Управление процентным риском портфеля ГКО-ОФЗ в посткризисный период
Процентные риски в управлении портфелем государственных облигаций. Современные подходы к управлению процентным риском портфеля облигаций. Обоснование методов поддержки принятия решений по управлению процентным риском в посткризисный период.
Рубрика | Финансы, деньги и налоги |
Вид | диссертация |
Язык | русский |
Дата добавления | 05.06.2003 |
Размер файла | 616,4 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Анализ реакции временной структуры процентных ставок на динамику экономической активности в рамках делового цикла, проведенный М.Ниемирой Niemira M., Klein Ph. Forecasting financial and economic cycles. - N.Y.: Wiley, 1994.- p.392., дает косвенное подтверждение адекватности теории временных предпочтений. В начале делового цикла временная структура характеризуется положительным наклоном. По мере того, как экономика отдаляется от нижней точки делового цикла, временная структура поднимается параллельно вверх, отражая рост спроса на кредитные ресурсы. Однако при переходе от фазы восстановления к фазе расширения форма временной структуры процентных ставок начинает изменяться.
Краткосрочные ставки продолжают расти, в то время как долгосрочные ставки несколько уменьшаются. Инвесторы понимают, что через какое-то время спрос на кредитные ресурсы перестанет расти, а пик краткосрочных ставок будет пройден. Это приводит к частичному инвертированию временной структуры, когда среднесрочные процентные ставки начинают превышать долгосрочные. Процесс продолжается вплоть до достижения пика делового цикла, когда вся временная структура процентных ставок на некоторое время приобретает отрицательный наклон. Здесь ожидания падения краткосрочных ставок чрезвычайно сильны, и они доминируют над временными предпочтениями инвесторов.
После прохождения пика долгосрочные процентные ставки поднимаются, а краткосрочные ставки практически не меняются, поэтому временная структура процентных ставок выравнивается. По мере распознавания симптомов спада происходит смягчение денежно-кредитной политики, и краткосрочные ставки резко падают. Долгосрочные ставки, в меньшей степени подверженные воздействию денежной политики, тоже снижаются, но на гораздо меньшую величину. Дело в том, что инвесторы предвосхищают наступление периода подъема следующего делового цикла, когда спрос на кредитные ресурсы и краткосрочные процентные ставки начнут подниматься. После прохождения нижней точки делового цикла процентные ставки достигают своего минимума, а временная структура вновь приобретает четко выраженный положительный наклон.
Поскольку большинство инвесторов осуществляют краткосрочные операции, их временные предпочтения смещены в сторону коротких инструментов. Поэтому на большинстве фаз делового цикла долгосрочные ставки превышают краткосрочные ставки.
По мнению диссертанта, теория временных предпочтений обладает двумя важными достоинствами, которые позволяют отдать ей предпочтение перед теориями чистых ожиданий и сегментации рынка. Во-первых, ее предсказания согласуются с практикой большинства финансовых рынков (что не выполняется для теории чистых ожиданий). Во-вторых, она позволяет получать оценки будущих изменений процентных ставок на основе информации о временной структуре (что не выполняется для теории сегментации рынка). Поэтому при решении теоретических и прикладных проблем управления процентным риском портфеля государственных облигаций целесообразно использовать теорию временных предпочтений, а не ее альтернативы.
Реакция цены здесь и далее цена включает накопленный купонный доход облигации на сдвиг временной структуры процентных ставок во многом определяется собственными параметрами облигации. Как показал Б.Малкиел, изменчивость цены облигации зависит от ее срока до погашения, купонной ставки и частоты выплаты купонов Malkiel B. Expectations, bond prices, and the term structure of interest rates. - Quarterly Journal of Economics, 1962, Vol.76, No.2. - p.197-218.. Согласно теореме Хопвелла-Кауфмана Hopewell M., Kaufman G. Bond price volatility and term to maturity: a general respecification. - American Economic Review, 1973, Vol.63, No.4. - p.749., изменчивость цены облигации прямо пропорциональна ее дюрации Маколея.
Показатель дюрации (duration) был предложен американским экономистом Ф.Маколеем Macaulay F. Some theoretical problems suggested by the movements of interest rates, bond yields and stock prices in the United States since 1856. - N.Y.: NBER, 1938. - p.48. для измерения эффективной срочности финансовых инструментов с фиксированным доходом. Дюрация рассчитывается как средний срок до получения денежных выплат инвестору, взвешенный по их приведенной стоимости. В качестве ставки дисконтирования Маколей использовал внутреннюю норму доходности финансового инструмента, или его доходность к погашению.
При непрерывном начислении процентов доходность к погашению yj определяется как решение уравнения
, (1.1.7)
где Pj - текущая рыночная цена финансового инструмента j, CFji - денежный платеж по финансовому инструменту j через период времени ti.
Тогда формула дюрации Маколея записывается как
. (1.1.8)
Как свидетельствует уравнение (1.1.8), дюрация бескупонной облигации совпадает с ее сроком до погашения. Дюрация купонной облигации меньше ее срока до погашения, причем это расхождение возрастает по мере увеличения срочности облигации, а также размера выплачиваемых купонов.
Существенной особенностью дюрации Маколея является ее жесткая привязка к внутреннему параметру финансового инструмента - доходности к погашению - и относительная независимость от сложившейся рыночной конъюнктуры. Какой бы ни была форма временной структуры процентных ставок, все денежные поступления от одного финансового инструмента дисконтируются по одной и той же ставке, равной его доходности к погашению. В то же время одновременные денежные платежи по финансовым инструментам с одинаковым уровнем кредитного риска, но с различной доходностью к погашению, дисконтируются по различным ставкам. Сам Маколей осознавал этот недостаток предложенного показателя, но полагал, что практическое осуществление корректной процедуры дисконтирования невозможно в связи с непреодолимостью трудностей, связанных с построением временной структуры процентных ставок.
Продифференцировав цену облигации по ее доходности к погашению, М.Хопвелл и Г.Кауфман показали, что для заданного изменения доходности к погашению процентное изменение цены облигации прямо пропорционально ее дюрации:
. (1.1.9)
Дюрация позволяет приближенно оценивать реакцию цены облигации на изменение доходности к погашению, используя простое линейное уравнение. Чем больше значение показателя дюрации, тем выше чувствительность цены облигации к изменению доходности к погашению и тем существеннее потери инвестора в случае неблагоприятного сдвига временной структуры процентных ставок.
Однако функциональная зависимость между ценой облигации и ее доходностью к погашению не является линейной: цена облигации более чувствительна к снижению доходности к погашению, нежели к ее увеличению, а облигации с одинаковой дюрацией по-разному реагируют на большие изменения доходности к погашению. C.Диллер и Р.Даттатрейа проиллюстрировали эти эффекты при помощи разложения в ряд Тейлора функции зависимости цены облигации от ее доходности к погашению Diller S., Dattatreya R. Parametric analysis of fixed income securities. - N.Y.: Goldman Sachs, 1984.:
. (1.1.10)
Отсюда
, (1.1.11)
где выпуклость (convexity) облигации Сj определяется из условия
. (1.1.12)
Чем больше выпуклость облигации, тем меньше потери инвестора в случае роста процентных ставок и тем больше его выигрыш в случае падения процентных ставок. Облигации с большой выпуклостью обладают чертами опциона: они позволяют ограничить размер потерь при неблагоприятном изменении рыночной конъюнктуры, сохраняя при этом возможность получения прибыли при благоприятном сдвиге временной структуры.
Анализ зависимости цены облигации от ее доходности к погашению позволяет получить простые показатели, отражающие чувствительность ценных бумаг с фиксированным доходом к колебаниям процентных ставок - дюрацию Маколея и выпуклость. Однако, по мнению диссертанта, такой подход обладает двумя существенными недостатками. Во-первых, использование в формулах такого параметра облигации, как доходность к погашению, исключает возможность точного выражения характеристик портфеля через характеристики отдельных финансовых инструментов, входящих в его состав. Во-вторых, он не позволяет исследовать реакцию цен облигаций и рыночной стоимости портфеля на изменение формы временной структуры процентных ставок.
Возможный способ устранения этих недостатков, предлагаемый автором, заключается в использовании параметрической модели временной структуры процентных ставок, отражающей наиболее существенные особенности сложившейся зависимости между спот-ставкой и сроком вложений. В частности, временную структуру процентных ставок можно аппроксимировать уравнением вида
, (1.1.13)
где параметр a описывает уровень краткосрочной процентной ставки, а параметр b - наклон временной структуры процентных ставок.
Тогда рыночную стоимость портфеля облигаций можно представить как
, (1.1.14)
где CFi - денежное поступление от портфеля через период времени ti.
Дифференцируя функцию MV(a,b) по параметрам временной структуры процентных ставок a и b, можно получить показатели чувствительности рыночной стоимости портфеля к параллельному сдвигу временной структуры процентных ставок, а также к изменению ее наклона:
, (1.1.15)
. (1.1.16)
По аналогии с дюрацией Маколея можно определить
, (1.1.17)
, (1.1.18)
где Da - дюрация по параметру уровня процентных ставок, Db - дюрация по параметру наклона временной структуры процентных ставок. Тогда
. (1.1.19)
Сравнение (1.1.17) и (1.1.18) показывает, что краткосрочные облигации более чувствительны к изменению уровня процентных ставок, а долгосрочные - к изменению наклона временной структуры процентных ставок. Поскольку факторы дисконтирования в формулах (1.1.17) и (1.1.18) используют характеристики временной структуры процентных ставок, а не доходности к погашению отдельных облигаций, дюрацию портфеля можно точно выразить через дюрации инструментов, входящих в его состав:
, (1.1.20)
где Da(b) - дюрация портфеля по параметру временной структуры процентных ставок a(b), - дюрация облигации выпуска j по параметру a(b), xj - доля вложений в облигации выпуска j в рыночной стоимости портфеля.
Использование логарифмической модели временной структуры процентных ставок, предложенной автором, позволяет получить показатели чувствительности, выражающие зависимость рыночной стоимости портфеля облигаций от общих факторов процентного риска, а также увеличить число анализируемых источников риска, включив в рассмотрение наклон временной структуры. Однако и этот подход не лишен недостатков. Дело в том, что правомерность его применения существенно зависит от соответствия параметрической формы (1.1.13) реальной временной структуре процентных ставок, сложившейся в данный момент на рынке.
Другое решение проблемы анализа чувствительности цен облигаций к сдвигам временной структуры процентных ставок было предложено Э.Элтоном, М.Грубером и Р.Микаэли Elton E., Gruber M., Michaely R. The structure of spot rates and immunization. - Journal of Finance, 1990, Vol.65, No.2. - p. 629-642.. Они предложили модифицировать уравнение Хопвелла-Кауфмана, включив в рассмотрение один или несколько общих факторов риска вместо доходности облигации к погашению:
, (1.1.21)
где Fk - общие факторы процентного риска, некоррелированные между собой.
В качестве первого фактора Элтон, Грубер и Микаэли предложили использовать спот--ставку заданной срочности, отражающую общий уровень процентных ставок, а в качестве второго фактора - спред между долгосрочной и краткосрочной спот-ставками, отражающий наклон временной структуры.
Уравнение Элтона-Грубера-Микаэли выражает зависимость цены облигации от общих факторов, определяющих изменение временной структуры процентных ставок, и позволяет давать приближенные оценки выигрыша или потерь инвестора при изменении одного из параметров временной структуры. Однако, как считает диссертант, существенным недостатком такого подхода является невозможность точной оценки производных доходности к погашению по общим факторам процентного риска.
Метод, предложенный Элтоном, Грубером и Микаэли, состоит в расчете коэффициентов регрессии спот-ставки для срока вложений, равного дюрации облигации, по общим факторам процентного риска. Но спот-ставка для срока вложений, равного дюрации облигации, не является точным аналогом ее доходности к погашению. В самом деле, любое смещение временной структуры процентных ставок влечет изменения спот-ставки заданной срочности и доходности облигации к погашению, которые обычно не совпадают по абсолютной величине, а также изменение дюрации облигации. Поэтому мы считаем, что корректное решение проблемы анализа чувствительности рыночной стоимости портфеля облигаций к сдвигам временной структуры процентных ставок может быть получено только в случае отказа от использования доходности к погашению при дисконтировании денежных выплат по облигациям.
Колебания процентных ставок подвергают владельца портфеля государственных облигаций процентному риску. Основными факторами, определяющими изменения уровня процентных ставок, являются расширение денежной массы, динамика уровня цен, темп роста национального дохода, состояние государственного бюджета. Форма временной структуры процентных ставок реагирует на изменения ожиданий и временных предпочтений инвесторов. Амплитуда колебаний рыночной стоимости портфеля облигаций определяется дюрациями долговых обязательств, входящих в его состав, и степенью изменчивости общих факторов процентного риска.
1.2. Классическая теория иммунизации процентного риска портфеля облигаций.
Классическая теория управления процентным риском вырабатывает конкретные рекомендации по формированию структуры портфеля для инвестора, характеризующегося абсолютным неприятием процентного риска и стремлением к полному его устранению. Такая постановка проблемы восходит к пионерным исследованиям середины XX века, в которых предлагалась и обосновывалась стратегия защиты рыночной стоимости капитала финансового института от колебаний общего уровня процентных ставок. Наиболее значимыми среди них были исследования лауреата Нобелевской премии по экономике П.Самуэльсона в области оценки и регулирования процентного риска коммерческого банка Samuelson P. The effect of interest rate increases on the banking system. - American Economic Review, 1945, Vol.55, No.1. - p.16-27. и английского актуария Ф.Редингтона в области иммунизации процентного риска страховой компании Redington F. Review of the principles of life-office valuations. - Journal of the Institute of Actuaries, 1952, Vol.78, No.3. - p.286-340.. В 1971 г. Л.Фишер и Р.Вейл модифицировали эту методологию и адаптировали ее к проблеме управления процентным риском портфеля облигаций Fisher L., Weil R. Coping with the risk of interest rate fluctuations: returns to bondholders from naive and optimal strategies. - Journal of Business, 1971, Vol.52, No.1. - pp.51-61..
Термин «иммунизация» (immunization), впервые введенный Редингтоном, используется для обозначения метода устранения процентного риска, основанного на точной балансировке ценового риска и риска реинвестирования. Модель иммунизации Самуэльсона-Редингтона позволяет обеспечить защиту от риска, которому параллельные сдвиги горизонтальной временной структуры процентных ставок подвергают рыночную стоимость капитала финансового института.
Пусть финансовый институт располагает набором требований на получение денежных платежей в размере через периоды времени и набором обязательств по выплате денежных средств в размере через периоды времени . Пусть временная структура процентных ставок горизонтальна, то есть процентная ставка постоянна для всех сроков размещения денежных средств. Тогда рыночная стоимость капитала финансового института определяется как
, (1.2.1)
где r - непрерывно начисляемая процентная ставка.
Финансовый институт иммунизирован от неблагоприятных изменений значения процентной ставки, если рыночная стоимость его капитала не может упасть ниже уровня, соответствующего начальной процентной ставке r0. Это означает, что глобальный минимум функции E(r) должен достигаться при r=r0. Для этого достаточно выполнения двух условий, которые получили название условий иммунизации первого и второго порядка:
1) , (1.2.2)
2) . (1.2.3)
Первое условие иммунизации, предложенное Самуэльсоном, обеспечивает равенство средних сроков размещения активов и привлечения заемных средств, взвешенных по приведенной стоимости каждого актива и обязательства. Если это условие не выполняется, финансовый институт испытывает подверженность процентному риску. Как показал Самуэльсон, повышение процентных ставок увеличивает прибыль финансового института, средний срок привлечения заемных средств у которого больше среднего срока размещения ресурсов в активные операции, и влечет убытки у финансового института, средний срок привлечения заемных средств у которого меньше среднего срока размещения ресурсов в активные операции. Понижение процентных ставок увеличивает прибыль финансового института, средний срок привлечения заемных средств у которого меньше среднего срока размещения ресурсов в активные операции, и влечет убытки у финансового института, средний срок привлечения заемных средств у которого больше среднего срока размещения ресурсов в активные операции.
Второе условие иммунизации, введенное Редингтоном, обеспечивает превышение дисперсии активов над дисперсией обязательств финансового института. Если это условие выполнено, финансовый институт полностью защищен от возможных убытков, но сохраняет шансы на получение дополнительной прибыли при существенном изменении уровня процентных ставок. Для иммунизированного финансового института наименее благоприятный сценарий развития событий заключается в сохранении значения процентной ставки на прежнем уровне - в этом случае рыночная стоимость капитала останется неизменной. Любое изменение процентной ставки принесет дополнительную прибыль, размер которой будет тем больше, чем шире распределены денежные поступления от портфеля активов, чем больше сконцентрированы денежные платежи по портфелю обязательств и чем существеннее изменится значение процентной ставки.
В 1957 г. Д.Дюранд показал Durand D. Growth stocks and the Petersburg paradox. - Journal of Finance, 1957, Vol.12, No.3. - p.348-363., что если рыночная стоимость капитала равна нулю, то есть если активы финансируются исключительно путем использования заемных средств, условия иммунизации можно записать как
1) , (1.2.4)
2) , (1.2.5)
где - дюрация портфеля активов финансового института,
- дюрация портфеля обязательств финансового института,
- дисперсия сроков поступлений по портфелю активов,
- дисперсия сроков платежей по портфелю обязательств.
Таким образом, первое условие иммунизации рыночной стоимости капитала финансового института требует согласования дюрации активов и дюрации обязательств. Условие иммунизации второго порядка требует превышения дисперсии сроков поступлений от портфеля активов над дисперсией сроков платежей по портфелю обязательств.
Концептуальный подход, разработанный П.Самуэльсоном и Ф.Редингтоном при решении задачи иммунизации рыночной стоимости капитала финансового института, оказался применимым и при решении задачи иммунизации портфеля облигаций, которое впервые было предложено Л.Фишером и Р.Вейлом. Однако специфика рынка облигаций потребовала переформулировки проблемы, а также использования новых допущений.
Фишер и Вейл предположили, что проблема инвестора состоит в поиске структуры портфеля, доходность которого за заданный период времени не может упасть ниже соответствующей спот-ставки. При этом они отказались от допущения, что временная структура процентных ставок горизонтальна.
Когда временная структура процентных ставок горизонтальна, все ставки реинвестирования и дисконтирования равны единой рыночной процентной ставке. Отказ от предположения о горизонтальной форме временной структуры процентных ставок порождает необходимость введения допущений о том, какие ставки будут использоваться при реинвестировании поступлений от портфеля, полученных в течение периода вложений, и о том, какие ставки будут использоваться на дату окончания периода вложений при дисконтировании неполученных денежных платежей. Для того, чтобы получить возможность оперировать с будущими ставками реинвестирования и дисконтирования, Фишер и Вейл предположили, что рынок адекватно описывается теорией чистых ожиданий.
На рынке, удовлетворяющем условиям теории чистых ожиданий, ожидаемая доходность любого сформированного портфеля за период m равна текущей спот-ставке s(m). Стоимость портфеля через период m можно выразить через текущую временную структуру форвардных ставок при помощи формулы
, (1.2.6)
где - наращенная стоимость полученных и реинвестированных денежных платежей через период m, - дисконтированная стоимость неполученных денежных платежей через период m.
Стоимость портфеля на конец периода вложений, а значит, и его доходность, могут изменяться в результате сдвига форвардных ставок. В случае падения форвардных ставок происходит сокращение доходов инвестора по операциям реинвестирования денежных платежей, полученных в течение периода вложений, но возрастает дисконтированная стоимость неполученных платежей. В случае роста форвардных ставок возрастают доходы инвестора по реинвестиционным операциям, но падает дисконтированная стоимость неполученных платежей. Процентный риск можно устранить точной балансировкой ценового риска и риска реинвестирования.
Модель иммунизации Фишера-Вейла, отказываясь от допущения о горизонтальной форме временной структуры процентных ставок, сохраняет ограничение класса ее допустимых перемещений параллельными сдвигами. Как следует из определения форвардной ставки, параллельный сдвиг временной структуры спот-ставок вызывает параллельный сдвиг временной структуры форвардных ставок. Действительно, пусть сдвиг временной структуры спот-ставок описывается уравнением
. (1.2.7)
Тогда сдвиг временной структуры форвардных ставок можно представить в виде
. (1.2.8)
Портфель считается иммунизированным для срока вложений m, если его доходность за этот период не может понизиться в результате сдвига временной структуры процентных ставок в начальный момент времени. Поэтому стоимость иммунизированного портфеля через период m не может упасть ниже уровня FV(0), который будет достигнут при сохранении начальных значений форвардных ставок на неизменном уровне. Отсюда для любого иммунизированного портфеля должно выполняться неравенство
. (1.2.9)
При =0 это неравенство выполняется для любого сформированного портфеля, т.к. G(0)=1. Поэтому оно выполняется и на всей области определения функции G(), если в точке =0 достигается глобальный минимум данной функции. Для этого достаточно выполнения условий иммунизации первого и второго порядка
1) , (1.2.10)
2) . (1.2.11)
Дифференцируя функцию G(), имеем
, (1.2.12)
. (1.2.13)
Поскольку и числитель, и знаменатель формулы (1.2.13) не содержат отрицательных членов, условие иммунизации второго порядка выполняется для любого портфеля. Условие иммунизации первого порядка выполняется лишь для подмножества портфелей, структура которых удовлетворяет ограничению вида
. (1.2.14)
Отсюда
. (1.2.15)
Поскольку
, (1.2.16)
, (1.2.17)
, (1.2.18)
, (1.2.19)
где - дюрация Фишера-Вейла, которая, в отличие от дюрации Маколея, использует различные ставки для дисконтирования денежных платежей с различными сроками выплаты. В рамках теории иммунизации дюрация рассматривается как такой период вложений, для которого доходность портфеля облигаций не может упасть вследствие неблагоприятного сдвига временной структуры процентных ставок в начальный момент времени.
Условие иммунизации первого порядка, обеспечивающее равенство дюрации портфеля и срока вложений инвестора, является лишь одним из двух уравнений, задающих множество допустимых иммунизированных портфелей. Второе уравнение носит характер бюджетного ограничения. Оно определяет невозможность открытия позиций, выходящих за рамки финансовых ресурсов инвестора, выделенных на формирование портфеля. Поэтому система уравнений, задающих множество решений задачи иммунизации, имеет вид
, (1.2.20)
, (1.2.21)
, (1.2.22)
, (1.2.23)
где J - число выпусков облигаций, обращающихся на рынке, j - порядковый номер выпуска, xj - доля вложений в облигации выпуска j в рыночной стоимости портфеля, CFji - размер денежных поступлений по облигации выпуска j в момент времени ti, - дюрация Фишера-Вейла облигации выпуска j.
Дюрация портфеля равна скалярному произведению векторов долей вложений в облигации различных выпусков xj и их дюраций , поскольку
, (1.2.24)
где qj - число облигаций выпуска j, включенных в состав портфеля.
Так как структура допустимых решений задачи иммунизации определяется двумя уравнениями, в невырожденном случае, когда на рынке не обращается бескупонная облигация со сроком до погашения, совпадающим с периодом вложений инвестора, осуществление иммунизации предполагает включение в портфель как минимум двух различных выпусков. При этом дюрация одного из выпусков должна быть меньше, а другого - больше срока вложений инвестора.
Если дюрации всех облигаций, обращающихся на рынке, превышают срок вложений инвестора, то условие иммунизации первого порядка не может быть выполнено. В самом деле, тогда при любой структуре портфеля выполняется неравенство
, (1.2.25)
что исключает возможность выполнения равенства (1.2.20). Условие иммунизации первого порядка не может быть выполнено и тогда, когда дюрации всех финансовых инструментов меньше срока вложений инвестора. Таким образом, возможность осуществления иммунизации определяется спектром финансовых инструментов, из которых может формироваться портфель инвестора.
В модели Фишера-Вейла зависимость доходности вложений от сдвига временной структуры процентных ставок определяется дюрацией портфеля, сроком вложений и характером распределения денежных поступлений от портфеля вокруг даты окончания периода вложений. Для исследования этих эффектов автор предлагает воспользоваться разложением будущей стоимости портфеля FV() в ряд Маклорена:
. (1.2.26)
Поскольку
, (1.2.27)
, (1.2.28)
. (1.2.29)
Подставляя (1.2.16), (1.2.17) и =0 в (1.2.27), (1.2.28) и (1.2.29), имеем
, (1.2.30)
, (1.2.31)
. (1.2.32)
Отсюда деление членов уравнения (1.2.26) на FV(0) дает
, (1.2.33)
где . (1.2.34)
Регулируя структуру портфеля, инвестор не может изменить ожидаемую доходность вложений s(m) и ожидаемую стоимость портфеля через период m FV(0). Но, как показывает уравнение (1.2.33), полученное автором, инвестор может изменить зависимость доходности вложений от размера сдвига форвардных ставок , или скорректировать профиль риска портфеля, управляя значениями показателей DFW и М2.
Рис.1.2.1. Профили риска иммунизированного и неиммунизированного портфелей.
Рис.1.2.1 демонстрирует различие профилей риска иммунизированного и неиммунизированного портфелей. Иммунизированный портфель полностью защищен от процентного риска: его доходность не может опуститься ниже уровня s(m). Любой допустимый сдвиг временной структуры форвардных ставок вызывает рост доходности вложений, причем этот эффект проявляется тем сильнее, чем больше значение параметра портфеля М2. Поэтому среди всех иммунизированных портфелей наиболее эффективным является портфель с наибольшим значением показателя М2.
Неиммунизированный портфель характеризуется процентным риском, однако величина возможных потерь по нему ограничена. Чтобы дать ее количественную оценку, представим выражение (1.2.33) в виде
. (1.2.35)
Поэтому
. (1.2.36)
Неравенство (1.2.36), выведенное диссертантом, свидетельствует, что размер максимальных потерь по неиммунизированному портфелю тем больше, чем больше расхождение между дюрацией портфеля и сроком вложений инвестора и чем меньше рассеяние денежных поступлений по портфелю вокруг даты окончания периода вложений.
Хотя неиммунизированный портфель не обеспечивает защиты от процентного риска, он может выглядеть привлекательным в глазах такого инвестора, чья оценка будущих изменений конъюнктуры существенно отлична от среднерыночной. Дело в том, что при <0 неиммунизированные портфели с DFW>m обеспечивают большую доходность вложений по сравнению с иммунизированными, а при >0 наиболее эффективными оказываются неиммунизированные портфели с DFW<m.
Несмотря на свое весомое теоретическое значение, модель иммунизации Фишера-Вейла крайне редко используется на практике и описывается в учебной литературе. Гораздо более широкое признание завоевала эвристическая модель иммунизации, совершенно неудовлетворительная с точки зрения своей теоретической обоснованности. Данная модель исходит из предположения, что правило согласования срока вложений с дюрацией Маколея формируемого портфеля обеспечивает иммунизацию доходности вложений в самых различных рыночных условиях, то есть при различных начальных состояниях временной структуры процентных ставок и при различных формах и траекториях ее последующих сдвигов.
Согласно концепции Маколея, расчет дюрации портфеля должен основываться на предварительном расчете его внутренней ставки доходности и последующем дисконтировании по этой ставке всех денежных требований, обеспечиваемых портфелем. Поскольку дюрации Маколея различных финансовых инструментов используют различные ставки дисконтирования, дюрация портфеля не может быть выражена аналитически через дюрации облигаций, входящих в его состав. Однако по общепринятому соглашению принимается иное определение дюрации портфеля, неадекватное концепции Маколея, но удобное с точки зрения простоты осуществляемых расчетов:
. (1.2.37)
Тогда система уравнений, определяющих множество допустимых иммунизированных портфелей, приобретает следующий вид:
, (1.2.38)
, (1.2.39)
. (1.2.40)
В случае, когда временная структура процентных ставок является горизонтальной, эвристическая модель иммунизации эквивалентна модели Фишера-Вейла, а значит, приведение дюрации Маколея портфеля в соответствие со сроком вложений инвестора обеспечивает корректное решение задачи иммунизации. Однако при нарушении условия горизонтальности временной структуры процентных ставок способность эвристической модели к устранению процентного риска перестает быть теоретически обоснованной.
По мнению Р.Даттатрейа и Ф.Фабоззи Dattatreya R., Fabozzi Fr. Active total return management of fixed-income portfolios. - Chicago: Irwin, 1995. - p.82., использование дюрации Маколея приводит к неадекватным представлениям о закономерностях рынка облигаций. Результатом является открытие ошибочно специфицированных позиций по процентному риску и непредвиденное снижение доходности вложений в случае неблагоприятных перемещений временной структуры процентных ставок. Для обоснования своей позиции они приводят целый ряд примеров, доказывающих, что при определенной форме временной структуры процентных ставок эвристическая модель не обеспечивает решение задачи иммунизации.
Сторонники противоположной точки зрения обращаются к эмпирическим тестам, используемым для измерения изменчивости дохода при использовании эвристической модели иммунизации. Как показывают работы Платта и Тоевса Controlling interest rate risk: new techniques and applications for money management. // ed. Platt R.B. - N.Y., Wiley, 1986. - p.36-40., Галтекина и Рогальски Gultekin N., Rogalsky R. Alternative duration specifications and the measurement of basis risk. - Journal of Business, 1984, Vol.57, No.2. - p.241-246., Бальбаса и Ибанеза Balbas A., Ibanez A. When can you immunize a bond portfolio? - Journal of Banking and Finance, 1998, Vol.22, No.12. - p.1571-1595., эвристическая модель иммунизации обеспечивала вполне надежную защиту инвестора от неблагоприятных сдвигов процентных ставок на рынке обязательств Казначейства США в различные периоды времени. Результаты этих тестов привели к признанию «парадокса дюрации» (duration paradox), согласно которому модель, недостаточно обоснованная теоретически, на практике обеспечивает вполне приемлемое уменьшение уровня процентного риска.
Мы полагаем, что секрет успеха эвристической модели заключается в том, что она позволяет решить главную задачу - сформировать портфель, для которого ценовой риск и риск реинвестирования являются сопоставимыми по величине и отрицательно коррелированными друг с другом. Поэтому возможности дальнейшего уменьшения уровня процентного риска за счет использования более точных моделей крайне ограничены. Однако их разработка позволяет дать более глубокое представление о механизме воздействия перемещений временной структуры процентных ставок на доходность портфелей облигаций, выделить факторы, определяющие уровень процентного риска, и оценить меру адекватности эвристической модели сложившимся рыночным условиям.
Эффективность метода устранения процентного риска, вытекающего из модели Фишера-Вейла, во многом определяется степенью соответствия между допущением о параллельном характере перемещений временной структуры и реальными сдвигами процентных ставок на рынке облигаций. Дж.Кокс, Дж.Ингерсолл и С.Росс привели весомый теоретический аргумент в пользу утверждения о некорректности ограничения класса допустимых перемещений временной структуры параллельными сдвигами Cox J., Ingersoll J., Ross S. Duration and the measurement of basis risk. - Journal of Business, 1979, Vol.52, No.1. - p.51-61. . Они показали, что рынок, на котором допустимыми являются только параллельные сдвиги временной структуры процентных ставок, не предоставляет инвесторам возможности систематического осуществления безрискового арбитража лишь при условии, что временная структура процентных ставок описывается квадратичной функцией вида
, (1.2.41)
где r - мгновенная процентная ставка, - волатильность фактора параллельного сдвига временной структуры процентных ставок .
Подавляющее большинство рынков облигаций характеризуются как невозможностью систематического осуществления арбитражных операций, так и невозможностью аппроксимации временной структуры процентных ставок функцией вида (1.2.41) с высокой степенью точности. Поэтому ограничение класса допустимых перемещений временной структуры параллельными сдвигами ведет к противоречию, которое можно разрешить, лишь допустив возможность непараллельных сдвигов. Следовательно, можно заключить, что на большинстве рынков облигаций использование метода иммунизации Фишера-Вейла не позволяет обеспечить полное устранение процентного риска.
Если модель параллельного сдвига является хорошим приближением при описании реального процесса изменений временной структуры процентных ставок, то размер возможных потерь минимален. Напротив, если наблюдаемые перемещения временной структуры существенно отличны от параллельных сдвигов, то размер возможных потерь недопустимо велик.
При сдвигах временной структуры форвардных ставок, отличных от параллельного, доходность портфеля, иммунизированного по методу Фишера-Вейла, может оказаться ниже спот-ставки для срока вложений m s(m) на момент формирования портфеля. По мнению автора, особую опасность представляют такие сдвиги процентных ставок, при которых наклон временной структуры увеличивается, то есть когда краткосрочные ставки снижаются, а долгосрочные -- возрастают. В этом случае падают как доходы по операциям реинвестирования денежных платежей, полученных в течение периода вложений, так и дисконтированная стоимость неполученных денежных платежей на дату окончания периода вложений, что означает одновременную реализацию ценового риска и риска реинвестирования. В результате стоимость портфеля на конец периода вложений оказывается существенно ниже ожидаемой. Размер потерь особенно велик, если денежные выплаты инвестору, обеспечиваемые портфелем, сильно распределены во времени. Напротив, доходность портфелей, поступления по которым сконцентрированы в окрестности даты окончания периода вложений, не может претерпеть существенных изменений.
Количественная оценка величины максимального падения стоимости иммунизированного портфеля на дату окончания периода вложений в результате непараллельного перемещения временной структуры процентных ставок в начальный момент времени дается неравенством Фонга-Васичека Fong H., Vasicek O. A risk minimizing strategy for portfolio immunization. - Journal of Finance, 1984, vol.39, no.5. - p.1541-1546.. Если для любого возможного сдвига временной структуры мгновенных форвардных ставок f(t) выполняется условие
, (1.2.42)
то стоимость иммунизированного портфеля на дату окончания периода вложений удовлетворяет неравенству
, (1.2.43)
где FV0 - стоимость иммунизированного портфеля на дату окончания периода вложений при сохранении начальной временной структуры форвардных ставок, FV* - стоимость иммунизированного портфеля на дату окончания периода вложений после перемещения временной структуры форвардных ставок в начальный момент времени.
Если допущение о параллельном характере перемещений временной структуры процентных ставок является корректным, f(t)= t при любом сдвиге. Тогда , а доходность иммунизированного портфеля не может упасть ниже уровня s(m). Если же допущение о параллельном характере перемещений временной структуры процентных ставок оказывается некорректным, f(tg)<>f(th), , а доходность иммунизированного портфеля может упасть ниже уровня s(m). Показатель M2 определяет размер возможных потерь, которые инвестор может понести в результате непараллельного сдвига временной структуры процентных ставок, не принимаемого во внимание при выводе условия иммунизации Фишера-Вейла.
Как следует из модели Фишера-Вейла, наиболее эффективным среди всех иммунизированных портфелей является портфель с наибольшим значением показателя M2, поскольку он обеспечивает наибольшее приращение доходности вложений при параллельных сдвигах временной структуры процентных ставок. Как следует из неравенства Фонга-Васичека, наиболее эффективным среди всех иммунизированных портфелей является портфель с наименьшим значением показателя M2, поскольку он в наибольшей степени защищен от непараллельных сдвигов временной структуры процентных ставок. Таким образом, критерии оптимизации структуры иммунизированного портфеля, вытекающие из модели Фишера-Вейла и из неравенства Фонга-Васичека, являются прямо противоположными.
Диссертант считает, что поскольку неравенство Фонга-Васичека дает более глубокое и точное представление о характере процентного риска иммунизированного портфеля, инвестор, стремящийся к максимально полному устранению процентного риска, должен минимизировать значение показателя M2. Однако отказ от стратегии максимизации показателя M2 влечет за собой определенные издержки, которые выражаются в ослаблении эффекта приращения доходности вложений в результате параллельного сдвига форвардных ставок.
1.3. Современные подходы к управлению процентным риском портфеля облигаций.
В последней четверти XX века произошли радикальные перемены, которые дали толчок развитию новых подходов к управлению процентным риском портфеля государственных облигаций. Во-первых, во многих странах мира были организованы рынки производных финансовых инструментов, в том числе и процентных фьючерсов. Появление срочных контрактов открыло перед инвесторами новые возможности по регулированию процентного риска портфелей государственных облигаций, а также поставило перед финансовой наукой проблему разработки оптимальных моделей хеджирования. Во-вторых, в математический аппарат исследователей финансовых рынков вошли новые средства моделирования: модели авторегрессионной Engle R. Autoregressive conditional heteroskedasticity with estimates of the variance of UK inflation. - Econometrica, 1982, Vol.50. - p.987-1008. и обобщенной авторегрессионной Bollerslev T. Generalised autoregressive conditional heteroskedasticity. - Journal of Econometrics, 1986, Vol.31. - p.307-327. условной гетероскедастичности, нечеткие множества Bellman R., Zadeh L. Decision-making in a fuzzy environment. - Management Science, 1970, Vol.17, No.2. - p.141-164., многослойные самообучающиеся нейронные сети Werbos P. Beyond regression: New tools for prediction and analysis in the behavioral sciences. - Harvard University, Masters thesis, 1974.. Использование новых математических методов позволило уточнить и улучшить решения старых научных проблем, а также открыть принципиально новые направления исследования.
До появления рынка срочных контрактов владельцы портфелей государственных облигаций могли регулировать свою подверженность процентному риску только одним способом. Он заключается в продаже части облигаций, входящих в состав портфеля, и приобретении облигаций других выпусков. После организации рынка процентных фьючерсов у инвесторов появилась вторая возможность. Открывая новые позиции на рынке фьючерсов и не меняя структуру портфеля облигаций, инвестор может существенно изменить свою подверженность процентному риску. Высокая эффективность этого метода управления процентным риском обусловлена меньшим уровнем трансакционных издержек на рынке фьючерсов по сравнению с трансакционными издержками на рынке облигаций.
Возможность создания смешанных позиций, включающих государственные облигации и процентные фьючерсные контракты, поставила перед финансовой наукой две теоретические проблемы. Первая заключается в поиске оптимальной структуры портфеля, включающего один выпуск государственных облигаций и один вид процентных фьючерсных контрактов. Вторая состоит в выработке оптимальной стратегии хеджирования, позволяющей обеспечить устранение процентного риска диверсифицированного портфеля государственных облигаций при помощи совершения операций на фьючерсном рынке.
Как показал Л.Эдерингтон Ederington L. The hedging performance of the new futures markets. - Journal of Finance, 1979, Vol.34, No.2. - p.157-170., формирование портфеля из государственных облигаций и фьючерсных контрактов позволяет добиваться существенного снижения уровня риска. Ожидаемая прибыль по портфелю и ее дисперсия определяются условиями
, (1.3.1)
, (1.3.2)
где MVp - изменение рыночной стоимости портфеля, Pb - изменение цены облигации, Pf - изменение цены фьючерса, qb - число облигаций, включенных в состав портфеля, qf - число открытых фьючерсных контрактов (положительное в случае продажи фьючерсов и отрицательное в случае покупки фьючерсов), b - среднеквадратическое отклонение изменения цены облигации, f - среднеквадратическое отклонение изменения цены фьючерса, bf - ковариация изменений цен облигации и фьючерса.
Определим коэффициент хеджирования как , то есть как часть портфеля государственных облигаций, которая хеджируется на фьючерсном рынке. Тогда
, (1.3.3)
. (1.3.4)
Корректируя размер коэффициента хеджирования, инвестор может изменять важнейшие характеристики своего портфеля: размер ожидаемой прибыли и ее дисперсию. Предположим, что полезность, обеспечиваемая портфелем инвестору, моделируется при помощи функции
, (1.3.5)
где >0 - параметр, отражающий склонность инвестора к устранению риска.
График функции U(k) представляет собой квадратную параболу, ветви которой направлены вниз. Максимальный уровень полезности достигается при коэффициенте хеджирования
. (1.3.6)
Если абсолютное значение математического ожидания изменения цены фьючерса мало по сравнению с его дисперсией, а стремление инвестора к устранению риска достаточно велико, при расчете оптимального коэффициента хеджирования можно использовать формулу
. (1.3.7)
Тогда основные характеристики распределения прибыли портфеля принимают вид
, (1.3.8)
, (1.3.9)
где R2 - коэффициент детерминации для изменений цен облигации и фьючерсного контракта.
Как свидетельствует уравнение (1.3.9), хеджирование вложений в облигации при помощи фьючерсных контрактов позволяет осуществить трансформацию процентного риска в так называемый базисный риск (basis risk), который обусловлен различием реакции цен облигации и фьючерсного контракта на сдвиги временной структуры процентных ставок. Эффективность защиты от риска прямо пропорциональна коэффициенту корреляции между ценами облигации и фьючерсного контракта. В случае, когда коэффициент корреляции равен единице, хеджирование позволяет добиваться полного устранения риска вложений в облигации.
Для определения оптимального значения коэффициента хеджирования k* в конкретных рыночных условиях Эдерингтон предложил оценивать параметры линейного уравнения регрессии
Pb = a +b Pf + (1.3.10)
или
Pb = b Pf + . (1.3.11)
Полученное значение коэффициента регрессии b дает оценку оптимального коэффициента хеджирования . При этом используется предположение, что среднеквадратические отклонения изменений цен облигации и фьючерса постоянны по времени, как и коэффициент корреляции между ними.
Это допущение выглядело вполне оправданным в конце 1970-х годов, когда исследователи финансовых рынков не располагали инструментами для моделирования многомерных временных рядов с изменяющимися статистическими характеристиками. Однако в 1995 г. Р.Энгл и К.Кронер разработали модель многофакторной одновременной обобщенной условной гетероскедастичности (MGARCH-BEKK) Engle R.F., Kroner K.F. Multivariate simultaneous generalized ARCH. - Econometric Theory, 1995, Vol.11, No.2. - p.122-150., которая предоставила возможность исследования многомерных временных рядов, характеризующихся изменяющимися ковариациями между их элементами. Д.Ватт предложил использовать эту модель для оценки коэффициента хеджирования при формировании портфеля из облигаций и процентных фьючерсов Watt D. Canadian short-term interest rates and the BAX futures market: Analysis of the impact of volatility on hedging activity and the correlation of returns between markets. - Bank of Canada working paper, 1997, №18. - 37 p..
В двухфакторной MGARCH-BEKK условные дисперсии и ковариация моделируются уравнениями вида
(1.3.12)
(1.3.13)
(1.3.14)
где h11,t - условная дисперсия первой случайной переменной в момент времени t, h11,t-1 - условная дисперсия первой случайной переменной в момент времени t-1, h22,t - условная дисперсия второй случайной переменной в момент времени t, h22,t-1 - условная дисперсия второй случайной переменной в момент времени t-1, h12,t - условная ковариация первой и второй случайных переменных в момент времени t, h12,t-1 - условная ковариация первой и второй случайных переменных в момент времени t-1, 1,t-1 - ошибка предсказания значения первой случайной переменной в момент времени t-1, 2,t-1 - ошибка предсказания значения второй случайной переменной в момент времени t-1, с11, с12, с22, a11, a12, a21, a22, g11, g12, g21, g22 - параметры модели.
Используя оценки условной ковариации между изменениями цен облигации и фьючерса h12,t и условной дисперсии изменения цены фьючерса h22,t, полученные при помощи модели MGARCH-BEKK, Д.Ватт предложил рассчитывать коэффициент хеджирования по формуле
. (1.3.15)
Результаты тестирования двух различных подходов к определению оптимального коэффициента хеджирования по данным торгов на Монреальской бирже показали, что модели, использующие предположение о постоянстве дисперсий изменений цен облигации и фьючерса, а также коэффициента корреляции между ними, в среднем обеспечивают приемлемый уровень эффективности, но не справляются с задачей обеспечения защиты от процентного риска в периоды повышенной нестабильности финансового рынка. Когда конъюнктура финансового рынка приобретает неустойчивый характер, корреляция между изменениями цен облигаций и фьючерсов возрастает, а эффективность модели хеджирования Эдерингтона падает. Напротив, использование модели MGARCH-BEKK при определении коэффициента хеджирования позволяет обеспечить надежную защиту от процентного риска при любом состоянии рыночной конъюнктуры.
Другая теоретическая проблема, вставшая в связи с возникновением и развитием рынков производных финансовых инструментов, заключается в разработке модели иммунизации диверсифицированного портфеля государственных облигаций, включающего долговые обязательства с различными сроками до погашения и купонными характеристиками, при помощи процентных фьючерсных контрактов. Ее решение, предложенное Р.Колбом и Г.Гэем Kolb R., Gay G. Immunizing bond portfolios with interest rate futures. - Financial Management, 1982, Vol.11, No.2. - p.81-89., потребовало распространения аппарата дюрационного анализа на рынок производных финансовых инструментов.
Пусть инвестор располагает портфелем облигаций, обеспечивающим денежные поступления в размере CFi через периоды времени ti, который он намерен продать по истечении периода m. Дюрация данного портфеля не совпадает со сроком вложений инвестора, поэтому он испытывает подверженность процентному риску. Этот риск можно хеджировать, воспользовавшись фьючерсным контрактом на облигацию. Пусть срок исполнения фьючерсного контракта наступает через период времени d, а денежные платежи по поставляемой облигации в размере CFj выплачиваются через периоды времени tj. Проблема инвестора заключается в определении числа фьючерсных контрактов k, которые нужно продать для устранения своей подверженности процентному риску.
Параллельный сдвиг временной структуры процентных ставок на процентных пунктов вверх вызовет падение рыночной стоимости портфеля облигаций и понижение цены фьючерсного контракта. Размер выигрыша инвестора по короткой позиции, открытой на срочном рынке, составит
, (1.3.16)
где f(d,tj) - форвардная ставка для периода времени (d,tj).
Подобные документы
Управление риском. Стандартное отклонение портфеля. Коэффициент корреляции. Кривые безразличия. Теорема об эффективном множестве. Графическое решение задачи выбора индивидуального оптимального портфеля. Математическая модель Марковица. Модель CAРM.
курсовая работа [366,8 K], добавлен 18.01.2016Определение размера погасительного платежа при начислении процентов по простым, сложным процентным и учетным ставкам. Методы расчета ссуды по простым фиксированным процентным ставкам. Математическое дисконтирование при простой процентной ставке.
контрольная работа [27,9 K], добавлен 17.03.2014Основные понятия финансовых рисков и их классификация. Оценка риска. Риск-менеджмент. Методы управления риском. Снижение потерь, связанных с риском, до минимума. Смягчение крутых поворотов на рынке. Управление активами и пассивами.
курсовая работа [36,8 K], добавлен 04.02.2007Понятие портфеля ценных бумаг, его виды и основные принципы формирования. Модель ценообразования на основной капитал: применение парного регрессионного анализа. Вывод линейной зависимости между риском и прибылью. Составление оптимального портфеля.
дипломная работа [339,5 K], добавлен 19.05.2013Сущность и особенности долговых ценных бумаг. Методики оценки риска ценных бумаг и стоимости разных видов облигаций. Методы формирования портфеля ценных бумаг. Современное состояние и тенденции развития рынка российских государственных ценных бумаг.
дипломная работа [1,6 M], добавлен 26.02.2010Финансовые риски, их классификация и особенности. Подходы к управлению (уменьшению) финансовыми рисками: лимитирование, диверсификация, страхование. Подходы к выбору оптимального портфеля. Влияние безрискового кредитования на эффективное множество.
шпаргалка [116,1 K], добавлен 01.02.2011Установление в общем виде причин и последствий глобального кризиса для хозяйственной системы Украины, представления о соотношении его эндогенных и экзогенных факторов. Деформация связей между доходностью и риском, глобальные перекосы и диспропорции.
контрольная работа [611,5 K], добавлен 23.08.2010Понятие, классификация государственных облигаций. Правовое регулирование рынка ценных бумаг в России. Внутренние и внешние долговые обязательства страны. Показатели и методы оценки доходности облигаций. Анализ финансового рынка корпоративных облигаций.
курсовая работа [2,4 M], добавлен 15.12.2014Инвестирование на рынке ценных бумаг не может не сопровождаться риском, под которым понимается неопределенность финансовых результатов. Необходимость управления риском, связанное с определением количественных вероятностей наступления определенных событий.
реферат [24,8 K], добавлен 08.12.2010Показатели чувствительности к процентным ставкам. Понятие кредитного риска. Стратегия эффективного управления процентной маржей и спредом. Инвестиционные банки в управлении активами и пассивами. Сущность и расчет временной структуры процентных ставок.
презентация [314,7 K], добавлен 06.09.2012