Корреляционная связь и ее статистическое изучение

Особенности корреляционно-регрессионного анализа, его основные этапы. Характеристика показателей социально-экономического развития стран Африки. Этапы построения уравнения регрессии. Анализ средней продолжительности жизни населения в странах Африки.

Рубрика Экономико-математическое моделирование
Вид контрольная работа
Язык русский
Дата добавления 17.04.2012
Размер файла 47,2 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Корреляционная связь и ее статистическое изучение

корреляционный регрессионный уравнение

Введение

Цель работы: на основании корреляционно-регрессионного анализа исследовать зависимость одного из результативных признаков от показателей социально-экономического развития стран Африки.

Практическая часть

На основании корреляционно-регрессионного анализа необходимо исследовать среднюю продолжительность жизни (признак У1) от показателей социально-экономического развития стран Африки: численности населения (фактор Х4), коэффициента естественного прироста (фактор Х5),доли городского населения (фактор Х6), числа медицинских работников (фактор Х7), среднегодового индекса производства продовольствия (Х11).

Таблица

Наименование показателя

Единица измерения

Обозначение

Средняя продолжительность жизни

чел. на 1 тыс. чел.

У1

Численность населения

тыс.чел.

Х4

Коэффициент естественного прироста

%

Х5

Доля городского населения

%

Х6

Число медицинских работников

чел. на 10 тыс. чел.

Х7

Среднегодовой индекс производства продовольствия

%

Х11

1. Зависимость между факторами носит стохастический (вероятностный) характер, т.е. при одних и тех же значениях фактора результативный показатель может принимать различные значения. Направление зависимости (прямое или обратное) определяется конкретным фактором.

Таблица. Исходные данные

Средняя продолжительность жизни, лет

Численность населения

Коэффициент естественного прироста, %

Доля городского населения

Число медицинских работников на 10 тыс населения, чел

Среднегодовой индекс роста производства продовольствия, %

Алжир

63

23102

32

60,85

32,7

87

Ангола

44,5

9226

26,6

21

12,7

58

Бенин

46

4304

31,1

30,8

7,5

108

Ботсвана

56,5

1169

37,5

29,5

35,8

71

Бурунди

48,5

5001

28,3

2,29

3,8

101

Буркина-Фасо

47,2

8305

29,1

8,48

8,1

92

Габон

51

1058

20,1

35,8

22,3

98

Гамбия

37

670

21,3

18,5

15,1

62

Гана

54

13704

33,5

35,86

37,6

73

Гвинея

42,2

6380

24,7

19,07

4,2

91

Гвинея-Бесау

45

925

20,8

23,8

38,6

83

Джибути

64,5

372

27

73,95

72,2

75

Египет

60,6

50740

23

45,37

47,9

89

Заир

52

32461

30,3

39,5

12,6

86

Замбия

53,3

7563

34,2

40,4

18,5

91

Зимбабве

57,8

8640

36

19,6

16,6

94

Камерун

53

10822

28

34,6

14,4

102

Кабо-Верде

61,5

348

23,5

5,8

18,8

83

Кения

53,3

22936

41,8

14,17

11,2

93

Коморские острова

52

472

30,7

11,53

15,3

91

Конго

48,5

1837

27,2

37,27

31,7

83

Кот-д'Ивуар

52,3

11142

30,9

37,62

13,5

102

Лесото

50,6

1619

26

4,52

0,5

78

Либерия

51

2349

32,5

32,94

11,3

91

Ливия

60,8

4083

34,5

52,4

64,8

151

Маврикий

68,2

1040

12,5

52,2

23,5

79

Мавритания

46

1864

30,8

35,6

11

75

Мадагаскар

51,5

10886

28,9

18,42

21,2

94

Малави

47

7499

33,1

33,6

0,2

101

Мали

44

8675

29,3

19,9

10,5

87

Марокко

60,8

23306

23

42,1

11,6

86

Мозамбик

47,3

14548

26,8

8,68

3,5

70

Нигер

44,5

6489

30

12,52

13,5

93

Нигерия

50,5

101907

34,8

20,4

14,8

91

Руанда

48,5

6529

33,5

4,3

4,1

109

Сан-Томе и Принсипи

66,5

103

27,5

32,96

25,8

85

Свазиленд

50,5

712

31,3

8,9

25,9

130

Сейшельские острова

68,5

66

19,3

27,27

26

102

Сенегал

47,6

6791

27

25,4

11,9

64

Сомали

41,9

4862

25,1

30,15

13

65

Судан

50,3

23128

28,8

24,77

21,3

87

Сьерра-Леоне

36

3849

19,3

24,56

8,6

85

Танзания

53

23217

36,4

13,3

3,1

86

Того

52,5

3148

30,5

17,41

14,6

92

Тунис

63,1

7626

21,7

51,73

28,6

135

Уганда

51

16599

34,72

11,934

6,3

70

ЦАР

45

2703

4,2

0,87

8,7

99

Чад

45

5268

24,3

17,8

5,6

93

Экваториальная Гвинея

46

410

23

53,6

16,8

91

Эфиопия

41,9

46184

27

14,5

2,7

86

1. 2. Этап корреляционного анализа - расчет матрицы парных коэффициентов корреляции.

Таблица

Y1

X4

X5

X6

X7

X11

Y1

1

X4

0,018822

1

X5

0,040479

0,236916

1

X6

0,484049

-0,00029

-0,04439

1

X7

0,551837

-0,0536

-0,01241

0,651411

1

X11

0,243128

-0,04128

0,077173

0,088918

0,188614

1

1) Анализируя 1 столбец, можно увидеть, что на среднюю продолжительность жизни влияет доля городского населения (фактор X6 ) и число медицинских работников на 10 тыс. населения (фактор X7), так как им соответствуют наиболее высокие парные коэффициенты. А численность населения почти не оказывает влияния (слабая связь).

2) Также, если проанализировать парные коэффициенты корреляции можно увидеть, что число медицинских работников на 10 тыс. населения оказывает влияние на среднегодовой индекс роста производства продовольствия, также существенная зависимость есть между численностью населения и коэффициентом естественного прироста; доля городского населения сильно зависит от числа медицинских работников на 10 тыс населения. Очень слабая связь между численностью населения и долей городского населения (эта связь практически не прослеживается); коэффициент естественного прироста не зависит от числа медицинских работников на 10 тыс населения(слабая связь).

Таблица. Построение уравнения регрессии

Таблица

Дисперсионный анализ

df

SS

MS

F

Значимость F

Регрессия

5

914,6080661

182,9216132

4,33432025

0,002784693

Остаток

43

1814,731934

42,20306823

Итого

48

2729,34

Y1= 38,265935+1,318E-05* X4+0,0294584* X5+0,0878301* X6+0,1985064* X7+0,0689739* X11

5. Оценка качества модели.

k - число степеней свободы, k = 50 - 5 - 1 = 44.

При уровне значимости = 0,05 и числе степеней свободы k = 44 t-критерий Стьюдента = 2,02.

Следовательно факторы X4, Х5, Х6,, Х11 незначительные и их следует исключить из модели.

6. Повторное построение уравнения регрессии (учитывая только фактор X7,т.е. число медицинских работников на 10 тыс населения).

Таблица

ВЫВОД ИТОГОВ

Регрессионная статистика

Множественный R

0,539188501

R-квадрат

0,290724239

Нормированный R-квадрат

0,275633265

Стандартная ошибка

6,417818787

Наблюдения

49

Дисперсионный анализ

df

SS

MS

F

Значимость F

Регрессия

1

793,4852948

793,4852948

19,26477682

6,4046E-05

Остаток

47

1935,854705

41,18839798

Итого

48

2729,34

Таблица

Коэффициенты

Стандартная ошибка

t-статистика

Y-пересечение

46,40594111

1,431030507

32,42833811

Переменный фактор X7

0,272308004

0,062040947

4,389165846

Y1= 46,40594111+0,272308004* X7

7. Повторный анализ качества модели.

k = 50 - 1 - 1 = 48, табличные значения: t-критерий Стьюдента = 2,02, F-критерий =4,08.

1) t-критерий Стьюдента

4,39 > 2,02 , т.е. tрасч > tтабл Х7 - значимый фактор.

2) F-критерий

19,26 > 4,08 , т.е. Fрасч > Fтабл полученная модель адекватна.

3) К-т детерминации

R2 =0,29 , т.е на 29 % изменение средней продолжительности жизни обусловлено числом медицинских работников.

4) Стандартная ошибка

= 0,062, т.е. расчетные значения У1 отличаются от фактических в среднем на 6,2 %.

Вывод

В результате этой домашней работы были выполнены все поставленные задачи и исследована зависимость результативного признака на среднюю продолжительность жизни населения в странах Африки. Получились следующие результаты: средняя продолжительность жизни во многом зависит от числа медицинских работников, следовательно, чем выше это число, тем выше средняя продолжительность жизни населения.

Размещено на Allbest.ru


Подобные документы

  • Сущность корреляционно-регрессионного анализа и его использование в сельскохозяйственном производстве. Этапы проведения корреляционно-регрессионного анализа. Области его применения. Анализ объекта и разработка числовой экономико-математической модели.

    курсовая работа [151,0 K], добавлен 27.03.2009

  • Связь между случайными переменными и оценка её тесноты как основная задача корреляционного анализа. Регрессионный анализ, расчет параметров уравнения линейной парной регрессии. Оценка статистической надежности результатов регрессионного моделирования.

    контрольная работа [50,4 K], добавлен 07.06.2011

  • Степень тесноты и характера направления зависимости между признаками. Парная линейная корреляционная зависимость, ее корреляционно-регрессионный анализ. Исследование связи между одним признаком-фактором и одним признаком-результатом, шкала Чеддока.

    методичка [75,0 K], добавлен 15.11.2010

  • Построение регрессионных моделей. Смысл регрессионного анализа. Выборочная дисперсия. Характеристики генеральной совокупности. Проверка статистической значимости уравнения регрессии. Оценка коэффициентов уравнения регрессии. Дисперсии случайных остатков.

    реферат [57,4 K], добавлен 25.01.2009

  • Расчет параметров уравнения линейной регрессии, оценка тесноты связи с помощью показателей корреляции и детерминации; определение средней ошибки аппроксимации. Статистическая надежность регрессионного моделирования с помощью критериев Фишера и Стьюдента.

    контрольная работа [34,7 K], добавлен 14.11.2010

  • Метод статистического исследования. Генеральная совокупность и выборка. Приведение статистики темпа инфляции за 10 лет. Выборочное обследование торговых предприятий, оценка величины запаса (в днях оборота). Этапы корреляционно-регрессионного анализа.

    контрольная работа [170,0 K], добавлен 20.01.2014

  • Сущность корреляционно-регрессионного анализа и экономико-математической модели. Обеспечение объема и случайного состава выборки. Измерение степени тесноты связи между переменными. Составление уравнений регрессии, их экономико-статистический анализ.

    курсовая работа [440,3 K], добавлен 27.07.2015

  • Проведение корреляционно-регрессионного анализа в зависимости выплаты труда от производительности труда. Построение поля корреляции, выбор модели уравнения и расчет его параметров. Вычисление средней ошибки аппроксимации и тесноту связи между признаками.

    практическая работа [13,1 K], добавлен 09.08.2010

  • Построение уравнения множественной регрессии в линейной форме, расчет интервальных оценок его коэффициентов. Создание поля корреляции, определение средней ошибки аппроксимации. Анализ статистической надежности показателей регрессионного моделирования.

    контрольная работа [179,4 K], добавлен 25.03.2014

  • Основные методы анализа линейной модели парной регрессии. Оценки неизвестных параметров для записанных уравнений парной регрессии по методу наименьших квадратов. Проверка значимости всех параметров модели (уравнения регрессии) по критерию Стьюдента.

    лабораторная работа [67,8 K], добавлен 26.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.