Моделирование макроэкономических процессов и систем
Основные математические модели макроэкономических процессов. Мультипликативная производственная функция, кривая Лоренца. Различные модели банковских операций. Модели межотраслевого баланса Леонтьева. Динамическая экономико-математическая модель Кейнса.
Рубрика | Экономико-математическое моделирование |
Вид | контрольная работа |
Язык | русский |
Дата добавления | 21.08.2010 |
Размер файла | 558,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
18
Оглавление
Введение
Задание 1
Задание 2
Задание 3
Задание 4
Задание 5. Динамическая экономико-математическая модель Кейнса
Экономика в форме динамической модели Кейнса как инерционное звено
Нелинейная динамическая модель Кейнса
Заключение
Литература
Введение
В настоящее время математическое моделирование все настойчивее вторгается в область социально-экономических наук. И дело здесь совсем не в том, что математизация является идеалом строгости для всякой науки.
Возможность использования математического моделирования связана с существованием устойчивых тенденций, которые характеризуют многие социально-экономические процессы. В наибольшей степени сказанное относится к экономике, где математические методы активно применяются с прошлого века.
Значение моделирования как метода исследований определяется тем, что модель представляет собой концептуальный инструмент, ориентированный на анализ изучаемых процессов и их прогнозирование. Именно поэтому, например, в современных курсах по экономической теории наряду с содержательным анализом широко применяется метод математического моделирования.
Следует, однако, иметь в виду, что возможности метода математического моделирования при анализе конкретных социально-экономических процессов достаточно ограничены.
В данной курсовой работе будут рассмотрены основные математические модели макроэкономических процессов, такие как мультипликативная производственная функция, кривая Лоренца, различные модели банковских операций, модели межотраслевого баланса Леонтьева, динамическая экономико-математическая модель Кейнса.
Задание 1
Национальная экономика страны может быть описана мультипликативной производственной функцией вида:
,
где [P]=у.д.е. - объём ВВП страны, [K]=у.д.е - объём национальных производственных фондов (капитал), [L]=чел. - численность населения страны, занятого в производственной сфере (труд). В развитие национальной экономики инвестируется S у.д.е. Считается, что все средства идут на развитие производства, решить задачу об оптимальном распределении инвестиций по привлечению дополнительных единиц труда и капитала с целью максимального прироста ВВП. Задачу решить методом Лагранжа и графоаналитическим методом, считая, что стоимость одной дополнительной единицы капитала составляет S1, единицы труда - S2, а связь между ними носит линейный характер и может быть описана уравнением S=S1·K+S2·L.
Исходные данные:
б1 = 0.4; б2 = 0.6; S = 50000; S1 = 5; S2 = 15.
Решение:
P = б0 · K0.4 · L0.6
5 · K + 15 · L = 50000
Наиболее рациональным способом решения такой задачи является способ множителей Лагранжа.
P (K, L, л):
Т.к. K ? 0 и L ? 0, следовательно:
Графическая иллюстрация решения задачи:
Если в экономику страны, развитие которой описывается функцией P = б0 K0.4 ·L0.6 инвестировать S = 50000 у.д.е, то для получения максимального прироста ВВП эти средства нужно распределить так чтобы создать дополнительных L = 2000 рабочих мест и привлечь дополнительно K = 4000 у.д.е. производственных фондов, при условии что известны стоимости единицы труда S2 = 15 и единицы капитала S1 = 5.
Задание 2
Распределение доходов населения страны может быть описано функцией распределения доходов:
где C - минимально возможный уровень дохода; F(x) - доля населения страны с уровнем дохода, меньшим, чем Х (распределение Парето).
Учитывая, что средний относительный доход тех, чей уровень дохода меньше Х, может быть задан функцией:
Построить кривую Лоренца в системе координат, показывающей неравномерность в распределении доходов населения страны.
Значениями x принять равными:
а) при с<х?3с с шагом Дх=0,2С
б) при 3с<х?6с с шагом Дх=0,5С
Исходные данные:
б = 1.6; c = 3500.
Решение:
а) 3500<x?10500, шаг Дх = 700
F(x) |
L(x) |
x |
|
0,00 |
0,00 |
3500 |
|
0,25 |
0,10 |
4200 |
|
0,42 |
0,18 |
4900 |
|
0,53 |
0,25 |
5600 |
|
0,61 |
0,30 |
6300 |
|
0,67 |
0,34 |
7000 |
|
0,72 |
0,38 |
7700 |
|
0,75 |
0,41 |
8400 |
|
0,78 |
0,44 |
9100 |
|
0,81 |
0,46 |
9800 |
|
0,83 |
0,48 |
10500 |
б) 10500<x?21000, шаг Дх = 1750
F(x) |
L(x) |
x |
|
0,83 |
0,48 |
10500 |
|
0,87 |
0,53 |
12250 |
|
0,89 |
0,56 |
14000 |
|
0,91 |
0,59 |
15750 |
|
0,92 |
0,62 |
17500 |
|
0,93 |
0,64 |
19250 |
|
0,94 |
0,66 |
21000 |
Задание 3
Первоначальный банковский вклад S0 размещен на n лет под р1% годовых с начислением процента m1 раз в год. Сравнить конечную сумму вклада, если условия договора изменятся на р2% и m2 раз, и рассчитать для обоих вариантов эффективную ставку процента, а также величину дисконта и дисконт-фактора.
Найти величину разового платежа для погашения долгосрочного кредита на сумму Sn, данного банком под р% на n лет.
Исходные данные:
S0 = 3500; n = 6; p1 = 16; m1 = 3; p2 = 14; m2 = 2; p = 25; Sn = 200000.
Решение:
Конечная сумма вклада
Эффективная ставка процента
Дисконт
Дисконт-фактор
а) =8917,70
= 0.1687
= 0.1379 %
= 0.8621
б) = 7882,67
= 0.1449
= 0.1228 %
= 0.8772
Сравнив полученные результаты, видим, что при увеличении учетной ставке процента и количества начислений в год - конечная сумма вклада увеличивается.
в)
= 127156,58
Задание 4
В таблице приведены данные об исполнении баланса за отчетный период (в у.д.е.).
Отрасли |
потребление |
Конечный продукт |
Валовой выпуск |
||||
Машиностроение |
Металлургия |
Энергетика |
|||||
производство |
Машиностроение |
25 |
15 |
10 |
60 |
100 |
|
Металлургия |
10 |
15 |
20 |
120 |
200 |
||
Энергетика |
15 |
5 |
10 |
150 |
240 |
Решить задачу межотраслевого баланса, если конечное потребление первой отрасли не изменилось, второй отрасли увеличилось в 1,5 раза, третьей уменьшилось на 25%.
С учетом изменений строим новый вектор конечного потребления:
Находим матрицу прямых затрат в условиях взаимодействия трех отраслей:
Т.к. aij ? 0, = 0.5 ? 1, = 0.175 ? 1, = 0.167 ? 1 -
матрица A продуктивна, следовательно, продуктивна и сама модель.
Находим матрицу E-A, представляющую собой матрицу полных затрат, каждый элемент которой выражает стоимостные затраты той части валового выпуска которая необходима для выпуска единицы конечного продукта.
Определитель матрицы:
Вычислим матрицу C составленную из алгебраических дополнений матрицы E-A:
И транспонируем ее:
Находим новый вектор валового выпуска продукции тремя отраслями:
Чтобы машиностроение дало 60 у.д.е., металлургия 120 у.д.е., энергетика 150 у.д.е. конечного продукта идущего на непроизводственное потребление необходимо обеспечить следующие объемы валового выпуска отраслей: Машиностроение - 109,772 у.д.е.
Металлургия - 212,934 у.д.е.
Энергетика - 140,269 у.д.е.
Задание 5. Динамическая экономико-математическая модель Кейнса
Экономика в форме динамической модели Кейнса как инерционное звено
В этой модели предполагается, что ВВП в следующем году равен совокупному спросу предыдущего (текущего) года, а совокупный спрос, состоящий из спроса на потребительские (C) и инвестиционные (I) товары, зависит только от ВВП текущего года:
При линейной зависимости спроса на потребительские товары от ВВП и примерном постоянстве спроса на инвестиционные товары приходим к соотношению
где - минимальный объем фонда потребления;
- склонность к потреблению.
Соотношение, действующее при дискретности времени в один год, при дискретности Дt примет форму:
где (1 - с) - склонность к накоплению.
При t > 0 приходим к уравнению инертного звена (роль постоянной времени выполняет величина , обратная склонности к накоплению):
Последнее уравнение имеет равновесное (стационарное) решение
Если в начальный момент спрос на инвестиционные товары изменился с величины I0 до I (I > I0), то в экономике будет происходить переходный процесс от значения ВВП
до значения yE (см. рис.1). При этом
.
Нелинейная динамическая модель Кейнса
Рассмотрим нелинейную модель Кейнса как нелинейное динамическое звено первого порядка:
т.е. скорость роста ВВП является функцией ВВП и инвестиций. В линейном случае
Поскольку y(y>0) - ВВП, а x=I(I>0) - инвестиции, то из экономических соображений следует, что
т.е с увеличением ВВП скорость его роста замедляется, а с увеличением инвестиций - возрастает.
Пусть при t=0 инвестиции были равны I0 и система находилась в некотором равновесном состоянии (y0,I0), первая компонента которого определяется из уравнения (инвестиции I0 считаются известными)
При увеличении инвестиций с I0 до I=I0+ДI (ДI>0) система будет удовлетворять уравнению
Представим ВВП в виде суммы постоянной и переменной частей:
Переменная часть з(t) удовлетворяет уравнению
Если приращение инвестиций ДI сравнительно мало, то при эволюторном характере функции f(y,I) переменная часть з(t) также сравнительно мала. Поэтому правую часть можно разложить в окрестности точки (y0,I0) в ряд Тейлора, отбросив члены второго и более высоких порядков:
После перенесения члена, содержащего з, в левую часть и деления обеих частей на
получаем уравнение инерционного звена:
где
- обобщенная предельная склонность к сбережению в начальном состоянии;
Из вышеописанного вытекает, что переменная часть ВВП будет вести себя следующим образом:
а ВВП в целом будет изменяться как функция
При этом новое равновесное состояние ВВП
Заключение
В данной курсовой работе были рассмотрены основные математические модели макроэкономических процессов, такие как мультипликативная производственная функция, кривая Лоренца, различные модели банковских операций, модели межотраслевого баланса Леонтьева, динамическая экономико-математическая модель Кейнса.
Как можно было заключить из вышеизложенного, математические методы имеют большую степень универсальности. Основой этой универсальности является язык математики. Если исследователи различных специальностей часто говорят об одной и той же проблеме совершенно по-разному, видят разные ее особенности, и не могут связать их воедино; то перевод проблемы на математический язык сразу выявляет общие закономерности, и даже может дать уже практически готовое решение, полученное ранее где-то в другой отрасли знаний и для других целей. То есть предпосылкой использования математики является формализация количественных и качественных сторон проблемы.
Литература
1. Бережная Е.В., Бережной В.И. Математические методы моделирования экономических систем. М.: Финансы и статистика, 2005. 368 с.
2. Ильченко А.Н. Экономико-математические методы. М.: Финансы и статистика, 2006 287 с.
3. Колемаев В.А. Экономико-математическое моделирование: Моделирование макроэкономических процессов и систем. М.: ЮНИТИ, 2005 295 с.
4. Колемаев В.А. Математическая экономика. М.: ЮНИТИ, 2005. 399 с.
5. Найденков В.И. Прогнозирование и моделирование национальной экономики: Конспект лекций. М.: ПРИОР, 2004. 156 с.
6. Орехов Н.А., Левин А.Г., Горбунов Е.А., Математические методы и модели в экономике. М.: ЮНИТИ, 2004. 302 с.
7. Просветов Г.И. Математические модели в экономике. Спб.: РДЛ, 2006. 151 с.
8. Федосеев В.В. Экономико-математические методы и прикладные модели. М.: ЮНИТИ, 2005 391 с.
9. Хазанова Л.Э. Математические методы в экономике. Спб.: Волтерс Клувер, 2005. 132 с.
10. Шелобаев С.И. Экономико-математические методы и модели. М.: ЮНИТИ, 2005. 286 с.
Подобные документы
Теоретико-методическое описание моделирования макроэкономических процессов. Модель Харрода-Домара, модель Солоу как примеры модели макроэкономической динамики. Практическое применение моделирования в планировании и управлении производством предприятия.
курсовая работа [950,4 K], добавлен 03.05.2009Основные понятия математических моделей и их применение в экономике. Общая характеристика элементов экономики как объекта моделирования. Рынок и его виды. Динамическая модель Леонтьева и Кейнса. Модель Солоу с дискретным и непрерывным временем.
курсовая работа [426,0 K], добавлен 30.04.2012Цель математического моделирования экономических систем: использование методов математики для эффективного решения задач в сфере экономики. Разработка или выбор программного обеспечения. Расчет экономико-математической модели межотраслевого баланса.
курсовая работа [1,3 M], добавлен 02.10.2009Моделирование экономических систем: основные понятия и определения. Математические модели и методы их расчета. Некоторые сведения из математики. Примеры задач линейного программирования. Методы решения задач линейного программирования.
лекция [124,5 K], добавлен 15.06.2004Использование различных ресурсов для производства изделия с применением математических методов и построением функциональной зависимости. Математическая идеализация процентного изменения спроса. Составление модели межотраслевого баланса разных отраслей.
контрольная работа [195,4 K], добавлен 19.08.2009Общая линейная оптимизационная модель. Оптимизационные модели на основе матрицы межотраслевого баланса. Оптимизационные межотраслевые модели с производственными способами. Расширенные оптимизационные межотраслевые модели.
реферат [179,8 K], добавлен 10.06.2004Модель межотраслевого баланса. Цель балансового анализа; определение объема выпуска продукции каждым сектором для удовлетворения всех потребностей экономической системы. Продуктивность и прибыльность модели Леонтьева. Цены в системе межотраслевых связей.
курсовая работа [33,8 K], добавлен 04.05.2015Построение экономико-математической модели задачи, комментарии к ней и получение решения графическим методом. Использование аппарата теории двойственности для экономико-математического анализа оптимального плана задачи линейного программирования.
контрольная работа [2,2 M], добавлен 27.03.2008Основные понятия теории моделирования экономических систем и процессов. Методы статистического моделирования и прогнозирования. Построение баланса производства и распределение продукции предприятий с помощью балансового метода и модели Леонтьева.
курсовая работа [1,5 M], добавлен 21.04.2013Статические детерминированные модели управления запасами. Задача о замене оборудования. Модель Солоу, золотое правило накопления. Оптимальное распределение ресурсов между предприятиями (отраслями) на n лет. Мультипликативная производственная функция.
контрольная работа [2,1 M], добавлен 22.09.2015