Управление процентным риском портфеля ГКО-ОФЗ в посткризисный период

Процентные риски в управлении портфелем государственных облигаций. Современные подходы к управлению процентным риском портфеля облигаций. Обоснование методов поддержки принятия решений по управлению процентным риском в посткризисный период.

Рубрика Финансы, деньги и налоги
Вид диссертация
Язык русский
Дата добавления 05.06.2003
Размер файла 616,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Цена каждой облигации Pj выражается через временную структуру процентных ставок s(t) при помощи уравнения

, (2.1.20)

где j - порядковый номер выпуска, CFji - денежный платеж по облигации выпуска j в момент времени ti, j - случайная ошибка.

Смоделировав временную структуру процентных ставок при помощи нелинейной функции s(t)=f(t, ) с вектором параметров , можно получить систему уравнений

, (2.1.21)

где J - число выпусков облигаций, данные о ценах которых используются при построении временной структуры процентных ставок.

Оценкой рыночной временной структуры процентных ставок является функция из параметрического семейства f(t,), обеспечивающая минимальное значение среднеквадратической ошибки при расчете цен облигаций. Поэтому задача построения временной структуры процентных ставок представляет собой задачу оптимизации вектора параметров с критерием оптимальности

. (2.1.22)

Расчеты автора показывают, что вполне удовлетворительное качество аппроксимации временной структуры процентных ставок рынка ГКО-ОФЗ достигается при помощи параметрической модели

. (2.1.23)

Коэффициент детерминации между расчетными и рыночными ценами облигаций превысил 0.99 по итогам 95.44% торговых сессий, состоявшихся в период с 1 мая 1999 г. по 1 апреля 2001 г., а его среднее значение оказалось равным 0.9941. Данные о ценах выпуска 26003, срок до погашения которого существенно превышает сроки до погашения всех остальных инструментов рынка ГКО-ОФЗ, при построении временных структур не использовались.

Значения показателей (ti) и bk(ti), необходимые при применении двухкомпонентной модели иммунизации, пересчитывались один раз в месяц по данным за последние шесть месяцев. Для этого использовалась выборка 10 спот-ставок для сроков вложений от 0.02 до 4 лет. Построенный ряд коэффициентов чувствительности (ti)bk(ti) аппроксимировался полиномом шестой степени. Оцененные параметры полинома применялись при расчете показателей дюрации по двум первым главным компонентам временной структуры.

В ряде случаев система уравнений (2.1.16)-(2.1.19) оказалась неразрешимой. Тогда портфель, иммунизирующий от непараллельных перемещений временной структуры процентных ставок, определялся автором как решение задачи оптимизации

, (2.1.24)

, (2.1.25)

. (2.1.26)

Для каждого иммунизированного портфеля рассчитывалась его рыночная стоимость на дату ребалансировки, наступающую через 4, 8 и 12 недель после момента формирования. При этом автор использовал допущение, что все денежные поступления реинвестируются по спот--ставкам, установившимся в момент выплаты купона или погашения облигации, для срока, остающегося до момента ребалансировки. Дальнейший анализ проводился путем сравнения выборок доходностей иммунизированных портфелей hp и доходностей бескупонных облигаций с заданными сроками до погашения hb за интервал ребалансировки, которые рассчитывались по формулам

, (2.1.27)

, (2.1.28)

где u - продолжительность интервала ребалансировки, m - срок иммунизации, tf - момент формирования иммунизированного портфеля, tu - момент ребалансировки, s(t,) - спот-ставка для срока вложений в момент времени t, СFi - денежное поступление от иммунизированного портфеля в момент времени ti.

В целях изучения характера связи между доходностями иммунизированных портфелей и доходностями бескупонных облигаций автором были оценены параметры линейного уравнения регрессии

hp = a + b hb + . (2.1.29)

Оценки параметров a и b, а также коэффициенты корреляции r(hb,hp) и основные статистические характеристики распределений доходностей иммунизированных портфелей и p приведены в таблице 2.1.1.

Таблица 2.1.1.

Результаты тестирования эффективности применения моделей иммунизации процентного риска портфелей ГКО-ОФЗ от параллельных и непараллельных сдвигов временной структуры процентных ставок в январе 2000 - марте 2001 г.

название модели

u

m

p

r

a

b

Фишера-Вейла

4

26

0.28

0.21

0.7935

0.0575

0.6697

Фишера-Вейла

4

52

0.48

0.43

0.8233

0.0666

0.7273

Фишера-Вейла

4

78

0.65

0.63

0.8539

0.0561

0.7905

Фишера-Вейла

4

104

0.79

0.80

0.8733

0.0517

0.8237

Фишера-Вейла

8

26

0.28

0.20

0.8434

-0.0045

0.9790

Фишера-Вейла

8

52

0.48

0.38

0.8815

-0.0245

1.0013

Фишера-Вейла

8

78

0.63

0.53

0.9020

-0.0117

0.9640

Фишера-Вейла

8

104

0.74

0.64

0.9083

0.0186

0.8928

Фишера-Вейла

12

26

0.28

0.17

0.8835

-0.0288

1.1814

Фишера-Вейла

12

52

0.47

0.32

0.9126

-0.0463

1.1533

Фишера-Вейла

12

78

0.61

0.44

0.9292

-0.0436

1.0932

Фишера-Вейла

12

104

0.71

0.52

0.9354

-0.0180

0.9939

Фонга-Васичека

4

26

0.33

0.22

0.9919

-0.0026

0.9864

Фонга-Васичека

4

52

0.56

0.44

0.9953

0.0152

0.9571

Фонга-Васичека

4

78

0.74

0.66

0.9956

0.0154

0.9570

Фонга-Васичека

4

104

0.88

0.87

0.9896

0.0381

0.9365

Фонга-Васичека

8

26

0.29

0.15

0.9844

-0.0054

0.9970

Фонга-Васичека

8

52

0.49

0.33

0.9914

-0.0006

0.9794

Фонга-Васичека

8

78

0.65

0.52

0.9913

-0.0104

0.9878

Фонга-Васичека

8

104

0.78

0.67

0.9902

0.0227

0.9415

Фонга-Васичека

12

26

0.26

0.12

0.9835

-0.0133

1.0265

Фонга-Васичека

12

52

0.44

0.23

0.9847

0.0288

0.9148

Фонга-Васичека

12

78

0.58

0.35

0.9748

0.0381

0.9006

Фонга-Васичека

12

104

0.73

0.53

0.9890

-0.0060

1.0216

двухкомпонентая

4

26

0.34

0.22

0.9971

0.0044

0.9841

двухкомпонентая

4

52

0.56

0.45

0.9973

0.0054

0.9758

двухкомпонентая

4

78

0.74

0.67

0.9958

0.0121

0.9592

двухкомпонентая

4

104

0.84

0.82

0.9918

0.0410

0.8942

двухкомпонентая

8

26

0.29

0.15

0.9929

0.0037

0.9894

двухкомпонентая

8

52

0.50

0.33

0.9964

0.0002

0.9895

двухкомпонентая

8

78

0.65

0.51

0.9924

-0.0092

0.9851

двухкомпонентая

8

104

0.77

0.64

0.9924

0.0339

0.9178

двухкомпонентая

12

26

0.26

0.11

0.9990

-0.0038

1.0163

двухкомпонентая

12

52

0.45

0.24

0.9981

0.0047

0.9763

двухкомпонентая

12

78

0.59

0.38

0.9971

-0.0097

0.9966

двухкомпонентая

12

104

0.70

0.49

0.9964

0.0116

0.9504

Расчеты автора показывают, что самые низкие значения коэффициента корреляции между доходностями бескупонной облигации и иммунизированного портфеля характерны для модели Фишера-Вейла, критерий оптимальности которой заключается в максимизации показателя M2. Это наблюдение свидетельствует о том, что значительная часть перемещений временной структуры процентных ставок на рынке ГКО-ОФЗ достаточно далека от параллельных сдвигов. Портфели с широко распределенными во времени денежными поступлениями, иммунизированные от параллельных перемещений временной структуры, не обеспечивают на рынке ГКО-ОФЗ надежной защиты инвестора от процентного риска. При этом повышенный уровень риска не компенсируется приращением доходности вложений. По итогам проведенных тестов средняя доходность портфелей, иммунизированных с использованием критерия Фонга-Васичека, оказалась равной 55.99%, а средняя доходность портфелей, иммунизированных с использованием критерия максимизации показателя M2, составила лишь 53.30%.

Двухкомпонентная модель иммунизации и модель защиты от параллельных сдвигов временной структуры процентных ставок, использующая критерий Фонга-Васичека, оказались способными обеспечить гораздо более высокий уровень эффективности. Коэффициент корреляции между доходностями бескупонных облигаций и иммунизированных портфелей составил 0.9956 при использовании двухкомпонентной модели и 0.9885 при использовании модели Фонга-Васичека. При этом меньшая точность аппроксимации траектории роста цены бескупонной облигации при использовании модели Фонга-Васичека частично компенсировалась небольшим (на 0.25%) превышением средней доходности вложений над аналогичным показателем для портфелей, иммунизированных при помощи двухкомпонентной модели.

Таблица 2.1.1 показывает, что при увеличении интервала ребалансировки коэффициент корреляции между доходностями иммунизированного портфеля и бескупонной облигации возрастает при использовании модели Фишера-Вейла, убывает при использовании модели Фонга-Васичека и остается на приблизительно постоянном уровне при использовании двухкомпонентной модели. Стратегия защиты от непараллельных сдвигов временной структуры процентных ставок, ограничивающаяся использованием критерия Фонга-Васичека, оказывается эффективной лишь при размещении средств на короткие сроки и осуществлении частых ребалансировок, сопряженных с высокими трансакционными издержками. При выборе «гантельных» портфелей, формируемых на основе критерия максимизации показателя M2, частые корректировки структуры не требуются, но уровень остаточного риска недопустимо велик. Наиболее эффективное решение проблемы иммунизации обеспечивается двухкомпонентной моделью, при использовании которой можно обойтись без многочисленных ребалансировок при поддержании остаточного процентного риска на минимальном уровне.

Значительная часть перемещений временной структуры процентных ставок рынка ГКО-ОФЗ не соответствует предположению о параллельном сдвиге, использованному в модели иммунизации Фишера-Вейла. Поэтому портфели ГКО-ОФЗ, иммунизированные по методу Фишера-Вейла, не обеспечивают надежной защиты инвестора от процентного риска. Практическое применение разработанной диссертантом модели иммунизации портфеля ГКО-ОФЗ от непараллельных перемещений временной структуры процентных ставок, которая базируется на использовании вектора показателей дюрации по двум первым главным компонентам временной структуры и критерия оптимизации Фонга-Васичека, позволяет инвесторам добиваться более высокого уровня защищенности от процентного риска.

Оптимальная стратегия действий наиболее осторожных участников рынка ГКО-ОФЗ, размещающих свои средства на достаточно продолжительные сроки, заключается в минимизации чувствительности портфеля к воздействию общих факторов сдвига временной структуры процентных ставок. Мы рекомендуем таким инвесторам использовать двухкомпонентную модель иммунизации и осуществлять регулирование остаточного риска в соответствии с критерием Фонга-Васичека.

2.2. Риск смещения временных премий на рынке ГКО-ОФЗ и модель его иммунизации.

В классической теории иммунизации процентного риска портфеля облигаций для описания будущих ставок реинвестирования денежных поступлений от портфеля и дисконтирования денежных платежей по ценным бумагам, входящим в состав портфеля на дату окончания периода вложений, используются форвардные процентные ставки. Как следует из теории чистых ожиданий, значения форвардных ставок можно рассматривать в качестве рыночных прогнозов значений спот-ставок, которые установятся в будущем. Однако при нарушении предпосылок теории чистых ожиданий форвардные ставки оказываются смещенными оценками будущих спот-ставок, а модель иммунизации, основанная на их использовании, становится неадекватной условиям рынка.

Теория чистых ожиданий базируется на предпосылке, согласно которой инвесторы абсолютно нейтральны к процентному риску. Концепция иммунизации основывается на прямо противоположном представлении о склонностях инвесторов, согласно которому процентный риск совершенно неприемлем. Инвестор, осуществляющий иммунизацию процентного риска, не может быть участником рынка, описываемого теорией чистых ожиданий. По мнению диссертанта, такое противоречие означает, что теория чистых ожиданий не может корректно использоваться при выводе условий иммунизации процентного риска портфеля облигаций.

Признание некорректности использования форвардных ставок в качестве оценок будущих ставок реинвестирования и дисконтирования ставит теоретическую проблему разработки новой модели иммунизации, основанной на ином допущении о будущих значениях спот-ставок. Для этого необходимо использовать альтернативную теорию временной структуры процентных ставок, лучше совместимую с концепцией иммунизации.

Теория чистых ожиданий не является единственной концепцией, объясняющей различия между процентными ставками для различных сроков вложений. Согласно теории сегментации рынка, инвесторы стремятся к полному устранению процентного риска, поэтому они точно согласовывают сроки платежей по своим пассивам и активам. Отсюда процентная ставка для любого срока вложений определяется исключительно соотношением спроса и предложения на рынке финансовых инструментов соответствующей срочности. Поскольку стратегии инвесторов абсолютно пассивны, они не испытывают потребности в формировании ожиданий по поводу будущих значений процентных ставок. Такая природа процесса принятия решений исключает всякую возможность извлечения полезной информации о будущих значениях процентных ставок из текущей временной структуры. Таким образом, теория сегментации рынка хорошо согласуется с предположением о склонностях инвесторов, которое используется концепцией иммунизации, но не предлагает никакого конструктивного решения проблемы моделирования будущих ставок реинвестирования и дисконтирования.

Согласно теории временных предпочтений, инвесторы также стремятся к устранению процентного риска. Однако многие из них считают риск допустимым, если он позволяет добиваться адекватного приращения средней доходности вложений. Поэтому формирование прогнозов будущих изменений конъюнктуры становится ключевым элементом процесса торговли, а рыночные оценки будущих значений спот-ставок оказываются выводимыми из текущей временной структуры и значений временных премий. Поскольку теория временных предпочтений не исключает возможности присутствия на рынке иммунизирующих инвесторов, а также предлагает способ оценки будущих значений спот-ставок, ее можно использовать при выводе условий иммунизации.

Присутствие временных премий делает форвардные ставки смещенными оценками будущих спот-ставок и оказывает существенное влияние на эффективность операций с облигациями. Определим временную премию l(tg,th) как разность между форвардной ставкой f(tg,th) и спот-ставкой для срока вложений th-tg, которая установится через период tg, s(tg,th-tg):

. (2.2.1)

Тогда стоимость портфеля облигаций через период m представляет собой функцию форвардных ставок и временных премий:

, (2.2.2)

где CFi - денежный платеж, выплачиваемый владельцу портфеля через период времени ti после момента его формирования, - наращенная стоимость полученных и реинвестированных денежных платежей через период m, - дисконтированная стоимость неполученных денежных платежей через период m.

Значения форвардных ставок в момент формирования портфеля фиксированы, поэтому они не являются источником процентного риска. Напротив, значения временных премий могут изменяться, поэтому будущие ставки реинвестирования и дисконтирования могут оказаться отличными от ожидаемых значений. Если произойдет неблагоприятное изменение значений временных премий, инвестор понесет существенные убытки.

Эффект воздействия временной премии на доходность вложений в бескупонные облигации определяется их сроком до погашения. Если срок до погашения бескупонной облигации n превышает продолжительность периода вложений m, возникает необходимость в продаже облигации по цене, определяемой с учетом временной премии. Если срок до погашения бескупонной облигации n меньше продолжительности периода вложений m, возникает необходимость в реинвестировании средств, полученных в результате погашения облигации, по ставке, значение которой также зависит от временной премии. Размер выручки от продажи облигации номинал облигации считается равным единице в конце периода вложений FV(n,m) и доходность операции h(n,m) составят

а) в случае n>m

, (2.2.3)

. (2.2.4)

б) в случае n<m

, (2.2.5)

. (2.2.6)

Уравнения (2.2.4) и (2.2.6), полученные диссертантом, показывают, что когда временные премии принимают положительные значения, доходность операции возрастает с увеличением срока до погашения бескупонной облигации. Если срок до погашения меньше продолжительности периода вложений, ожидаемая доходность операции меньше текущей спот-ставки. Если срок до погашения больше продолжительности периода вложений, ожидаемая доходность операции больше текущей спот-ставки.

Рис.2.2.1. Зависимость среднего значения временной премии рынка ГКО-ОФЗ в апреле 2000 - марте 2001 г. от срока вложений m и размера временного разрыва между датами платежа по облигации и окончания периода вложений g.

Как свидетельствует рис.2.2.1, среднее значение временной премии на рынке ГКО-ОФЗ возрастает с увеличением срока вложений m и убывает с увеличением временного разрыва между датами платежа и окончания периода вложений g=n--m. При всех рассматриваемых сроках среднее значение временной премии является положительным. Это означает, что форвардные ставки выступают в качестве смещенных оценок будущих значений спот-ставок, в большинстве случаев завышающих их фактический уровень. Временные предпочтения инвесторов на рынке ГКО-ОФЗ смещены в сторону краткосрочных облигаций, поэтому осуществление вложений в долгосрочные облигации приносит дополнительное вознаграждение в форме положительной временной премии.

Создавая положительные временные разрывы между датами окончания периода вложений и датами выплаты доходов по облигациям, входящим в состав портфеля, можно добиться повышения доходности вложений за счет увеличения уровня процентного риска. Эта спекулятивная стратегия получила название «игры на кривой доходности» (riding the yield curve) Wann P. Inside the US Treasury market. - N.Y.: Woodhead-Faulkner, 1989. - p.140.. Название объясняется тем, что в ходе такой операции спекулянт стремится добиться получения прибыли за счет перехода от долгосрочного сегмента временной структуры процентных ставок, который используется для дисконтирования платежей по облигациям в момент их приобретения, к краткосрочному сегменту, который будет использован для дисконтирования платежей по облигациям в момент их продажи.

Эффективность спекулятивной операции определяется двумя показателями: средним размером превышения доходности над безрисковой ставкой и среднеквадратическим отклонением этого превышения (ah(m,n)). Они выражаются через характеристики временной премии по формулам

, (2.2.7)

, (2.2.8)

где и (ah(m,n)) - среднее значение и среднеквадратическое отклонение временной премии.

Рис.2.2.2. Средний размер спекулятивной прибыли и уровень риска при реализации стратегии игры на кривой доходности на рынке ГКО-ОФЗ в апреле 2000 - марте 2001 г.

Как свидетельствует рис.2.2.2, на рынке ГКО-ОФЗ при увеличении срока вложений m процентный риск оператора, осуществляющего реализацию стратегии игры на кривой доходности, уменьшается, а размер спекулятивной прибыли возрастает. Таким образом, увеличение срока вложений позволяет добиваться повышения эффективности рассматриваемой спекулятивной операции. Чем больше разрыв между датами платежа по облигации и окончания операции при любом заданном сроке вложений, тем больше уровень процентного риска и тем выше размер ожидаемой прибыли.

В качестве интегрального показателя эффективности стратегии игры на кривой доходности можно использовать отношение среднего размера спекулятивной доходности к его среднеквадратическому отклонению. Чем выше значение этого коэффициента, тем более значимым является приращение доходности в результате создания временного разрыва и тем выше вероятность получения положительной временной премии по итогам каждой конкретной операции.

Рис.2.2.3. Зависимость показателя эффективности стратегии игры на кривой доходности от срока операции и размера временного разрыва между датами платежа по облигации и окончания периода вложений на рынке ГКО-ОФЗ в апреле 2000 - марте 2001 г.

Рис.2.2.3 показывает, что увеличение срока вложений позволяет сделать игру на кривой доходности рынка ГКО-ОФЗ более эффективной в том смысле, что присутствие временной премии становится все более значимым фактором повышения доходности операции. Для любого заданного срока вложений можно добиться максимизации значения коэффициента эффективности путем регулирования размера временного разрыва между датами платежа и окончания периода вложений. Чем продолжительнее срок операции, тем меньший временной разрыв позволяет обеспечить достижение наибольшего значения коэффициента эффективности.

Колебания временных премий подвергают инвесторов процентному риску, но вместе с тем открывают перед ними спекулятивные возможности. Осуществляя краткосрочные операции с долгосрочными облигациями, можно добиться существенного приращения доходности вложений, используя готовность большинства участников рынка ГКО-ОФЗ вознаграждать спекулянтов за отказ от доминирующих временных предпочтений.

Однако для инвесторов, стремящихся к полному устранению процентного риска, колебания временных премий представляют серьезную проблему. Перед ними встает задача иммунизации риска смещения временных премий, то есть поиска такого варианта формирования структуры портфеля, при котором стоимость портфеля на конец периода вложений не может упасть вследствие изменения временных предпочтений рыночных агентов. Эта задача решается при использовании модели иммунизации от смещения временных премий, разработанной диссертантом.

Выводя условия иммунизации от смещения временных премий и предполагая, что период вложений m фиксирован, удобно представить временную премию в качестве функции одного аргумента, определив новую переменную

(2.2.9)

Поскольку

, (2.2.10)

, (2.2.11)

, (2.2.12)

где s(t,) - спот-ставка для срока вложений , установившаяся в момент времени t, s|(t,) - производная спот-ставки по сроку вложений .

Рассмотрим ситуацию, при которой значения временных премий смещаются на одну и ту же величину . Тогда рыночная стоимость портфеля на дату окончания периода вложений окажется равной

. (2.2.13)

Портфель иммунизирован от смещения временных премий, если при любых значениях параметра сдвига выполняется неравенство

FV() FV(0). (2.2.14)

Неравенство (2.2.14) выполняется на всей области определения функции FV(), если в точке =0 достигается глобальный минимум данной функции. Для этого достаточно выполнения двух условий:

1) ; (2.2.15)

2) . (2.2.16)

Дифференцируя функцию FV(), имеем

, (2.2.17)

. (2.2.18)

Поскольку многочлен, стоящий в правой части выражения (2.2.18), не содержит отрицательных членов, второе условие выполняется для любого портфеля. Первое условие выполняется лишь для подмножества портфелей, структура которых удовлетворяет ограничению вида

. (2.2.19)

Это уравнение можно упростить до

, (2.2.20)

где L - чувствительность будущей стоимости портфеля к смещению временных премий, которую можно выразить через чувствительности отдельных облигаций, входящих в состав портфеля, по формуле

, (2.2.21)

где qj - количество облигаций выпуска j, включенных в состав портфеля, СFji - денежный платеж по облигации выпуска j через период времени ti, Lj - показатель чувствительности облигации выпуска j к смещению временных премий.

Чем сильнее распределены денежные поступления от иммунизированного портфеля и чем сильнее облигации, включенные в его состав, реагируют на смещение временных премий, тем более опасными последствиями чреват непараллельный сдвиг функции pm(t). По мнению диссертанта, степень рассеяния денежных поступлений и силу реакции на смещения временных премий можно измерять при помощи квадрата показателя чувствительности L2. Поэтому инвестору, стремящемуся к полному устранению процентного риска, целесообразно следовать стратегии минимизации показателя L2 своего портфеля, выступающего аналогом показателя M2 критерия Фонга-Васичека. Тогда задача иммунизации от смещения временных премий сводится к задаче оптимизации

, (2.2.22)

, (2.2.23)

, (2.2.24)

, (2.2.25)

где Pj - цена облигации выпуска j, MV - объем финансовых ресурсов, выделенных инвестором на формирование портфеля облигаций.

Если рынок описывается теорией временных предпочтений, иммунизируемая доходность вложений не равна текущей спот-ставке. В самом деле, при сохранении временных премий на уровне средних значений стоимость портфеля на конец периода вложений составит

. (2.2.26)

Отсюда минимальный уровень доходности вложений, гарантируемый иммунизированным портфелем, равен

. (2.2.27)

Уравнение (2.2.27) свидетельствует, что классическая стратегия иммунизации портфеля от смещения форвардных ставок и стратегия иммунизации портфеля от смещения временных премий, предложенная автором, преследуют достижение различных целей. В рамках модели иммунизации от смещения форвардных ставок считается, что инвестор всегда может гарантировать себе доходность вложений, равную текущей спот-ставке для заданного срока. В рамках модели иммунизации от смещения временных премий, разработанной диссертантом, такая возможность представляет собой лишь частный случай. В общем случае стратегия иммунизации обеспечивает инвестору минимальный уровень доходности, заданный условием (2.2.27), который может быть больше или меньше соответствующей спот-ставки.

Поскольку целевые уровни доходности в моделях, защищающих от смещения форвардных ставок и временных премий, различаются между собой, тестирование их эффективности должно опираться на сравнение доходностей иммунизированных портфелей с различными эталонами. Для портфеля, иммунизированного от смещения форвардных ставок, роль эталона играет текущая спот-ставка, а для портфеля, иммунизированного от смещения временных премий, эталонная доходность вложений определяется уравнением (2.2.27).

Для того, чтобы произвести сравнение возможностей моделей иммунизации от смещения форвардных ставок и временных премий, по данным торгов на рынке ГКО-ОФЗ, проводимых по средам в течение периода с 6 января по 27 декабря 2000 г., автором были рассчитаны структуры портфелей, иммунизирующих процентный риск для сроков вложений продолжительностью 8 и 12 недель. структуры портфелей, иммунизирующих процентный риск по состоянию на 27.12.2000, приведены в приложении Функция средних значений временных премий описывалась при помощи выборки, включающей значения в 20 различных точках, рассчитанные по данным за последние шесть месяцев. Аналитическое задание функции осуществлялось путем аппроксимации имеющихся наблюдений полиномом шестой степени. По мере накопления новых данных производилась переоценка параметров функции с периодичностью 1 раз в месяц.

В качестве альтернативы модели иммунизации от смещения временных премий рассматривалась модель Фишера-Вейла, использующая критерий оптимальности Фонга-Васичека. Ребалансировки портфелей в течение периода вложений не осуществлялись. Все денежные поступления реинвестировались по спот-ставкам для сроков, остающихся до окончания периода вложений. Доходности иммунизированных портфелей рассчитывались по формуле

, (2.2.28)

где m - срок вложений инвестора, s(t,) - спот-ставка для срока вложений через период времени t после формирования портфеля, СFi - денежное поступление от иммунизированного портфеля через период времени ti после его формирования.

В целях изучения характера связи между доходностями иммунизированных портфелей и целевыми уровнями доходности вложений автором были оценены параметры линейного уравнения регрессии

hp = a + b ht + , (2.2.29)

где ht = s(m) для модели Фишера-Вейла и определяется по формуле (2.2.27) для модели, защищающей от смещения временных премий.

Характеристики распределений доходностей иммунизированных портфелей и p, среднее отклонение доходности иммунизированного портфеля от целевого уровня , а также коэффициенты корреляции между фактическими и целевыми уровнями доходностей и оценки параметров a и b уравнения регрессии (2.2.29) приведены в таблице 2.2.1.

Таблица 2.2.1.

Результаты тестирования эффективности применения моделей иммунизации от смещения форвардных ставок и временных премий на рынке ГКО-ОФЗ в январе 2000 - марте 2001 г.

источник риска

m

p

r

a

b

форвардные ставки

8

0.1200

0.0572

0.0057

0.9697

-0.0084

1.1230

временные премии

8

0.1198

0.0565

-0.0031

0.9843

-0.0056

1.0201

форвардные ставки

12

0.1398

0.0597

0.0055

0.9727

-0.0162

1.1610

временные премии

12

0.1391

0.0591

-0.0043

0.9842

-0.0117

1.0520

Расчеты автора показывают, что портфели, иммунизированные от смещения форвардных ставок и временных премий, близки по структуре и доходности вложений. Однако модель иммунизации от смещения временных премий точнее идентифицирует целевой уровень доходности и лучше обеспечивает его достижение. Коэффициент корреляции между целевыми и фактическими уровнями доходности вложений для модели, защищающей от смещения временных премий, составил 0.9843 при сроке вложений 8 недель и 0.9842 при сроке вложений 12 недель, в то время как для модели иммунизации от сдвигов форвардных ставок этот показатель оказался равным 0.9697 при сроке вложений 8 недель и 0.9727 при сроке вложений 12 недель.

Модели иммунизации портфеля ГКО-ОФЗ, игнорирующие присутствие на рынке временных премий, оказываются неспособными зафиксировать доходность вложений на уровне, соответствующем спот-ставке для заданного срока. Поэтому автор считает, что участникам рынка ГКО-ОФЗ, стремящимся к полному устранению процентного риска при размещении средств на короткие сроки, целесообразно использовать на практике модели иммунизации, опирающиеся на теорию временных предпочтений.

2.3. Сценарный анализ процентного риска портфеля ГКО-ОФЗ.

Классическое решение проблемы управления процентным риском портфеля облигаций дается в рамках теории иммунизации. Однако диссертант не может признать его исчерпывающим по целому ряду причин.

Во-первых, инвестор может столкнуться с проблемой недоступности финансовых инструментов, соответствующих его сроку вложений. Дело в том, что иммунизация является недостижимой, если дюрации всех выпусков облигаций, обращающихся на рынке, превышают срок вложений инвестора. Поэтому на многих рынках при размещении средств на срок в несколько недель иммунизацию вообще невозможно осуществить.

Во-вторых, стремление к полному устранению процентного риска присуще лишь части инвесторов, осуществляющих операции на рынке облигаций. Для остальных инвесторов выбор структуры портфеля зависит от соотношения между ожидаемой доходностью и уровнем процентного риска, которые определяются распределением доходности портфеля для заданного срока вложений. Поскольку теория иммунизации не предлагает никакого решения проблемы оценки параметров распределения доходности портфеля, возникает необходимость в обращении к альтернативным методам.

В-третьих, возможности теории иммунизации достаточно ограничены. Она предлагает способ защиты от единовременных сдвигов временной структуры процентных ставок. Поскольку на реальных рынках колебания процентных ставок происходят постоянно, сохранение портфеля в иммунизированном состоянии требует осуществления многочисленных ребалансировок, в ходе которых структура портфеля приводится в соответствие с новым состоянием рыночной конъюнктуры. Однако стратегия частых ребалансировок сопряжена с чрезмерно высоким уровнем трансакционных издержек, что делает ее неприемлемой для большинства инвесторов. Отказ от проведения ребалансировок подвергает иммунизированный портфель процентному риску, что означает недостижение цели, поставленной при его формировании.

В-четвертых, в процессе управления портфелем облигаций многие инвесторы учитывают собственные предположения о направлении будущих изменений процентных ставок. Теория иммунизации не предлагает никакого инструмента поддержки принятия решений, позволяющего определять структуру оптимального портфеля на основе информации о характере прогнозов инвестора, его склонности к риску и предполагаемых сроках вложений.

Поэтому исследование процентного риска портфеля облигаций должно выходить за рамки теории иммунизации. Диссертант полагает, что научный анализ рисковых портфелей не менее важен, чем изучение условий, при которых процентный риск может быть полностью устранен, и правил достижения безрискового состояния.

Измерение процентного риска неиммунизированного портфеля предполагает оценку параметров распределения доходности портфеля для заданного срока вложений. Эту задачу можно решить, воспользовавшись сценариями будущих перемещений временной структуры процентных ставок. Поскольку процентные ставки для различных сроков вложений тесно коррелируют между собой, они достаточно точно описываются при помощи небольшого числа главных компонент. Поэтому задачу построения сценариев перемещения временной структуры процентных ставок можно свести к задаче построения сценариев изменения значений ее главных компонент.

В ряде исследований американских ученых для моделирования динамики процентных ставок используется модель авторегресии-проинтегрированного скользящего среднего Дж.Бокса-Г.Дженкинса (ARIMA) Бокс Дж., Дженкинс Г. Анализ временных рядов: Прогноз и управление. - М: Мир, 1974. - 408 с.. В частности, П.Кэмпбелл и Р.Шиллер использовали модель ARIMA для описания колебаний долгосрочных процентных ставок Campbell P., Shiller R. A simple account of the behaviour of long-term interest rates. - American Economic Review, 1984, Vol.74, No.1. - p.44-48., Е.Фама и Р.Блисс - для прогнозирования изменений краткосрочных процентных ставок Fama E., Bliss R. The information in long-maturity forward rates. - American Economic Review, 1987, Vol.77, No.4. - p.680-692., Н.Галтекин и Р.Рогальски - для прогнозирования доходностей бескупонных облигаций Gultekin N., Rogalsky R. Government bond returns, measurement of interest rate risk, and the arbitrage pricing theory. - Journal of Finance, 1985, Vol.40, No.1. - p.43-61.. Мы считаем, что моделью ARIMA можно воспользоваться и при построении сценариев изменения значений главных компонент временной структуры процентных ставок.

Модель ARIMA предназначена для описания и прогнозирования динамики нестационарных временных рядов, характеризующихся нестабильным средним значением уровней ряда. Как правило, в ходе анализа рядов динамики процентных ставок можно выявить несколько трендов, последовательно сменяющих друг друга и определяющих движение процентных ставок в течение некоторого промежутка времени. Высокая степень зависимости между элементами ряда, обусловленная этими трендами, находит выражение в высоких значениях выборочного коэффициента автокорреляции для больших лагов. В то же время переход к первым разностям уровней ряда динамики процентной ставки позволяет привести его к стационарному виду: устраняются тренды, стабилизируется среднее значение, а выборочная автокорреляционная функция приобретает затухающую форму. Это свидетельствует о том, что динамика процентных ставок определяется интегрированным нестационарным случайным процессом, который можно описать при помощи модели ARIMA.

Модель ARIMA(p,d,q) задает процесс изменения значений случайной переменной при помощи небольшого числа параметров: степени интегрирования d, p коэффициентов авторегресии и q коэффициентов скользящего среднего. Степень интегрирования d равна числу шагов расчета разностей между последовательными элементами временного ряда, необходимому для приведения исходного ряда к стационарному виду. Полученный стационарный ряд Xt описывается при помощи модели

, (2.3.1)

где - константа (опускаемая в большинстве моделей как незначимо отличающаяся от нуля), i - коэффициенты авторегрессии, j - коэффициенты скользящего среднего, t --- независимо распределенные случайные ошибки.

Математический аппарат, разработанный Боксом и Дженкинсом, позволяет идентифицировать число порядков p, d и q, оценивать параметры i и j, а также строить условные распределения будущих значений уровней исходного временного ряда. Как отмечают С.А.Айвазян и В.С.Мхитарян, в наиболее распространенных моделях ARIMA(p,d,q) используются комбинации порядков (0,1,1), (0,2,2), (1,1,1), (1,1,0) и (2,1,0) Айвазян С.А., Мхитарян В.С. Прикладная статистика и основы эконометрики. - М: ЮНИТИ, 1998. - с.866..

Автор предлагает формировать сценарии будущих перемещений временной структуры процентных ставок, взяв за основу квантили условных распределений будущих значений главных компонент, построенные при помощи модели ARIMA. Для того, чтобы используемые квантили адекватно отражали спектр возможных состояний временной структуры процентных ставок, они должны представлять различные участки распределения, отражать его симметрию, а среднее значение и стандартное отклонение выборки квантилей должны соответствовать прогнозу модели ARIMA и его стандартной ошибке.

Поскольку главные компоненты независимы друг от друга, сценарии временной структуры строятся исходя из всех возможных комбинаций квантилей условного распределения будущих значений главных компонент. В частности, при использовании двухфакторной модели временной структуры процентных ставок и пяти сценариев будущих значений каждой главной компоненты общее число сценариев перемещения временной структуры процентных ставок оказывается равным 25.

Каждый сценарий состояния временной структуры процентных ставок через заданный промежуток времени определяет множество цен облигаций, которые установятся на рынке при реализации данного сценария. Располагая информацией о структуре портфеля, можно рассчитать значение его будущей стоимости при реализации каждого из сценариев по формуле

, (2.3.2)

где FVs(m) - стоимость портфеля через промежуток времени m при реализации сценария перемещения временной структуры процентных ставок s, qj - число облигаций выпуска j, включенных в состав портфеля, - цена облигации выпуска j через промежуток времени m при реализации сценария перемещения временной структуры процентных ставок s.

Используя выборку значений рыночной стоимости портфеля FVs(m) при различных сценариях перемещения временной структуры процентных ставок, можно построить выборку значений доходности портфеля h(m), которая рассчитывается по формуле

, (2.3.3)

где PV - рыночная стоимость портфеля в начальный момент времени.

Формулы (2.3.2) и (2.3.3) можно применять лишь при условии, что в течение периода вложений по портфелю не осуществляется никаких выплат. В противном случае будущая стоимость портфеля определяется не только размером начальных вложений в облигации и состоянием временной структуры процентных ставок через промежуток времени m, но также стратегией реинвестирования и состояниями временной структуры процентных ставок в моменты реинвестирования.

Если не использовать дополнительных предположений, построение репрезентативной выборки значений доходности портфеля требует построения траекторий движения временной структуры процентных ставок в течение всего периода вложений, а не сценариев ее состояния на конец периода. Для решения этой задачи необходимо воспользоваться техникой имитационного моделирования, задавая последовательность изменений значений главных компонент на основе оцененной модели ARIMA и значений ошибок t, сгенерированных при помощи датчика псевдослучайных чисел. Однако такой подход к оценке параметров распределения доходности портфеля требует колоссального объема вычислений и затрат машинного времени.

Автор считает, что в случае, когда стоимость платежей, которые должны быть получены в течение периода вложений, существенно меньше общей стоимости портфеля, целесообразно воспользоваться альтернативным методом. Пусть все купонные платежи, выплачиваемые по облигациям выпуска j, реинвестируются путем приобретения дополнительных облигаций выпуска j. Тогда доходность вложений в каждую облигацию определяется по формуле

, (2.3.4)

где - доходность облигации выпуска j за период времени m при реализации сценария перемещения временной структуры процентных ставок s, - цена облигации выпуска j через промежуток времени m при реализации сценария перемещения временной структуры процентных ставок s, - коэффициент увеличения размера позиции по облигации выпуска j в результате реинвестирования полученных купонных платежей, - цена облигации выпуска j в начальный момент времени.

Поправочный коэффициент зависит не только от размеров и сроков выплаты купонных платежей по облигации, но и от состояния временной структуры процентных ставок в момент реинвестирования, которое определяет цену покупки новых облигаций. Используя предположение об устойчивости динамики временной структуры процентных ставок, можно определить

, (2.3.5)

где Ct - размер купона, выплачиваемого через промежуток времени t, - цена облигации выпуска j через промежуток времени t при реализации сценария перемещения временной структуры процентных ставок, который определяется той же комбинацией квантилей распределения будущих значений главных компонент, что и сценарий состояния временной структуры процентных ставок в конечный момент времени.

Полученная выборка доходностей облигаций позволяет оценить математическое ожидание E(h(m)) и среднеквадратическое отклонение (h(m)) распределения доходности портфеля за период m по формулам

, (2.3.6)

, (2.3.7)

где xj - доля вложений в облигации выпуска j в рыночной стоимости портфеля в начальный момент времени, S - число сценариев перемещения временной структуры процентных ставок, J - число выпусков облигаций, включенных в состав портфеля.

Рис.2.3.1. Методика сценарного анализа процентного риска

портфеля государственных облигаций.

Методика сценарного анализа процентного риска, разработанная диссертантом, дает возможность ответить на ряд вопросов, имеющих как прикладное, так и теоретическое значение. Во-первых, она позволяет измерить ожидаемую доходность и риск портфелей государственных облигаций и сопоставить их с характеристиками альтернативных объектов вложений. Во-вторых, она позволяет оценить характер соотношения между доходностью и риском для различных портфелей облигаций и определить структуру эффективных портфелей, обеспечивающих наибольшую ожидаемую доходность при заданной степени риска. В-третьих, она позволяет выяснить, как изменяются значения показателей доходности и риска при увеличении срока вложений инвестора.

Эти вопросы стоят наиболее актуально на нестабильных развивающихся рынках, характеризующихся высокой изменчивостью конъюнктуры и краткосрочным характером операций большинства инвесторов. Такими признаками в полной мере обладает и российский рынок ГКО-ОФЗ. Поэтому разработанная методика сценарного анализа была использована для раскрытия закономерностей, связывающих на этом рынке структуру портфеля, срок вложений инвестора, ожидаемую доходность и степень риска.

На основе выборки временных структур процентных ставок российского рынка ГКО-ОФЗ, построенной по итогам торгов, проходившим в течение периода с 1 сентября 2000 г. по 28 марта 2001 г., автором была произведена оценка главных компонент вектора десяти спот-ставок для сроков вложений от 0.04 до 2.82 г. Две первые главные компоненты оказались способными объяснить 95.58% суммарной дисперсии выборки, что позволило считать их достаточно репрезентативными для адекватного описания всей временной структуры процентных ставок. Процедура варимаксного вращения осей см. Дубров А.М., Мхитарян В.С., Трошин Л.И. Многомерные статистические методы. - М.: Финансы и статистика, 1998. - с.224. позволила связать главные компоненты с динамикой краткосрочных и долгосрочных процентных ставок. Первая главная компонента, отвечающая за уровень краткосрочных процентных ставок, объясняла 47.82% суммарной дисперсии выборки, вторая, отвечающая за уровень долгосрочных ставок - 47.76%.

В рамках методики, разработанной диссертантом, построение сценариев будущих значений главных компонент временной структуры процентных ставок предполагает идентификацию моделей случайных процессов, которые определяют характер их динамики. Для этого использовался анализ автокорреляционных и частных автокорреляционных функций рядов первых разностей.

Рис.2.3.2. Автокорреляционная функция первой разности

главной компоненты уровней краткосрочных процентных ставок.

Рис.2.3.3. Частная автокорреляционная функция первой разности

главной компоненты уровней краткосрочных процентных ставок.

Автокорреляционные функции первых разностей главных компонент временной структуры процентных ставок имеют резко выделяющиеся отрицательные значения на лаге 1. Частные автокорреляционные функции напоминают затухающие экспоненты. Поэтому динамика первых разностей главных компонент временной структуры процентных ставок описывается моделью скользящего среднего первого порядка MA(1) с положительным значением параметра 1:

Yt = t - 1 t-1. (2.3.8)

Результаты оценки параметров моделей подтвердили правильность произведенной идентификации. Все параметры оказались статистически значимыми, автокорреляция остатков не была обнаружена. Таким образом, динамика главных компонент временной структуры процентных ставок рынка ГКО-ОФЗ вполне удовлетворительно описывается моделями ARIMA(0,1,1).

Модели динамики главных компонент, оцененные автором, позволили построить сценарии будущих перемещений временной структуры процентных ставок. Сценарии строились на основе квантилей уровней 0.08, 0.24, 0.5, 0.76 и 0.92 условных распределений будущих значений главных компонент, период построения сценариев охватывал 8 недель. Таким образом, общее число сценариев оказалось равным 200. На основе значений ставок-представителей, соответствующих каждому сценарию будущих значений главных компонент, было сформировано множество сценариев перемещения временной структуры процентных ставок, которое позволило оценить ожидаемую доходность и процентный риск различных портфелей государственных облигаций.

Особый интерес представляет среднеквадратическое отклонение доходности рыночного портфеля ГКО-ОФЗ, которое отражает уровень риска на рынке в целом. В целях сопоставления изменчивости доходности операций на рынке ГКО-ОФЗ с изменчивостью доходности в других сегментах российского финансового рынка построенная выборка сценариев перемещения временной структуры процентных ставок была использована для оценки среднеквадратического отклонения доходности рыночного портфеля ГКО-ОФЗ, которая рассчитывалась по формуле

, (2.3.9)

где Vj - объем выпуска j в обращении по номиналу по состоянию на 28.03.2001.

В качестве представителей других сегментов финансового рынка нами рассматривались обменный курс доллара США к российскому рублю, а также индекс Российской торговой системы (РТС). Среднеквадратические отклонения доходностей вложений в доллар США и индекс РТС для сроков от 1 до 8 недель были рассчитаны на основе исторических выборок за период с 31.09.2000 по 28.03.2001.

Рис.2.3.4. Зависимость натурального логарифма среднеквадратического отклонения доходности от срока вложений инвестора в различных сегментах российского финансового рынка.

Как свидетельствует рис.2.3.4, уровень риска, связанного с размещением средств на рынке ГКО-ОФЗ, существенно меньше (примерно в 9.7 раза) уровня риска операций на рынке акций, но больше (примерно в 2.6 раза) уровня риска операций на валютном рынке. На всех сегментах финансового рынка наблюдается обратная зависимость между сроком вложений и среднеквадратическим отклонением рыночной доходности. Следовательно, уменьшение уровня риска портфеля государственных облигаций при увеличении срока вложений не следует связывать с сокращением разрыва между дюрацией и сроком вложений. Гораздо сильнее проявляется другой эффект, общий для всех сегментов финансового рынка и обусловленный удлинением периода начисления процентов и увеличением знаменателя формулы расчета доходности.

Методика сценарного анализа, разработанная диссертантом, позволяет получить ответ на один спорный вопрос теории процентного риска портфелей ценных бумаг с фиксированным доходом применительно к рынку ГКО-ОФЗ. Дело в том, что в литературе высказываются два прямо противоположных мнения по поводу связи между дюрацией неиммунизированного портфеля и уровнем процентного риска, которому подвержен его владелец. Как полагают Г.Бьервэг, Г.Кауфман и А.Тоевс, зависимость между дюрацией портфеля и уровнем процентного риска близка к функциональной Bierwag G., Kaufman G., Toevs A. Single factor duration models in a discrete general equilibrium framework. - Journal of Finance, 1982, Vol.37, No.2. - p.325-38.. Чем больше абсолютное значение разности между дюрацией и сроком вложений, тем больше среднеквадратическое отклонение доходности портфеля и тем больше процентный риск, которому подвергается инвестор. Напротив, Р.Даттатрейа и Ф.Фабоззи считают, что показатель дюрации не может адекватно отражать степень подверженности процентному риску владельца портфеля, поскольку он учитывает лишь малую часть спектра возможных сценариев перемещения временной структуры процентных ставок Dattatreya R., Fabozzi F. Active total return management of fixed-income portfolios. - Chicago: Irwin, 1995. - p.105.. Возможность непараллельных перемещений временной структуры, не учитываемая большинством показателей дюрации, оказывает существенное воздействие на уровень процентного риска портфеля, поэтому портфели, имеющие равные дюрации, могут характеризоваться различными среднеквадратическими отклонениями распределения доходности за период вложений инвестора.

Для того, чтобы выяснить, какая из точек зрения более адекватна ситуации, сложившейся на российском рынке ГКО-ОФЗ, нужно построить область возможных комбинаций значений дюрации и среднеквадратического отклонения доходности вложений. Для этого необходимо найти наибольшие и наименьшие значения функции

, (2.3.10)

удовлетворяющие системе ограничений

, (2.3.11)

, (2.3.12)

, (2.3.13)

где - дюрация Фишера-Вейла облигации выпуска j, - целевое значение дюрации портфеля.

Рис.2.3.5. Диапазон возможных соотношений между дюрацией и среднеквадратическим отклонением доходности портфеля при сроке вложений 8 недель на рынке ГКО-ОФЗ по состоянию на 28.03.2001.

Расчеты автора показывают, что среднеквадратическое отклонение доходности неиммунизированного портфеля возрастает с увеличением разрыва между его дюрацией Фишера-Вейла и сроком вложений инвестора. Однако зависимость между дюрацией и среднеквадратическим отклонением доходности портфеля не является функциональной. Как показывает рис.2.3.5, среди портфелей с одинаковой дюрацией наблюдается достаточно существенная вариация среднеквадратического отклонения доходности вложений. Таким образом, позиция Р.Даттатрейа и Ф.Фабоззи находит подтверждение на рынке ГКО-ОФЗ.


Подобные документы

  • Управление риском. Стандартное отклонение портфеля. Коэффициент корреляции. Кривые безразличия. Теорема об эффективном множестве. Графическое решение задачи выбора индивидуального оптимального портфеля. Математическая модель Марковица. Модель CAРM.

    курсовая работа [366,8 K], добавлен 18.01.2016

  • Определение размера погасительного платежа при начислении процентов по простым, сложным процентным и учетным ставкам. Методы расчета ссуды по простым фиксированным процентным ставкам. Математическое дисконтирование при простой процентной ставке.

    контрольная работа [27,9 K], добавлен 17.03.2014

  • Основные понятия финансовых рисков и их классификация. Оценка риска. Риск-менеджмент. Методы управления риском. Снижение потерь, связанных с риском, до минимума. Смягчение крутых поворотов на рынке. Управление активами и пассивами.

    курсовая работа [36,8 K], добавлен 04.02.2007

  • Понятие портфеля ценных бумаг, его виды и основные принципы формирования. Модель ценообразования на основной капитал: применение парного регрессионного анализа. Вывод линейной зависимости между риском и прибылью. Составление оптимального портфеля.

    дипломная работа [339,5 K], добавлен 19.05.2013

  • Сущность и особенности долговых ценных бумаг. Методики оценки риска ценных бумаг и стоимости разных видов облигаций. Методы формирования портфеля ценных бумаг. Современное состояние и тенденции развития рынка российских государственных ценных бумаг.

    дипломная работа [1,6 M], добавлен 26.02.2010

  • Финансовые риски, их классификация и особенности. Подходы к управлению (уменьшению) финансовыми рисками: лимитирование, диверсификация, страхование. Подходы к выбору оптимального портфеля. Влияние безрискового кредитования на эффективное множество.

    шпаргалка [116,1 K], добавлен 01.02.2011

  • Установление в общем виде причин и последствий глобального кризиса для хозяйственной системы Украины, представления о соотношении его эндогенных и экзогенных факторов. Деформация связей между доходностью и риском, глобальные перекосы и диспропорции.

    контрольная работа [611,5 K], добавлен 23.08.2010

  • Понятие, классификация государственных облигаций. Правовое регулирование рынка ценных бумаг в России. Внутренние и внешние долговые обязательства страны. Показатели и методы оценки доходности облигаций. Анализ финансового рынка корпоративных облигаций.

    курсовая работа [2,4 M], добавлен 15.12.2014

  • Инвестирование на рынке ценных бумаг не может не сопровождаться риском, под которым понимается неопределенность финансовых результатов. Необходимость управления риском, связанное с определением количественных вероятностей наступления определенных событий.

    реферат [24,8 K], добавлен 08.12.2010

  • Показатели чувствительности к процентным ставкам. Понятие кредитного риска. Стратегия эффективного управления процентной маржей и спредом. Инвестиционные банки в управлении активами и пассивами. Сущность и расчет временной структуры процентных ставок.

    презентация [314,7 K], добавлен 06.09.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.