Экономико-математическое моделирование в менеджменте

Решение графическим методом задачи линейного программирования с двумя неизвестными. Решение транспортной задачи методом северо-западного угла и методом минимальной стоимости. Системы массового обслуживания. Стохастическая модель управления запасами.

Рубрика Экономико-математическое моделирование
Вид контрольная работа
Язык русский
Дата добавления 16.03.2012
Размер файла 458,1 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Вариант 28

Задание 1. Решить графическим методом задачу линейного программирования с двумя неизвестными:

Решение:

Для того чтобы построить график, найдем координаты точек прямых. Для этого заменим в уравнениях знаки неравенства на знаки равенства и подставим вместо x1 произвольные числа, найдя, таким образом, x2.

1) x1 + x2 = 2

x1 = -3; x2 = 5;

x1 = 3; x2 = -1;

2) x1 - x2 = 0

x1 = -3; x2 = -3;

x1 = -5; x2 = 5;

3) 3x1 + x2 = 6

x1 = 5; x2 = -9;

x1 = -1; x2 = 9;

3) 3x1 - x2 = 6

x1 = 4; x2 = 6;

x1 = -2; x2 = -12;

Построим прямую целевой функции. Для этого приравняем ЦФ к нулю.

2x1 + 3x2 = 0

x1 = -3; x2 = 2;

x1 = 6; x2 = -4.

линейное программирование транспортная задача

Таким образом, мы нашли многоугольник решений с вершинами в следующих точках: А (1,5; 1,5), В (3;3), С (0;2).

Подставим полученные координаты точек в нашу целевую функцию.

F(A) = 2*1.5 + 3*1.5 = 3 + 4.5 = 7.5;

F(B) = 2*3 + 3*3 = 15;

F(C) = 2*0 + 3*2 = 6.

Поскольку по условию задачи, целевая функция стремится к минимуму, то мы выбираем минимальное значение, а именно F(C) = 6. Таким образом, получается, что в точке С(0; 2) находится оптимальное решение нашей задачи.

Ответ: x1 = 0, x2 = 2.

Задание 2. Решить транспортную задачу двумя методами

100

150

150

100

100

150

3

4

5

4

6

100

1

5

7

1

5

150

4

6

6

3

4

100

2

7

4

7

2

100

1

9

6

3

2

Решение:

F(xij) = 3x11+ 4x12+ 5x13 + 4x14 + 6x15 + x21 + 5x22 + 7x23 + x24 + 5x25 + 4x31 + 6x32 + 6x33 + 3x34 + 4x35 + 2x41 + 7x42 + 4x43 + 7x44 + 2x45 + x51 + 9x52 + 6x53 + 3x54 + 2x55 > min

1) Метод северо-западного угла

100

150

150

100

100

150

100

3

50

4

-

5

-

4

-

6

100

-

1

100

5

-

7

-

1

-

5

150

-

4

-

6

150

6

-

3

-

4

100

-

2

-

7

-

4

100

7

-

2

100

-

1

-

9

-

6

-

3

100

2

F(xij) = 3*100 + 50*4 + 100*5 + 150*6 + 100*7 + 100*2 = 300 + 200 + 500 + 900 + 700 + 200 = 2800

2) Метод минимальной стоимости

Найдем несколько вариантов решения данным методом для того, чтобы найти вычислить наиболее оптимальное решение.

1)

100

150

150

100

100

150

100

3

50

4

-

5

-

4

-

6

100

-

1

-

5

-

7

100

1

-

5

150

-

4

-

6

50

6

-

3

100

4

100

-

2

-

7

100

4

-

7

-

2

100

-

1

100

9

-

6

-

3

-

2

F(xij) =100*3+ 50*4+ 100*1+ 50*6+ 100*4+ 100*9= 300+ 100+ 300+ 400+ 900= 2000

2)

100

150

150

100

100

150

-

3

150

4

-

5

-

4

-

6

100

-

1

-

5

-

7

100

1

-

5

150

-

4

-

6

150

6

-

3

-

4

100

-

2

-

7

-

4

-

7

100

2

100

100

1

-

9

-

6

-

3

-

2

F(xij) =150*4+ 100*1 + 150*6 + 100*2 + 100*1 = 600 + 100 + 900 + 200 + 100 = 1900

3)

100

150

150

100

100

150

100

3

50

4

-

5

-

4

-

6

100

-

1

-

5

-

7

100

1

-

5

150

-

4

-

6

50

6

-

3

100

4

100

-

2

-

7

100

4

-

7

-

2

100

-

1

100

9

-

6

-

3

-

2

F(xij) =100*3+ 50*4+ 100*1+ 50*6+ 100*4+ 100*4+ 100*9 = 300+ 200+ 100+ 300+ 400+ 400+ 900 = 2600

Таким образом, получаем, что минимальное решение получилось во втором варианте, где F(xij) = 1900.

Ответ: F(xij) = 1900.

Задание 3. Решить задачу системы массового обслуживания

В универсаме к узлу расчета поступает поток покупателей с интенсивностью л =198 чел. В час. Средняя продолжительность обслуживания контроллером-кассиром одного покупателя мин. Определить: минимальное количество контролеров-кассиров nmin, , при котором очередь не будет расти до бесконечности, и соответствующие характеристики обслуживания при n=nmin.

Решение:

По условию л=198 чел. в час или 3,3 чел. в мин. Таким образом,

с = л/м = л*tоб = 3,3*6 = 19,8.

Это означает, что очередь не будет возрастать до бесконечности при условии с/n < 1, т.е. при n>с = 19,8. Таким образом, минимальное количество контроллеров-кассиров nmin = 20.

Найдем характеристики обслуживания СМО при n=20. Вероятность того, что в узле расчета отсутствуют покупатели, найдем по формуле:

т.е. в среднем 0,00000003% времени контролеры-кассиры будут простаивать.

Вероятность того, что в узле расчета будет очередь, рассчитаем по формуле:

Среднее число покупателей, находящихся в очереди, найдем по формуле:

Среднее время ожидания в очереди вычислим по формуле:

Среднее число покупателей в узле расчета рассчитаем по формуле:

Среднее время нахождения покупателей в узле расчета найдем по формуле:

среднее число контролеров-кассиров, занятых обслуживанием покупателей, найдем по формуле:

Коэффициент (доля) занятых обслуживанием контролеров-кассиров равна:

Абсолютная пропускная способность узла расчета найдем следующим образом:

или 196,2 чел./час.

Анализ характеристик обслуживания свидетельствует о значительной нагрузке узла расчета при наличии 20-ти контролеров-кассиров.

Стохастическая модель управления запасами

Так как ресурсы каждого предприятия ограничены, то оно решает, как и когда пополнять запасы, и в каком размере. Управление запасами имеет место быть как на производственных предприятиях, так и на торговых. Если в первом случаем уровень запаса выбирается таким образом, чтобы обеспечить бесперебойное производство между двумя поставками, то во втором случае речь идет о том, как обеспечить максимальное удовлетворение спроса и минимизировать издержки на хранение и неудовлетворенный спрос.

В настоящее время известно огромное количество детерминированных моделей управления запасами. Это самый простой тип моделей, в которых спрос и предложение являются неизменными из периода в период величинами. Любой реальный процесс можно привести к детерминированному виду. Однако при прогнозировании данный тип моделей дает неточные результаты. Поэтому используются стохастические модели, одна из которых будет предложена в данной работе.

Она строится по тому же принципу, что и детерминированные модели. Однако допускается неудовлетворенный спрос. Кроме того, учитываются не только затраты на хранение, но и транспортировку товара. Так как реальные процессы слишком сложные, то в рассматриваемой модели приняты три допущения.

1. Неудовлетворенный в течение срока выполнения заказа спрос накапливается.

2. Разрешается не более одного невыполненного заказа.

3. Распределение спроса в течение срока выполнения заказа является стационарным (неизменным) во времени.

Для определения функции, отражающей суммарные затраты, отнесенные к единице времени, введем следующие обозначения.

F f(x) -- плотность распределения спроса х в течение срока выполнения заказа

F D -- ожидаемое значение спроса в единицу времени

F h -- удельные затраты на хранение (на единицу продукции за единицу времени)

F р -- удельные потери от неудовлетворенного спроса (на единицу продукции за единицу времени)

F К -- стоимость размещения заказа.

F E(x) - функция изменения транспортных затрат в зависимости от объема спроса.

Критерием оптимальности также служит функция затрат в единицу времени, которая складывается из:

1. Стоимости размещения заказов. Приближенное число заказов в единицу времени равно D/y, так что стоимость размещения заказов в единицу времени равна KD/y.

2. Ожидаемых затрат на хранение. Средний уровень запаса равен:

3.

4. Следовательно, ожидаемые затраты на хранение за единицу времени равны hI.

5. Приведенная формула получена в результате усреднения ожидаемых запасов в начале и конце временного цикла, то есть величин у + M{R-х} и M{R-х} соответственно. При этом игнорируется случай, когда величина R - М{х} может быть отрицательной, что является одним из упрощающих допущений рассматриваемой модели.

6. Стоимость транспортных перевозок для удовлетворения спроса потребителей. Функция имеет ступенчатый вид, так как с ростом объема заказа растет стоимость его перевозки:

7.

8. Ожидаемые потери, связанные с неудовлетворенным спросом.

9. Дефицит возникает при х > R. Следовательно, ожидаемый дефицит за единицу времени равен:

10.

11. Так как в модели предполагается, что р пропорционально объему дефицита, ожидаемые потери, связанные с неудовлетворенным спросом, за один цикл равны pS. Поскольку единица времени содержит D/y циклов, то ожидаемые потери, обусловленные дефицитом, составляют pDS/y за единицу времени.

Результирующая функция общих потерь за единицу времени TCU имеет следующий вид.

Оптимальные значения у* и R* определяются из представленных ниже уравнений.

Данная модель дает неплохие результаты и может применяться для прогнозирования на любом предприятии, где происходит непрерывный контроль уровня запасов товара, так как спрос на товар задан своей функцией плотности, то есть учитывается его вероятностный характер.

Однако точность модели значительно снижается в случае применения модели для управления запасами товаров с сезонными колебаниями спроса, например, в отрасли пивоварения. Основной причиной неточности модели является то, что плотность спроса на сезонную продукцию неоднородна. Поэтому для повышения точности системы управления запасами следует тщательно изучить показатели спроса за достаточно большой период времени и выделить те участки времени, на которые приходится максимальный и минимальный уровни спроса. Затем для каждого участка построить свою функцию плотности. И уже при непосредственном применении модели анализировать период, для которого определяется уровень заказа и резервного запаса, и использовать корректную функцию плотности.

Данная методика в совокупности с методами прогнозирования поможет предприятиям более точно рассчитывать уровень заказа.

Размещено на Allbest.ru


Подобные документы

  • Пример решения графическим методом задачи линейного программирования с двумя неизвестными. Решение транспортной задачи методами северо-западного угла и минимальной стоимости. Стохастическая модель управления запасами, ее значение для предприятий.

    контрольная работа [606,2 K], добавлен 04.08.2013

  • Экономико-математическая модель получения максимальной прибыли, её решение графическим методом. Алгоритм решения задачи линейного программирования симплекс-методом. Составление двойственной задачи и её графическое решение. Решение платёжной матрицы.

    контрольная работа [367,5 K], добавлен 11.05.2014

  • Особенности построения опорных планов транспортной модели методом северо-западного угла, методом минимальной стоимости, методом Фогеля. Оптимизация транспортной модели открытого и закрытого типа с помощью метода потенциала на основе опорного плана.

    курсовая работа [68,6 K], добавлен 25.04.2014

  • Исследование методом Жордана-Гаусса системы линейных уравнений. Решение графическим и симплексным методом задач линейного программирования. Экономико-математическая модель задачи на максимум прибыли и нахождение оптимального плана выпуска продукции.

    контрольная работа [177,8 K], добавлен 02.02.2010

  • Решение задачи линейного программирования графическим и симплекс-методом. Способы решения транспортных задач: методы северо-западного угла, наименьшей стоимости и потенциалов. Динамическое программирование. Анализ структуры графа, матрицы смежности.

    курсовая работа [361,8 K], добавлен 11.05.2011

  • Главные элементы сетевой модели. Задача линейного программирования. Решение симплекс-методом. Составление отчетов по результатам, по пределам, по устойчивости. Составление первоначального плана решения транспортной задачи по методу северо-западного угла.

    контрольная работа [747,3 K], добавлен 18.05.2015

  • Формулировка проблемы в практической области. Построение моделей и особенности экономико-математической модели транспортной задачи. Задачи линейного программирования. Анализ постановки задач и обоснования метода решения. Реализация алгоритма программы.

    курсовая работа [56,9 K], добавлен 04.05.2011

  • Построение одноиндексной математической модели задачи линейного программирования, ее решение графическим методом. Разработка путей оптимизации сетевой модели по критерию "минимум исполнителей". Решение задачи управления запасами на производстве.

    контрольная работа [80,8 K], добавлен 13.12.2010

  • Определение первичного опорного плана разными способами: методом северо-западного угла, методом минимальной стоимости, методом Фогеля. Перепланировка поставок с помощью метода потенциалов для каждого плана. Анализ эффективности их использования.

    контрольная работа [67,2 K], добавлен 06.11.2012

  • Применение линейного программирования для решения транспортной задачи. Свойство системы ограничений, опорное решение задачи. Методы построения начального опорного решения. Распределительный метод, алгоритм решения транспортной задачи методом потенциалов.

    реферат [4,1 M], добавлен 09.03.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.