Математическое моделирование экономических ситуаций

Математические методы систематизации и использования статистических данных для экономических расчетов и практических выводов: анализ структуры продаж автомобилей; оценка влияния рекламы на количество вкладчиков банка; анализ уровня активности населения.

Рубрика Экономико-математическое моделирование
Вид контрольная работа
Язык русский
Дата добавления 30.12.2010
Размер файла 89,0 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Тема 1

Задача 1

Имеется информация о количестве книг, полученных студентами по абонементу за прошедший учебный год.

2

4

4

7

6

5

2

2

3

4

4

3

6

5

4

7

6

6

5

3

2

4

2

3

5

7

4

3

3

2

4

5

6

6

10

4

3

3

2

3

Построить вариационный, ранжированный, дискретный ряд распределения, обозначив элементы ряда.

Решение:

Ранжированный вариационный ряд:

2

2

2

2

2

2

2

3

3

3

3

3

3

3

3

3

4

4

4

4

4

4

4

4

4

5

5

5

5

5

6

6

6

6

6

6

7

7

7

10

Дискретный вариационный ряд:

2

3

4

5

6

7

10

7

9

9

5

6

3

1

7/40

9/40

9/40

5/40

6/40

3/40

1/40

- варианты, - частоты, =/(7+9+9+5+6+3+1)=/40

Тема 2

Задача 1

В таблице приведены данные о продажах автомобилей в одном из автосалонов города за 1 квартал прошедшего года. Определите структуру продаж.

Марка автомобиля

Число проданных автомобилей

Skoda

245

Hyundai

100

Daewoo

125

Nissan

274

Renault

231

Kia

170

Итого

1145

Решение:

Показатель структуры (ОПС):

ОПС = Число проданных автомобилей / 1145

Skoda 245/1145=0.214

Hyundai 100/1145=0.087

Daewoo 125/1145=0.109

Nissan 274/1145=0.239

Renault 231/1145=0.203

Kia 170/1145=0.148

Марка автомобиля

Число проданных автомобилей

Доля в продажах (%)

Skoda

245

21.4

Hyundai

100

8.7

Daewoo

125

10.9

Nissan

274

23.9

Renault

231

20.3

Kia

170

14.8

Итого

1145

100

Тема 3

Задача 1

Имеется информация о численности студентов ВУЗов города и удельном весе (%) обучающихся студентов на коммерческой основе:

ВУЗы города

Общее число студентов (тыс. чел.)

Из них удельный вес (%), обучающихся на коммерческой основе.

УГТУ--УПИ

15

15

УрГЭУ

3

10

УрГЮА

7

20

Определить: 1) средний удельный вес студентов ВУЗов, обучающихся на коммерческой основе; 2) число этих студентов.

Решение:

1) Средний удельный вес студентов ВУЗов, обучающихся на коммерческой основе (%): (15+10+20)/3=15 %

Число студентов, обучающихся в этих трёх ВУЗах на коммерческой основе в сумме: 15*0.15+3*0.1+7*0.2=2.25+0.3+1.4=3.95 тыс. чел.

2) Число студентов ВУЗов, обучающихся на коммерческой основе в среднем: 3.95/3=1.317 тыс. чел.

Тема 4

Задача 1

При изучении влияния рекламы на размер среднемесячного вклада в банках района обследовано 2 банка. Получены следующие результаты:

Размер месячного вклада, рубли

Число вкладчиков

Банк с рекламой

Банк без рекламы

До 500

3

500-520

4

520-540

17

540-560

11

15

560-580

13

6

580-600

18

5

600-620

6

620-640

2

Итого

50

50

Определить:

для каждого банка: а) средний размер вклада за месяц; б) дисперсию вклада;

средний размер вклада за месяц для двух банков вместе.

Дисперсию вклада для 2-х банков, зависящую от рекламы;

Дисперсию вклада для 2-х банков, зависящую от всех факторов, кроме рекламы;

Общую дисперсию используя правило сложения;

Коэффициент детерминации;

Корреляционное отношение.

Решение:

(0+500)/2=250, (500+520)/2=510, (520+540)/2=530, (540+560)/2=550,

(560+580)/2=570, (580+600)/2=590, (600+620)/2=610, (620+640)/2=630.

Размер месячного вклада, рубли

Средний размер месячного вклада, рубли

Число вкладчиков

Банк с рекламой

Банк без рекламы

До 500

250

3

500-520

510

4

520-540

530

17

540-560

550

11

15

560-580

570

13

6

580-600

590

18

5

600-620

610

6

620-640

630

2

Итого

50

50

1) Для банка с рекламой средний размер вклада за месяц составил:

(550*11+570*13+590*18+610*6+630*2)/50=580 руб.

Для банка без рекламы средний размер вклада за месяц составил:

(250*3+510*4+530*17+550*15+570*6+590*5)/50=528,4 руб.

Для банка с рекламой дисперсия вклада будет:

=((550-580)І*11+(570-580)І*13+(590-580)І*18+(610-580)І*6+

+(630-580)І*2)/50=(900*11+100*13+100*18+900*6+2500*2)/50=23400

/50=468

Для банка без рекламы дисперсия вклада будет:

=((250-528,4)І*3+(510-528,4)І*4+(530-528,4)І*17+(550-528,4)І*15+

+(570-528,4)І*6+(590-528,4)І*5)/50=

= (232519,68+1354,24+43,52+6998,4+10383,36+18972,8)/50=

= 270272/50=5405,44

2) Средний размер вклада за месяц для двух банков вместе:

(250*3+510*4+530*17+550*(11+15)+570*(13+6)+590*(18+5)+610*6+63

0*2)/(50+50)=(750+2040+9010+14300+10830+13570+3660+1260)/100=55

4,2 руб. (или (580+528,4)/2=554,2 руб.)

3) Дисперсия вклада для 2-х банков, зависящая от рекламы:

=((550-554,2)І*11+(570-554,2)І*13+(590-554,2)І*18+

+(610-554,2)І*6+(630-554,2)І*2)/50=

=(17,64*11+249,64*13+1281,64*18+3113,64*6+5745,64*2)/50=

=56682/50=1133,64

4) Дисперсия вклада для 2-х банков, зависящая от всех факторов, кроме рекламы:

=((250-554,2)І*3+(510-554,2)І*4+(530-554,2)І*17+(550-554,2)І*15+

+(570-554,2)І*6+(590-554,2)І*5)/50=

=(92537,64*3+1953,64*4+585,64*17+17,64*15+249,64*6+1281,64*5)/50

=303554/50=6071,08

5) Определить общую дисперсию используя правило сложения:

=((250-554,2)І*3+(510-554,2)І*4+(530-554,2)І*17+(550-

554,2)І*(11+15)+

+(570-554,2)І*(13+6)+(590-554,2)І*(18+5)+(610-554,2)І*6+(630-

554,2)І*2)/

/100=(277612,92+7814,56+9955,88+458,64+4743,16+29477,72+18681,84+

+11491,28)/100=360236/100=3602,36

Тема 5

Задача 1

Имеется информация о выпуске продукции (работ, услуг), полученной на основе 10% выборочного наблюдения по предприятиям области:

Группы предприятий по объему продукции, тыс. руб.

Число предприятий (f)

До 100

100-200

200-300

300-400

400-500

500 и >

28

52

164

108

36

12

итого

400

Определить:

1) по предприятиям, включенным в выборку:

а) средний размер произведенной продукции на одно предприятие;

б) дисперсию объема производства;

в) долю предприятий с объемом производства продукции более 400 тыс. руб.;

2) в целом по области с вероятностью 0,954 пределы, в которых можно ожидать:

а) средний объем производства продукции на одно предприятие;

б) долю предприятий с объемом производства продукции более 400 тыс. руб.;

3) общий объем выпуска продукции по области.

Решение:

Группы предприятий по объему продукции, тыс. руб.

Средний объём продукции на группу, тыс. руб.

Число предприятий (f)

До 100

100-200

200-300

300-400

400-500

500 и >

50

150

250

350

450

550

28

52

164

108

36

12

итого

400

1) Средний размер произведенной продукции на одно предприятие:

(50*28+150*52+250*164+350*108+450*36+550*12)/400=110800/400=

=277 тыс. руб.

Дисперсия объема производства:

=((50-277)І*28+(150-277)І*52+(250-277)І*164+(350-277)І*108+

+(450-277)І*36+(550-277)І*12)/400=4948400/400=12371

Доля предприятий с объемом производства продукции более 400 тыс. руб.:

(36+12)/400= 0,12 или 12%

2) Определить в целом по области с вероятностью 0,954 пределы, в которых можно ожидать:

а) средний объем производства продукции на одно предприятие:

111,225

Величина t определяется по таблице значений функции Лапласа из равенства

.

Следовательно, в нашем случае последнее равенство принимает вид

Ф(t)=0,954/2=0,477.

Из этого равенства по таблице значений интегральной функции Лапласа находим значение t=2,00.

vn=v400=20

Найдём нижний предел:

277-2*111,225/20=265,8775 тыс. руб.

Найдём верхний предел:

277+2*111,225/20=288,1225 тыс. руб.

Iг(a)=( 265,8775 ; 288,1225)

б) долю предприятий с объемом производства продукции более 400 тыс. руб.:

Средняя: (450+550)/2=500 тыс. руб.

Найдём нижний предел:

500-2*111,225/20= 488,8775 тыс. руб.

Найдём верхний предел:

500+2*111,225/20= 511,1225 тыс. руб.

Iг(a)=( 488,8775 ; 511,1225)

3) Общий объем выпуска продукции по области:

50*28+150*52+250*164+350*108+450*36+550*12=110800 тыс. руб.

Тема 6

Задача 1

Данные о площадях под картофелем до и после изменения границ района, тысяч гектаров:

периоды

площадь

под картофелем

1

2

3

4

5

6

7

До изменения границ района

110

115

112

После изменения границ района

208

221

229

234

230

Сомкнуть ряд, выразив площадь под картофелем в условиях изменения границ района.

Решение:

208/112=1,857 - коэффициент

110*1,857=204.27

115*1,857=213.55

115/112*100=102,68%

110/112*100=98,21%

221/208*100=106,25%

229/208*100=110,096%

234/208*100=112,5%

230/208*100=110,58%

периоды

площадь

под картофелем

1

2

3

4

5

6

7

До изменения границ района

110

115

112

-----

-----

-----

-----

После изменения границ района

-----

-----

208

221

229

234

230

Сомкнутый ряд

204.27

213.55

208

221

229

234

230

Сомкнутый ряд относительных величин в % к 3 периоду

98,21

102,68

100,0

106,25

110,096

112,5

110,58

Тема 7

Задача 1

По нижеприведенным данным ответить на вопросы, поставленные в таблице, т.е. определить недостающие показатели

Показатели

Изменение показателей в % к предыдущему кварталу «+»-увеличение, «-» - уменьшение

II квартал

III квартал

IV квартал

Цена

?

+10

-2

Натуральный объем продаж

Без изменения

?

+5

Товарооборот в денежном выражении

+8

+5

?

Решение:

Найдём в III квартале ip - так как 110-100=10% (+10) в этой ячейке, то значение индекса запишем 110/100=1,1 По аналогии заполним все ячейки.

Индексы

Значения индексов

II квартал

III квартал

IV квартал

ip

x

1,1

0,98

iq

1,0

y

1,05

Ipq

1,08

1,05

z

Теперь найдём x,y,z:

Ipq= ip* iq

x= Ipq / iq=1,08/1=1,08 (+8)

y=1,05/1,1=0,95 (-5)

z=0,98*1,05=1,03 (+3)

Таблица примет вид:

Показатели

Изменение показателей в % к предыдущему кварталу «+»-увеличение, «-» - уменьшение

II квартал

III квартал

IV квартал

Цена

+8

+10

-2

Натуральный объем продаж

0

-5

+5

Товарооборот в денежном выражении

+8

+5

+3

Тема 8

Задача 1

По пяти рабочим цеха имеются данные о квалификации и месячной выработке. Для изучения связи между квалификацией рабочих и их выработкой определить линейное уравнение связи и коэффициент корреляции. Дать интерпретацию коэффициентам регрессии и корреляции.

Табельный номер рабочего

Разряд (y)

Выработка продукции за смену, шт. (x)

1

2

3

4

5

6

2

3

5

4

130

60

70

110

90

Решение:

Линейное уравнение связи:

y=a+bx

6=a+130*b, a=6-130*b

5=a+110*b, a=5-110*b

6-130*b=5-110*b; 6-5=130*b-110*b; 1=20*b; b=1/20=0,05

6=a+0,05*130; a=6-0,05*130; a=-0,5

Линейное уравнение примет вид:

y=-0,5+0,05x

Проверка:

4=-0,5+0,05*90, 4=4; 3=-0,5+70/20, 3=3; 2=-0,5+60/20, 2=2,5 -

работник 2-го разряда перевыполняет норму и не вписывается в общую зависимость.

Коэффициент корреляции:

Найдём числитель (n=5):

(2*60+3*70+4*90+5*110+6*130)-(2+3+4+5+6)*

*(60+70+90+110+130)/5=2020-20*460/5=180

УxІ-(Уx)І/n=(60І+70І+90І+110І+130І)-(60+70+90+110+130)І/5=

=45600-211600/5=45600-42320=3280

УyІ-(Уy)І/n=(2І+3І+4І+5І+6І)-(2+3+4+5+6)І/5=90-400/5=90-80=10

r=180/v3280*v10=180/181,1077=0,99388

По шкале Чеддока связь классифицируется как функциональная. Поскольку (0,99388>0,99100), модель надёжна, связь статистически значима.

Тема 9

Задача 1

Имеются следующие данные за 2006 год:

· Численность населения, тыс. чел.: на 1 января - 430,0; на 1 апреля - 430,2; на 1 июля 430,3; на 1 октября - 430,7; на 1 января 2007 г. 430,8

· Число умерших, чел. - 8 170

· Число выбывших на постоянное жительство в другие населенные пункты, чел. - 570

· Коэффициент жизненности - 1,075

· Доля женщин в общей численности населения, % - 58

· Доля женщин в возрасте 15-49 лет в общей численности женщин, % -39

Определите: коэффициенты рождаемости, смертности, естественного, механического и общего прироста населения; число родившихся; число прибывших на постоянное жительство из других населенных пунктов; специальный коэффициент рождаемости.

Решение:

Коэффициент рождаемости

:

N - кол-во родившихся, S - численность населения.

Средняя численность населения:

=

=(430/2+430,2+430,3+430,7+430,8/2)/(5-1)=

=1721,6/4=430,4

N=430,8-430,0=0,8 тыс. чел. (800 чел.) - За весь 2006 г.

n=1000*0,8/430,4=1,859 (чел./тыс. чел.)

Коэффициент смертности

:

M - кол-во умерших.

m=1000*8,17/430,4=18,982 (чел./тыс. чел.) - за 2006 г.

Коэффициент естественного прироста населения

:

Kn-m=1,859-18,982=-17,123 (чел./тыс. чел.)

Коэффициент механического прироста населения

:

Коэффициент выбытия населения:

=1000*0,57/430,4=1,324 (чел./тыс. чел.)

Коэффициент прибытия населения:

=0

(В условиях задачи не указано сколько прибыло населения или чему равен Kпр, решение с двумя неизвестными невозможно. Будем считать его равным 0)

=0-1,324=-1,324 (чел./тыс. чел.)

Коэффициент общего прироста населения:

=-17,123+(-1,324)=-18,447

Специальный коэффициент рождаемости:

=1000*0,8/(430,4*0,39)= 4,766

Тема 10

Задача 1

Имеются данные на конец года по РФ, млн. чел.:

- численность населения - 146,7

- экономически активное население - 66,7

- безработных, всего - 8,9, в том числе

зарегистрированных в службе занятости - 1,93.

Определить: 1) уровень экономически активного населения; 2) уровень занятости; 3) уровень безработицы; 4) уровень зарегистрированных безработных; 5) коэффициент нагрузки на 1 занятого в экономике.

Решение:

Коэффициент экономически активного населения:

=66,7/146,7=0,45467=45,467%

Коэффициент занятости

:

занятые = экономически активные - безработные =66,7-8,9=57,8 млн. чел.

=57,8/66,7=0,8666=86,66%

Коэффициент безработицы:

=8,9/66,7=0,1334=13,34%

Уровень зарегистрированных безработных:

зарегистрированные в службе занятости / экономически активные=1,93/66,7 = 0,0289=2,89%

Коэффициент нагрузки на одного занятого в экономике - это число незанятых в экономике, приходящееся на одного занятого:

S - численность населения.

= (146,7-57,8)/57,8=1,538


Подобные документы

  • Разделение моделирования на два основных класса - материальный и идеальный. Два основных уровня экономических процессов во всех экономических системах. Идеальные математические модели в экономике, применение оптимизационных и имитационных методов.

    реферат [27,5 K], добавлен 11.06.2010

  • Зависимость численности пользователей Интернет в конкретной стране от экономических показателей, таких как ВВП на душу населения, национальный доход на душу населения, количество пользовательских компьютеров, а также степень урбанизации населения.

    эссе [46,4 K], добавлен 27.03.2008

  • Уровень жизни - одна из важнейших социально-экономических категорий. Генетический характер зависимости между категориями уровня и качества жизни. Источники статистических данных. Показатели доходов и расходов населения. Региональная социальная политика.

    курсовая работа [51,7 K], добавлен 26.06.2013

  • Математическое моделирование. Сущность экономического анализа. Математические методы в экономическом анализе. Теория массового обслуживания. Задача планирования работы предприятия, надежности изделий, распределения ресурсов, ценообразования.

    контрольная работа [24,9 K], добавлен 20.12.2002

  • Изучение экономических показателей и особенностей повышения эффективности химического производства, которое достигается различными методами, одним из которых является метод математического моделирования. Анализ путей снижения затрат на производство.

    курсовая работа [41,2 K], добавлен 07.09.2010

  • Системы, системный подход, системный анализ. Основные термины, определения, технологии. Экономико-математические методы, их состав, структура, направленность, классификация. Метод динамического программирования, теории игр. Сетевые методы планирования.

    контрольная работа [334,6 K], добавлен 13.06.2009

  • Использование методов линейного программирования для целей оптимального распределения ресурсов. Методы математической статистики в экономических расчетах. Прогнозирование экономических показателей методом простого экспоненциального сглаживания.

    курсовая работа [976,0 K], добавлен 13.08.2010

  • Моделирование экономических систем: основные понятия и определения. Математические модели и методы их расчета. Некоторые сведения из математики. Примеры задач линейного программирования. Методы решения задач линейного программирования.

    лекция [124,5 K], добавлен 15.06.2004

  • Модель оптимизации структуры сельскохозяйственных угодий и условия оптимизации. Состав переменных и ограничений. Анализ оптимального решения. Модель формирования многоукладного землевладения и землепользования. Математические подходы и схема реализации.

    курсовая работа [68,6 K], добавлен 02.02.2014

  • Основы математического моделирования экономических процессов. Общая характеристика графического и симплексного методов решения прямой и двойственной задач линейного программирования. Особенности формулирования и методика решения транспортной задачи.

    курсовая работа [313,2 K], добавлен 12.11.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.