Математические методы исследования в экономике
Построение и решение математических моделей в экономических ситуациях, направленных на разработку оптимального плана производства, снижение затрат и рационализации закупок. Моделирование плана перевозок продукции, направленного на минимизацию затрат.
Рубрика | Экономико-математическое моделирование |
Вид | задача |
Язык | русский |
Дата добавления | 15.02.2011 |
Размер файла | 1,8 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
22
Задача 1.2
Цех хлебозавода по производству муки заключил контракт с мини-пекарней о поставке ежедневно 300 кг ржаной и пшеничной муки, причем пшеничной - не менее 50%. Зерно, поступающее в цех, проходит в нем обмолот, помол и упаковку муки. Трудозатраты (в человеко-часах) на указанные операции представлены в таблице:
Операция |
Ржаная мука |
Пшеничная мука |
Имеющийся ресурс |
|
Обмолот |
0,1 |
0,1 |
30 |
|
Помол |
0,1 |
0,08 |
27 |
|
Упаковка |
0,05 |
0,05 |
200 |
Себестоимость одного килограмма ржаной муки составляет 14 рублей, а пшеничной - 18 рублей.
Требуется найти оптимальный план производства продукции, позволяющий цеху выполнить условия контракта с наименьшими затратами.
Решение.
Пусть x1 - объем производства ржаной муки, x2 - объем производства пшеничной муки. Тогда задача может быть описана в виде следующей модели линейного программирования:
Заполним данные в среде Microsoft Excel
Добавим в таблицу еще одну строку (например, строку 9 План), в которую будут вноситься получаемые в ходе решения результаты. Объем производства ржаной муки будем предполагать получить в ячейке В9, пшеничной муки - в ячейке С9, а затраты на себестоимость - в ячейке D7.
Для решения задачи необходимо также выделить столбец (в данном примере - столбец D), в который будут введены формулы для расчета значений левой части ограничений. Формула вводится также и в ячейку, в которой будет рассчитаны затраты на себестоимость предприятия (ячейка D7). Нужно обратить внимание на то, что в формулах используются не числа или символьные обозначения, а координаты ячеек таблицы, в которых хранятся эти числа и переменные.
D3= СУММПРОИЗВ(B3:C3;$B$9:$C$9)
D4= СУММПРОИЗВ(B4:C4;$B$9:$C$9)
D5= СУММПРОИЗВ(B5:C5;$B$9:$C$9)
D7= СУММПРОИЗВ(B7:C7;$B$9:$C$9)
D9=B9+C9
Для запуска процедуры оптимизации в меню Сервис необходимо выбрать пункт Поиск решения. В поле Установить целевую ячейку вводятся координаты ячейки (D7), которую необходимо минимизировать.
В поле Изменяя ячейки вводятся координаты ячеек (разделенные запятыми или объединенные в интервал двоеточием), в которых содержатся значения переменных - объемов производства ржаной и пшеничной муки. Изменяемые ячейки должны быть прямо или косвенно связаны с целевой ячейкой. В поле Ограничения необходимо ввести все граничные условия задачи:
При этом ограничения на неотрицательность переменных можно ввести путем установки флажка Неотрицательные значения в окне Параметры. В случае, если решаемая задача является задачей линейного программирования, лучше отметить это в окне Параметры соответствующим флажком:
Запуск процесса оптимизации производится нажатием кнопки Выполнить. По окончании счета появляется диалоговое окно Результаты поиска решения. Нажав в нем соответствующую кнопку, можно сохранить найденное решение или восстановить исходные значения. Изменения при этом коснутся как целевой ячейки, так и влияющих ячеек. В этом же диалоговом окне можно указать необходимые типы отчетов, которые будут размещены на отдельных листах книги.
Отчет Результаты отражает исходные и результирующие значения целевой и влияющих ячеек, а также сведения о наложенных ограничениях.
Таким образом предприятию необходимо выпустить 150 кг ржаной муки и 150 кг пшеничной муки, тогда минимальная себестоимость выпуска составит 4800 человеко-часов, при этом ресурсы на обмолот и помол будут использованы полностью, а ресурсы на упаковку останутся в избытке в количестве 185 человеко-часов.
Задача 2.2
Руководство птицефабрики имеет возможность закупать корма трех видов. Из этих кормов птицы должны получать питательные вещества (П1, П2, П3 и П4), требуемое количество которых и содержание в кормах (в ед.) приведены в таблице:
Питательные вещества |
Корма |
Нормы потребления |
|||
К1 |
К2 |
К3 |
|||
П1 |
3 |
5 |
0 |
равно 16 |
|
П2 |
2 |
2 |
4 |
не менее 24 |
|
П3 |
8 |
1 |
2 |
не менее 25 |
|
П4 |
4 |
3 |
5 |
не менее 33, но не более 40 |
Цены за 1 т кормов составляют соответственно 1000, 900 и 800 рублей.
Какие корма и в каком количестве следует закупать, чтобы затраты птицефабрики оказались минимальными?
Решение.
Решение: обозначим за x1 количество корма К1, за x2 - количество корма К2, за x3 - количество корма К3. Тогда:
Подготовим в Microsoft Excel таблицу для решения задачи:
Поскольку Microsoft Excel позволяет путем установки соответствующего флажка автоматически определять неотрицательность переменных, добавление ограничений на неотрицательность в модель при решении задачи в Microsoft Excel не является обязательным.
Введем в таблицу формулы для расчета левых частей ограничений и целевой ячейки:
Е4= СУММПРОИЗВ(B4:D4;$B$12:$D$12)
Е5=СУММПРОИЗВ(B5:D5;$B$12:$D$12)
Е6=СУММПРОИЗВ(B6:D6;$B$12:$D$12)
Е7=СУММПРОИЗВ(B7:D7;$B$12:$D$12)
Е8=СУММПРОИЗВ(B8:D8;$B$12:$D$12)
Целевая ячейка Е10=СУММПРОИЗВ(B10:D10;$B$12:$D$12)
Ограничения запишутся так
Запустим модуль Поиск решения и произведем расчеты
В ходе расчетов получим следующие результаты: оптимальный рацион должен содержать 3,125 ед. корма К1, 4,6875 ед. корма К2 и 0,1875 корма К3. При этом стоимость рациона будет составлять 7493,75 руб.
Задача 3.1
Один из цехов фабрики по пошиву изделий из кожи раскраивает поступающие заготовки для получения 5 видов деталей одним из трех возможных способов. Из одной заготовки получают:
Способ раскроя |
Детали |
|||||
A |
B |
C |
D |
E |
||
I |
10 |
5 |
3 |
7 |
2 |
|
II |
6 |
8 |
4 |
5 |
2 |
|
III |
4 |
7 |
5 |
3 |
4 |
Требуется получить не менее 48 деталей вида А, не менее 32 деталей вида В, не менее 45 деталей вида С, не менее 17 деталей вида D и не менее 24 деталей вида Е.
Какое минимальное количество заготовок нужно раскроить?
Решение.
Обозначим за x1 количество заготовок, разрезаемых по способу 1, за x2 - количество заготовок, разрезаемых по способу 2 и т.д.Используя модель линейного программирования с минимизацией расхода материала, получим:
Подготовим таблицу в Microsoft Excel, содержащую исходные данные задачи, введем формулы для расчета целевой функции и левой части ограничений, заполним форму модуля Поиск решения:
Решение
Таким образом, необходимо раскроить 1 заготовку способом I, 1 заготовку способом II, 8 заготовок способом III.
Задача 4.2
Гражданин О. Бендер хочет приобрести некий мебельный гарнитур, стоимость которого 100 тыс. рублей. Администрация аукциона согласна на выплату в рассрочку, с условием, что 20 тыс. руб. О. Бендер выплатит через 2 месяца, а остальную сумму - через 4 месяца.
Однако О. Бендер, справедливо полагая, что найти требуемую сумму ему не удастся, хочет получить средства путем вложения денег по одному из типов вклада: А (сроком на 1 месяц под 1,5%), В (сроком на 2 месяца под 3,5%) или С (сроком на 4 месяца под 8%).
Какую сумму и по какому типу вклада нужно вложить О. Бендеру, чтобы через 4 месяца купить гарнитур?
Тип вклада |
Срок вклада (мес.) |
Процент по вкладу |
|
A |
1 |
1,5 |
|
B |
2 |
3,5 |
|
C |
4 |
8,0 |
Необходимо минимизировать размер целевого фонда.
Решение:
Составим таблицу, отражающую возможности вложения и возврата денег по месяцам:
Вклады |
1 |
2 |
3 |
4 |
5 |
|
A1 |
1 |
1,015 |
||||
A2 |
1 |
1,015 |
||||
A3 |
1 |
1,015 |
||||
A4 |
1 |
1,015 |
||||
B1 |
1 |
1,035 |
||||
B3 |
1 |
1,035 |
||||
C1 |
1 |
1,08 |
где: Ai - размер вклада типа A в месяце i; Bi - размер вклада типа B в месяце i; Ci - размер вклада типа C в месяце i;
Задача может быть описана следующей моделью:
Функция minimize возвращает вектор значений переменных, являющихся аргументами целевой функции, при которых ее значение будет минимальным. В первой колонке - порядковый номер переменной, начиная с нулевого, по очередности упоминания. Во второй - соответствующие значения переменных.
При необходимости, присвоив переменным полученные значения, можно рассчитать и значение целевой функции.
Задача 5.2
Четыре фермерских хозяйства, находящиеся в Рязанской, Владимирской, Тверской и Смоленской областях, направляют выращиваемые овощи и фрукты на переработку и консервацию на один из трех заводов, которые расположены в Москве, Туле и Ярославле.
Затраты на перевозку 1 т продукции представлены в таблице (в рублях):
Москва |
Тула |
Ярославль |
||
Рязанское |
500 |
700 |
800 |
|
Владимирское |
400 |
800 |
300 |
|
Тверское |
400 |
700 |
400 |
|
Смоленское |
600 |
600 |
700 |
В сезон Рязанское хозяйство производит 40 т продукции в неделю, Владимирское - 50 т, Тверское - 60 т, Смоленское - 70 т, в то время как завод в Москве может переработать в неделю 100 т продукции, в Туле - 50 т, в Ярославле - 40 т.
Составьте план перевозок продукции из фермерских хозяйств на заводы с минимальными транспортными расходами, учитывая, что в связи с ремонтом трассы Москва-Рязань в неделю по ней можно перевезти не более 20 т продукции.
Решение:
В данной задаче количество выращиваемых продуктов, на 30 т больше, чем могут переработать заводы. Сведем задачу к замкнутому виду, добавив фиктивного пятого поставщика.
Модель рассматриваемой задачи выглядит так:
Заметим, что в целевую функцию не введены штрафы за нереализацию продукции в связи с их отсутствием в условии задачи.
Для того, чтобы удовлетворить требованию вместо Московского завода введем двух других.
Один из них, под именем Московского завода будет иметь потребности, то есть возможности в переработке в количестве 20 т и с теми же стоимостями перевозок, а второй с возможностью 100 - 20 = 80 и с теми же стоимостями перевозок, за исключением с15, которую примем равной сколь угодно большому числу, например, 1000000000.
После нахождения оптимального плана объемы перевозок в Москву необходимо прибавить к объемам перевозок Потребителя 2
В результате исходная задача примет вид
|
Москва |
Тула |
Ярославль |
Потребитель 1 |
Потребитель 2 |
Ресурсы |
|
Рязанское |
500 |
700 |
800 |
0 |
10000000000 |
40 |
|
Владимирское |
400 |
800 |
300 |
0 |
400 |
50 |
|
Тверское |
400 |
700 |
400 |
0 |
400 |
60 |
|
Смоленское |
600 |
600 |
700 |
0 |
600 |
70 |
|
Потребности |
20 |
50 |
40 |
30 |
80 |
220 |
Решим задачу при помощи модуля Поиск решения:
Целевая ячейка D19 =СУММПРОИЗВ(B2:F5;B12:F15)
Получаем решение
С учетом ограничений на трассу Москва-Рязань окончательно получаем план перевозок
|
Москва |
Тула |
Ярославль |
|
Рязанское |
20 |
0 |
0 |
|
Владимирское |
10 |
0 |
40 |
|
Тверское |
60 |
0 |
0 |
|
Смоленское |
10 |
50 |
0 |
И окончательную стоимость
20*500+10*400+60*400+10*600+50*600+40*300 = 86000 у.е.
Задача 6.2
Фирма получила заказ на срочный перевод четырех книг с итальянского языка. Фирма может располагать услугами 5 переводчиков, способных выполнить работу такого уровня. Время в днях, за которое каждый переводчик справится с работой, приведено в таблице:
Книга 1 |
Книга 2 |
Книга 3 |
Книга 4 |
||
Иванов |
10 |
25 |
14 |
25 |
|
Петров |
8 |
12 |
16 |
28 |
|
Сидоров |
12 |
18 |
17 |
33 |
|
Андреев |
14 |
23 |
15 |
30 |
|
Васильев |
11 |
20 |
18 |
28 |
Фирма использует повременную оплату труда. Переводчики имеют разную квалификацию, поэтому за день работы фирма платит Иванову 700 рублей в день, Петрову - 800 рублей в день, Сидорову - 600, Андрееву - 500, Васильеву - 550. Поскольку по оценке фирмы качество переводов в итоге будет примерно одинаковым, руководство фирмы просит Вас составить такое распределение работ, которое позволит минимизировать затраты на переводы.
Решение.
Составим модель линейного программирования, отражающую условие:
Решим задачу при помощи Microsoft Excel:
При решении задач о назначении особый интерес вызывает способ ввода ограничений при заполнении формы модуля Поиск решения и формулы целевой функции:
Проведенные расчеты показывают, что минимальное общие затраты на перевод составили 48800 рублей. Назначение переводчика для перевода книги определяется наличием на пересечении строки и столбца значения 1.
Книгу 1 -- Петров
Книгу 2 -- Иванов
Книгу 3 -- Васильев
Книгу 4 -- Андреев
Размещено на Allbest.ru
Подобные документы
Построение математических моделей по определению плана выпуска изделий, обеспечивающего максимальную прибыль, с помощью графического и симплексного метода. Построение моделей по решению транспортных задач при применении метода минимальной стоимости.
задача [169,2 K], добавлен 06.01.2012Типы транспортных задач и методы их решения. Поиск оптимального плана перевозок методом потенциалов. Решение задачи с использованием средств MS Excel. Распределительный метод поиска оптимального плана перевозок. Математическая модель, описание программы.
курсовая работа [808,7 K], добавлен 27.01.2011Линейное программирование как инструмент исследования линейных моделей. Основы симплекс-метода. Моделирование экономической ситуации в инструментальном цехе. Применение симплекс-метода для оптимизации плана производства. Применимость линейной модели.
курсовая работа [112,0 K], добавлен 09.12.2014Типовые модели менеджмента: примеры экономико-математических моделей и их практического использования. Процесс интеграции моделей разных типов в более сложные модельные конструкции. Определение оптимального плана производства продуктов каждого вида.
контрольная работа [536,2 K], добавлен 14.01.2015Моделирование задачи определения оптимального плана выпуска продукции, вывод ее в канонической форме. Решение задания с помощью надстройки MS Excel "Поиск решения", составление отчетов по устойчивости и результатам. Оптимальная прибыль при заданной цене.
курсовая работа [635,6 K], добавлен 07.09.2011Графический метод решения и построение экономико-математической модели производства. Определение выручки от реализации готовой продукции и расчет оптимального плана выпуска продукции. Баланс производства проверка продуктивность технологической матрицы.
задача [203,4 K], добавлен 03.05.2009Определение оптимального числа контролеров-кассиров в магазине, при котором суммарные потери фирмы будут минимальными. Составление плана заказов на товары для обеспечения оптимального соотношения между их продажей. Построение сетевого графика продаж.
контрольная работа [126,2 K], добавлен 16.01.2012Симплекс метод решения задач линейного программирования. Построение модели и решение задачи определения оптимального плана производства симплексным методом. Построение двойственной задачи. Решение задачи оптимизации в табличном процессоре MS Excel.
курсовая работа [458,6 K], добавлен 10.12.2013Построение асимптотических логарифмических амплитудно- и фазочастотных характеристик. Расчет оптимального плана и экстремального значения функции цели с помощью симплекс-метода. Нахождение экстремума заданной функции с учетом системы ограничений.
курсовая работа [3,2 M], добавлен 25.05.2015Составление плана перевозок зерна с учетом данных о потребности в нем и его запасах. Минимизация затрат на реализацию плана перевозок. Методы "северо-западного угла" и "минимального элемента". Новый улучшенный опорный план по методу потенциалов.
задача [48,5 K], добавлен 24.05.2009