Разработка производственных и управленческих решений
Пример решения задачи симплексным методом, приведение ее к каноническому виду. Составление экономико-математической модели задачи. Расчеты оптимального объёма производства предприятия при достижении максимальной прибыли. Построение симплексной таблицы.
Рубрика | Экономико-математическое моделирование |
Вид | практическая работа |
Язык | русский |
Дата добавления | 08.01.2011 |
Размер файла | 58,0 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
- 9 -
МИНИСТЕРСТВО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ
КАЗАНСКИЙ ГОСУДАРСТВЕННЫЙ ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ
им. А.Н. Туполева
ФИЛИАЛ «ВОСТОК»
Расчетно-графическая работа
по дисциплине
«Разработка производственных и управленческих решений»
Вариант 17
Выполнил: ст. гр. 21404
Овчинникова О.В.
Проверил: Гашева М.В.
Чистополь 2009
Решение задачи симплексным методом
Симплекс метод- это метод упорядочивания перебора опорных планов, упорядочивание в данном случае обеспечение последовательным перебором опорных планов с монотонным изменением значения целевой функции в сторону возрастания(убывания).
Исходные данные:
Предприятие занимается производством 2 видов продукции 1 и 2, для их производства требуется 3 вида сырья. На изготовление единицы изделия 1 требуется сырья каждого вида кг, а для изделия 2- кг. Стоимость единицы изделия 1 -, а для 2- т.р. Необходимо составить такой план производства изделий, при котором прибыль от производства и реализации данной продукции будет максимальной. На предприятии имеется сырья в количестве .
606 |
802 |
840 |
9 |
15 |
15 |
27 |
15 |
3 |
5 |
6 |
Решение:
Составим экономико-математическую модель задачи. Для этого обозначим - количество изделий А. - количество изделий В. Эта задача является задачей оптимального использования сырья, поэтому система организации имеет вид:
+?606
9+27?606
15+15?802 (1)
15+3?840
Где справа стоит количество каждого вида сырья, которые не может быть превышено в процессе производства изделий.
?0, ?0 (2)
Целевая функция представляет собой общую стоимость произведенной продукции.
С=5+6х2 => макс. (3)
Для решения задач симплекс методом приводят ее к каноническому виду, введя дополнительные балансовые переменные х3,х4,х5, которые означают остатки сырья соответственно 1,2, 3 типов, при этом неравенство преобразуется в уравнение, т.е. левая часть сбалансирована с правой.
9+27+ х3 ?606
15+15+ х4 ?802 (4)
15+3+х5 ?840
х3, х4, х5- остатки 1,2,3 вида сырья.
х1,х2,х3,х4,х5 ? 0 (5)
С=5+6х2 +0х3+0х4+0х5 => макс. (6)
Систему (4) можно записать в другом виде:
р1х1+р2х2+р3х3+р4х4+р5х5=р0
р1 р2 р3 р4 р5 р0
Здесь векторы р3р4р5 имеют предпочтительный вид, т.е являются единичными в одном из компонентов и нулевыми во всех остальных компонентах. Р0- называется столбцом свободных членов системы ограничений, для решения системы (4)-(6) симплекс методом необходимо иметь опорный план, т.е. допускаются решения системы (4), для этого надо разделить на 2 группы- базисные и свободные. Сначала выбираем базисные, в качестве их выбирают векторы, имеющие предпочтительный вид, т.е в данном случае р3р4р5.им соответствуют базисные переменные х3, х4, х5системы (4). Остальные переменные х1,х2- будут свободными, при получении базисного решения все свободные переменные =0. Подставив в (4) х1=х2=0, получаем остальные компоненты опорного плана х3=606, х4=802,х5=840. В векторном виде этот опорный план выглядит так: х0=(0,0,606,802,840). Подставив компоненты х0 в целевую функцию (6) получаем значение целевой функции=0. С (х0)=0.
1 симплексная таблица( опорный план в виде симплекс таблицы)
Оценка базисных переменных |
Базисные переменные |
Свободные члены |
5 |
6 |
0 |
0 |
0 |
|
С |
Х |
Р0 |
Р1 |
Р2 |
Р3 |
Р4 |
Р5 |
|
0 |
Х3 |
606 |
9 |
27 |
1 |
0 |
0 |
|
0 |
Х4 |
802 |
15 |
15 |
0 |
1 |
0 |
|
0 |
Х5 |
840 |
15 |
3 |
0 |
0 |
1 |
|
С |
0 |
-5 |
-6 |
0 |
0 |
0 |
Переход к новому опорному плану, выбор разрешающего столбца:
СК=мин{Сj(cj|<0)}=мин {-5; -6 }=-6=С2=К=2
Выбор разрешающей строки:
bl/ alk=min {bi/ai2(ai2>0)} min{606/27;802/15;840/3}={22;53;280} =22=b1/a12=l=1
Генеральный элемент: alk=а12=27
Переход к новой симплексной таблице:
B1= b1/ а12=606/27=22
c=C-ckbс=c-c2b1=0-(-6)*22=132
alj=alj/alk
9/27=1/3
27/27=1
=1/27
=0/27=0
0/27=0
-5-(-6)*1/3=-3
-6-(-6)*1=0
0-(-6)*1/27=2/9
0-(-6)*0=0
0-(-6)*0=0
=802-15*22=472
=840-3*22=774
15-15*1/3=10
15-15*1=0
0-0*1/27=0
1-1*0=1
0-0*0=0
15-15*1/3=10
3-3*1=0
0-0*1/27=0
0-0*0=0
1-1*0=1
Вторая симплексная таблица
Оценка базисных переменных |
Базисные переменные |
Свободные члены |
5 |
6 |
0 |
0 |
0 |
|
С |
Х |
Р0 |
Р1 |
Р2 |
Р3 |
Р4 |
Р5 |
|
6 |
Х2 |
22 |
1/3 |
1 |
1/27 |
0 |
0 |
|
0 |
Х4 |
472 |
10 |
0 |
0 |
1 |
0 |
|
0 |
Х5 |
774 |
10 |
0 |
0 |
0 |
1 |
|
С |
132 |
-3 |
0 |
-2/9 |
0 |
0 |
Переход к новому опорному плану, выбор разрешающего столбца:
СК=мин{Сj(cj|<0)}=мин {-3; 0}=--3=С1=К=1
Выбор разрешающей строки:
bl/ alk=min {bi/ai1(ai1>0)}min{22/1/3;472/10;774/10}={66;47;77}=47=b2/a21=l=2
Генеральный элемент: alk=а21=10
Переход к новой симплексной таблице:
B2= b1/ а21=472/10=47
c=C-ckbс=c-c2b1=0-(-3)*47=148
alj=alj/alk
10/10=1
0/10=0
=0/10=0
=1/10
0/10=0
-3-(-3)*1=0
0-(-3)*0=0
2/9-(-3)*0=2/9
0-(-3)*1/10=0+3/10=3/10
0-(-3)*0=0
=6
=774-10*47=304
1/3-1/3=0
1-1*0=1
1/27-1/27*0=1/27
0-0*1/10=0
0-0*0=0
10-10*1=0
0-0*0=0
0-0*0=0
0-0*1/10=0
1-1*0=1
Третья симплексная таблица
Оценка базисных переменных |
Базисные переменные |
Свободные члены |
5 |
6 |
0 |
0 |
0 |
|
С |
Х |
Р0 |
Р1 |
Р2 |
Р3 |
Р4 |
Р5 |
|
6 |
Х2 |
6 |
0 |
1 |
1/27 |
0 |
0 |
|
5 |
Х1 |
47 |
1 |
0 |
0 |
1/10 |
0 |
|
0 |
Х5 |
304 |
0 |
0 |
0 |
0 |
1 |
|
С |
148 |
0 |
0 |
2/9 |
3/10 |
0 |
Проверка опорного плана на оптимальность:
СК=min{Сj(cj|<0)}=min (0;0;2/9;3/10;0)=0
Полученный план оптимален.
В векторном виде опорный план выглядит:
=(47;6;0;0;304)
С()=148
Экономическая интерпретация задачи:
Объём производства будет оптимальным при достижении максимальной прибыли-148 д.ед., и при объёме производства товара-6 шт. и 47 шт.
Подобные документы
Использование симплексного метода решения задач линейного программирования для расчета суточного объема производства продукции. Проверка плана на оптимальность. Пересчет симплексной таблицы методом Жордана-Гаусса. Составление модели транспортной задачи.
контрольная работа [613,3 K], добавлен 18.02.2014Роль экономико-математических методов в оптимизации экономических решений. Этапы построения математической модели и решение общей задачи симплекс-методом. Составление экономико-математической модели предприятия по производству хлебобулочных изделий.
курсовая работа [1,3 M], добавлен 09.07.2015Построение экономико-математической модели задачи, комментарии к ней и получение решения графическим методом. Использование аппарата теории двойственности для экономико-математического анализа оптимального плана задачи линейного программирования.
контрольная работа [2,2 M], добавлен 27.03.2008Разработка математической модели, оптимизирующей работы по вывозу взорванной породы с минимальными транспортными затратами с учетом максимальной приемной возможностью отвалов. Запись целевой функции. Приведение системы ограничений к каноническому виду.
курсовая работа [196,3 K], добавлен 22.10.2014Симплекс метод решения задач линейного программирования. Построение модели и решение задачи определения оптимального плана производства симплексным методом. Построение двойственной задачи. Решение задачи оптимизации в табличном процессоре MS Excel.
курсовая работа [458,6 K], добавлен 10.12.2013Составление математической модели и решение задачи планирования выпуска продукции, обеспечивающего получение максимальной прибыли. Нахождение оптимального решения двойственной задачи с указанием дефицитной продукции при помощи теорем двойственности.
контрольная работа [232,3 K], добавлен 02.01.2012Основные методы решения задачи оптимального закрепления операций за станками. Разработка экономико-математической модели задачи. Интерпретация результатов и выработка управленческого решения. Решение задачи "вручную", используя транспортную модель.
курсовая работа [1,0 M], добавлен 25.01.2013Построение экономической модели по оптимизации прибыли производства. Разработка математической модели задачи по оптимизации производственного плана и её решение методами линейного программирования. Определение опорного и оптимального плана производства.
дипломная работа [311,3 K], добавлен 17.01.2014Исследование методом Жордана-Гаусса системы линейных уравнений. Решение графическим и симплексным методом задач линейного программирования. Экономико-математическая модель задачи на максимум прибыли и нахождение оптимального плана выпуска продукции.
контрольная работа [177,8 K], добавлен 02.02.2010Характерные черты задач линейного программирования. Общая постановка задачи планирования производства. Построение математической модели распределения ресурсов фирмы. Анализ чувствительности оптимального решения. Составление отчета по устойчивости.
презентация [1,1 M], добавлен 02.12.2014