выявление сезонной составляющей и тренда. Коррелограмма, построенная в программе Statistica.

    курсовая работа [1,2 M], добавлен 15.11.2013

  • Изучение понятия имитационного моделирования. Имитационная модель временного ряда. Анализ показателей динамики развития экономических процессов. Аномальные уровни ряда. Автокорреляция и временной лаг. Оценка адекватности и точности трендовых моделей.

    курсовая работа [148,3 K], добавлен 26.12.2014

  • Выборка и генеральная совокупность. Модель множественной регрессии. Нестационарные временные ряды. Параметры линейного уравнения парной регрессии. Нахождение медианы, ранжирование временного ряда. Гипотеза о неизменности среднего значения временного ряда.

    задача [62,0 K], добавлен 08.08.2010

  • Временные ряды и их характеристики. Факторы, влияющие на значения временного ряда. Тренд и сезонные составляющие. Декомпозиция временных рядов. Метод экспоненциального сглаживания. Построение регрессионной модели. Числовые характеристики переменных.

    контрольная работа [1,6 M], добавлен 18.06.2012

  • Теория и анализ временных рядов. Построение линии тренда и прогнозирование развития случайного процесса на основе временного ряда. Сглаживание временного ряда, задача выделения тренда, определение вида тенденции. Выделение тригонометрической составляющей.

    курсовая работа [722,6 K], добавлен 09.07.2019

  • Анализ временных рядов с помощью статистического пакета "Minitab". Механизм изменения уровней ряда. Trend Analysis – анализ линии тренда с аппроксимирующими кривыми (линейная, квадратическая, экспоненциальная, логистическая). Декомпозиция временного ряда.

    методичка [1,2 M], добавлен 21.01.2011

  • Двойственные оценки как мера влияния ограничений на функционал. Построение экономико-математической модели задачи. Выявление аномальных уровней временного ряда с использованием метода Ирвина. Построение графика общих годовых затрат по выгодному способу.

    контрольная работа [282,7 K], добавлен 16.01.2012

  • Расчет параметров уравнения линейной регрессии, экономическая интерпретация ее коэффициента. Проверка равенства математического ожидания уровней ряда остатков нулю. Построение степенной модели парной регрессии. Вариация объема выпуска продукции.

    контрольная работа [771,6 K], добавлен 28.04.2016

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.