Устройство дальномера
Основные задачи геодезии. Физические основы измерений расстояния на длинные дистанции. Принципы действия лазерного и оптического дальномеров. Особенности их конструкции. Виды и применение приборов. Измерение нитяным дальномером наклонного расстояния.
Рубрика | Геология, гидрология и геодезия |
Вид | курсовая работа |
Язык | русский |
Дата добавления | 03.12.2014 |
Размер файла | 645,6 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ
Государственное образовательное учреждение высшего профессионального образования
МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ ИНСТИТУТ РАДИОТЕХНИКИ ЭЛЕКТРОНИКИ И АВТОМАТИКИ (ТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ)
КУРСОВАЯ РАБОТА
по дисциплине
«Физические основы измерений»
Тема: Устройство дальномера
№ студенческой группы исполнителя - ЭС-2-08
исполнитель - Прусаков А. А.
Москва 2010
Содержание
Введение
1. Виды дальномеров
2. Лазерный дальномер
2.1 Физические основы измерений и принцип действия
2.2 Особенности конструкции и принцип работы. Виды и применение
3. Оптический дальномер
3.1 Физические основы измерений и принцип действия
3.1.1 Нитяной дальномер с постоянным углом
3.1.2 Измерение нитяным дальномером наклонного расстояния
3.2 Особенности конструкции и принцип работы
Вывод
Библиографический список
Введение
Дальномер -- устройство, предназначенное для определения расстояния от наблюдателя до объекта. Используется в геодезии, для наводки на резкость в фотографии, в прицельных приспособлениях оружия, систем бомбометания и т.д.
Геодемзия -- отрасль производства, связанная с измерениями на местности. Является неотъемлемой частью строительных работ. С помощью геодезии проекты зданий и сооружений переносятся с бумаги в натуру с миллиметровой точностью, рассчитываются объемы материалов, ведется контроль за соблюдением геометрических параметров конструкций. Также находит применение в горном деле для расчета взрывных работ и объемов породы.
Основные задачи геодезии:
Среди многих задач геодезии можно выделить «долговременные задачи» и «задачи на ближайшие годы».
К долговременным задачам относятся:
§ определение фигуры, размеров и гравитационного поля Земли;
§ распространение единой системы координат на территорию отдельного государства, континента и всей Земли в целом;
§ выполнение измерений на поверхности земли;
§ изображение участков поверхности земли на топографических картах и планах;
§ изучение глобальных смещений блоков земной коры.
В настоящее время основные задачи на ближайшие годы в России следующие:
§ создание государственных и локальных кадастров: земельного, недвижимости, водного, лесного, городского и т. д.;
§ топографо-геодезическое обеспечение делимитации (определения) и демаркации (обозначения) государственной границы России;
§ разработка и внедрение стандартов в области цифрового картографирования;
§ создание цифровых и электронных карт и их банков данных;
§ разработка концепции и государственной программы повсеместного перехода на спутниковые методы автономного определения координат;
§ создание комплексного национального атласа России и другие.
Лазерная дальнометрия является одной из первых областей практического применения лазеров в зарубежной военной технике. Первые опыты относятся к 1961 году, а сейчас лазерные дальномеры используются и в наземной военной технике (артиллерийские, таковые), и в авиации (дальномеры, высотомеры, целеуказатели), и на флоте. Эта техника прошла боевые испытания во Вьетнаме и на Ближнем Востоке. В настоящее время ряд дальномеров принят на вооружение во многих армиях мира.
Рис. 1 - Лазерный прицел-дальномер. Впервые применялся на Т72А
1. Виды дальномеров
Дальномерные приспособления делятся на активные и пассивные:
§ активные:
§ звуковой дальномер
§ световой дальномер
§ лазерный дальномер
§ и др.
§ пассивные:
§ дальномеры, использующие оптический параллакс (напр. дальномерный фотоаппарат)
§ дальномеры, использующие сопоставление объекта какому-либо образцу
§ и др.
Принцип действия дальномеров активного типа состоит в измерении времени, которое затрачивает посланный дальномером сигнал для прохождения расстояния до объекта и обратно. Скорость распространения сигнала (скорость света или звука) считается известной.
Измерение расстояний дальномерами пассивного типа основано на определении высоты h равнобедренного треугольника ABC, например по известной стороне AB = l (базе) и противолежащему острому углу b (т. н. параллактическому углу). При малых углах b (выраженных в радианах)
h = l/ b (1.1)
Одна из величин, l или b, обычно является постоянной, а другая -- переменной (измеряемой). По этому признаку различают дальномеры с постоянным углом и дальномеры с постоянной базой.
2. Лазерный дальномер
Лазерный дальномер -- прибо р для измерения расстояний с применением лазерного луча.
Широко применяется в инженерной геодезии, при топографической съёмке, в военном деле, в навигации, в астрономических исследованиях, в фотографии.
Лазерный дальномер это устройство, состоящее из импульсного лазера и детектора излучения. Измеряя время, которое затрачивает луч на путь до отражателя и обратно и зная значение скорости света, можно рассчитать расстояние между лазером и отражающим объектом.
Рис. 2 Современные модели лазерных дальномеров.
Способность электромагнитного излучения распространяться с постоянной скоростью дает возможность определять дальность до объекта. Так, при импульсном методе дальнометрирования используется следующее соотношение:
L=ct/2n (2.1.)
где L -- расстояние до объекта, c -- скорость света в вакууме, n -- показатель преломления среды, в которой распространяется излучение, t -- время прохождения импульса до цели и обратно.
Рассмотрение этого соотношения показывает, что потенциальная точность измерения дальности определяется точностью измерения времени прохождения импульса энергии до объекта и обратно. Ясно, что чем короче импульс, тем лучше.
2.1 Физические основы измерений и принцип действия
Задача определения расстояния между дальномером и целью сводится к измерению соответствующего интервала времени между зондирующим сигналом и сигналом, отражения от цели. Различают три метода измерения дальности в зависимости от того, какой характер модуляции лазерного излучения используется в дальномере: импульсный, фазовый или фазово-импульсный. Сущность импульсного метода дальнометрирования состоит в том, что к объекту посылается зондирующий импульс, он же запускает временной счетчик в дальномере. Когда отраженный объектом импульс приходит к дальномеру, то он останавливает работу счетчика. По временному интервалу автоматически высвечивается перед оператором расстояние до объекта. Оценим точность такого метода дальнометрирования, если известно, что точность измерения интервала времени между зондирующим и отраженным сигналами соответствует 10 в -9 с. Поскольку можно считать, что скорость света равна 3*10в10 см/с, получим погрешность в изменении расстояния около 30 см. Специалисты считают, что для решения ряда практических задач этого вполне достаточно.
При фазовом методе дальнометрирования лазерное излучение модулируется по синусоидальному закону. При этом интенсивность излучения меняется в значительных пределах. В зависимости от дальности до объекта изменяется фаза сигнала, упавшего на объект. Отраженный от объекта сигнал придет на приемное устройство также с определенной фазой, зависящей от расстояния. Оценим погрешность фазового дальномера, пригодного работать в полевых условиях. Специалисты утверждают, что оператору не сложно определить фазу с ошибкой не более одного градуса. Если же частота модуляции лазерного излучения составляет 10 Мгц, то тогда погрешность измерения расстояния составит около 5 см.
По принципу действия дальномеры подразделяются на две основные группы, геометрического и физического типов.
Рис. 3 Принцип действия дальномера
Первую группу составляют геометрические дальномеры. Измерение расстояний дальномером такого типа основано на определении высоты h равнобедренного треугольника ABC (рис. 3) например по известной стороне АВ = I (базе) и противолежащему острому углу. Одна из величин, I обычно является постоянной, а другая -- переменной (измеряемой). По этому признаку различают дальномеры с постоянным углом и дальномеры с постоянной базой. Дальномер с постоянным углом представляет собой подзорную трубу с двумя параллельными нитями в поле зрения, а базой служит переносная рейка с равноотстоящими делениями. Измеряемое дальномером расстояние до базы пропорционально числу делений рейки, видимых в зрительную трубу между нитями. По такому принципу работают многие геодезические инструменты (теодолиты, нивелиры и др.). Относительная погрешность нитяного дальномера -- 0,3-1%. Более сложные оптические дальномеры с постоянной базой, построены на принципе совмещения изображений объекта, построенными лучами прошедшими различные оптические системы дальномера. Совмещение производится с помощью оптического компенсатора, расположенного в одной из оптических систем, а результат измерения прочитывается по специальной шкале. Монокулярные дальномеры с базой 3-10 см широко применяются в качестве фотографических дальномеров. Погрешность оптических дальномеров с постоянной базой менее 0,1% от измеряемого расстояния.
Принцип действия дальномера физического типа состоит в измерении времени, которое затрачивает посланный дальномером сигнал для прохождения расстояния до объекта и обратно. Способность электромагнитного излучения распространяться с постоянной скоростью дает возможность определять дальность до объекта. Различают импульсный и фазовый методы измерения дальности.
При импульсном методе к объекту посылается зондирующий импульс, который запускает временной счетчик в дальномере. Когда отраженный объектом импульс возвращается к дальномеру, то он останавливает работу счетчика. По временному интервалу (задержке отраженного импульса), с помощью встроенного микропроцессора, определяется расстояние до объекта:
L=ct/2 (2.2.)
где: L -- расстояние до объекта, с -- скорость распространения излучения, t -- время прохождения импульса до цели и обратно.
Рис. 4 - Принцип действия дальномера геометрического типа АВ -база, h -измеряемое расстояние
При фазовом методе -- излучение модулируется по синусоидальному закону с помощью модулятора (электрооптического кристалла, меняющего свои параметры под воздействием электрического сигнала). Отраженное излучение попадает в фотоприемник, где выделяется модулирующий сигнал. В зависимости от дальности до объекта изменяется фаза отраженного сигнала относительно фазы сигнала в модуляторе. Измеряя разность фаз, измеряется расстояние до объекта.
2.2 Особенности конструкции и принцип работы. Виды и применение
Первый лазерный дальномер ХМ-23 прошел испытания, и был принят на вооружение армий. Он рассчитан на использование в передовых наблюдательных пунктах сухопутных войск. Источником излучения в нем является лазер на рубине с выходной мощностью 2.5 Вт и длительностью импульса 30нс. В конструкции дальномера широко используются интегральные схемы. Излучатель, приемник и оптические элементы смонтированы в моноблоке, который имеет шкалы точного отчета азимута и угла места цели. Питание дальномера производится то батареи никелево-кадмиевых аккумуляторов напряжением 24в, обеспечивающей 100 измерений дальности без подзарядки. В другом артиллерийской дальномере, также принятом на вооружение армий, имеется устройство для одновременного определения дальности до четырех целей., лежащих на одной прямой, путем последовательного стробирования дистанций 200,600,1000, 2000 и 3000м.
Интересен шведский лазерный дальномер. Он предназначен для использования в системах управления огнем бортовой корабельной и береговой артиллерии. Конструкция дальномера отличается особой прочностью, что позволяет применять его в сложенных условиях. Дальномер можно сопрягать при необходимости с усилителем изображения или телевизионным визиром. Режим работы дальномера предусматривает либо измерения через каждые 2с. в течение 20с. и с паузой между серией измерений в течение 20с. либо через каждые 4с. в течение длительного времени. Цифровые индикаторы дальности работают таким образом, что когда один из индикаторов выдает последнюю измеренную дальность, и в памяти другого хранятся четыре предыдущие измерения дистанции.
Весьма удачным лазерным дальномерам является LP-4. Он имеет в качестве модулятора добротности оптико-механический затвор. Приемная часть дальномера является одновременно визиром оператора. Диаметр входной оптической системы составляет 70мм. Приемником служит портативный фотодиод, чувствительность которого имеет максимальное значение на волне 1,06 мкм. Счетчик снабжен схемой стробирования по дальности, действующей по установке оператора от 200 до 3000м. В схеме оптического визира перед окуляром помещен защитный фильтр для предохранения глаза оператора от воздействия своего лазера при приеме отраженного импульса. Излучатель в приемник смонтированы в одном корпусе. Угол места цели определяется в пределах + 25 градусов. Аккумулятор обеспечивает 150 измерений дальности без подзарядки , его масса всего 1 кг. Дальномер прошел испытания и был закуплен в ряде стран таких как - Канада, Швеция, Дания , Италия, Австралия. Кроме того, министерство обороны Великобритании заключило контракт на поставку английской армии модифицированного дальномера LP-4 массой в 4.4.кг.
Портативные лазерные дальномеры разработаны для пехотных подразделений и передовых артиллерийской наблюдателей. Один из таких дальномеров выполнен в виде бинокля. Источник излучения и приемник смонтированы в общем корпусе, с монокулярным оптическим визиром шестикратного увеличения, в поле зрения которого имеется световое табло из светодиодов, хорошо различимых как ночью, так и днем. В лазере в качестве источника излучения используется аллюминиево-иттриевый гранат, с модулятором добротности на ниобате лития. Это обеспечивает пиковую мощность в 1,5 Мвт. В приемной части используется сдвоенный лавинный фотодетектор с широкополосным малошумящим усилителем , что позволяет детектировать короткие импульсы с малой мощностью, составляющей всего 10 в -9 Вт. Ложные сигналы , отраженные от близлежащих предметов, находящихся в стволе с целью, исключается с помощью схемы стробирования по дальности. Источником питания является малогабаритная аккумуляторная батарея, обеспечивающая 250 измерений без подзарядки. Электронные блоки дальномера выполнены на интегральных и гибридных схемах, что позволило довести массу дальномера вместе с источником питания до 2 кг.
Установка лазерных дальномеров на танки сразу заинтересовала зарубежных разработчиков военного вооружения. Это объясняется тем, что на танке можно ввести дальномер в систему управления огнем танка, чем повысить его боевые качества. Для этого был разработан дальномер AN/VVS-1 для танка М60А. Он не отличался по схеме от лазерного артиллерийского дальномера на рубине, однако помимо выдачи данных о дальности на цифровое табло в счетно-решающее устройство системы управления огнем танка. При этом измерение дальности может производится как наводчиком пушки так и командиром танка. Режим работы дальномера - 15 измерений в минуту в течение одного часа. Зарубежная печать сообщает, что более совершенный дальномер, разработанный позднее, имеет пределы измерения дальности от 200 до 4700м. с точностью + 10 м, и счетно-решающее устройство, связанное с системой управления огнем танка, где совместно с другими данными обрабатывается еще 9 видов данных о боеприпасах. Это, по мнению разработчиков, дает возможность поражать цель с первого выстрела. Система управления огнем танковой пушки имеет в качестве дальномера аналог, рассмотренный ранее, но в нее входят еще семь чувственных датчиков и оптический прицел. Название установки Кобельда. В печати сообщается что она обеспечивает высокую вероятность поражения цели и несмотря на сложность этой установки переключатель механизма баллистики в положение, соответствующее выбранному типу выстрела, а затем нажать кнопку лазерного дальномера. При ведении огня по подвижной цели наводчик дополнительно опускает блокировочный переключатель управления огнем для того, чтобы сигнал от датчика скорости поворота башни при слежении за целью поступал за тахометром в вычислительное устройство, помогая вырабатывать сигнал учреждения. Лазерный дальномер, входящий в систему Кобельда, позволяет измерять дальность одновременно до двух целей, расположенных в створе. Система отличается быстродействием, что позволяет произвести выстрел в кратчайшее время.
Анализ графиков показывает, что использование системы с лазерным дальномером и ЭВМ обеспечивает вероятность поражения цели близкую к расчетной. Графики также показывают, насколько повышается вероятность поражения движущейся цели. Если для неподвижных целей вероятность поражения при использовании лазерной системы по сравнению с вероятностью поражения при использовании системы со стереодальномером не составляет большой разницы на дистанции около 1000м, и ощущается лишь на дальности 1500м, и более, то для движущихся целей выигрыш явный. Видно, что вероятность поражения движущейся цели при использовании лазерной системы по сравнению с вероятностью поражения при использовании системы со стереодальномером уже на дистанции 100м, повышается более чем в 3,5 раза , а на дальности 2000м., где система со стереодальномером становиться практически неэффективной, лазерная система обеспечивает вероятность поражения с первого выстрела около 0,3.
В армиях, помимо артиллерии и танков, лазерные дальномеры используются в системах, где требуется в короткий промежуток времени определить дальность с высокой точностью. Так, в печати сообщалось в разработана автоматическая система сопровождения воздушных целей и измерения дальности до них. Система позволяет производить точное измерение азимута, угла места и дальности. Данные могут быть записаны на магнитную ленту и обработаны на ЭВМ. Система имеет небольшие размеры и массу и размещается на подвижном фургоне. В систему входит лазер, работающий в инфракрасном диапазоне. Приемное устройство с инфракрасной телевизионной камерой, телевизионное контрольное устройство, следящее зеркало с сервопроводом, цифровой индикатор и записывающее устройство. Лазерное устройство на неодимовом стекле работает в режиме модулированной добротности и излучает энергию на волне 1,06 мкм. Мощность излучения составляет 1 Мвт в импульсе при длительности 25нс и частоте следования импульсов 100 Гц. Расходимость лазерного луча 10 мрад. В каналах сопровождения используются различные типы фотодетекторов. В приемном устройстве используется кремниевый светодиод. В канале сопровождения - решетка, состоящая из четырех фотодиодов, с помощью которых вырабатывается сигнал рассогласования при смещении цели в сторону от оси визирования по азимуту и углу места. Сигнал с каждого приемника поступает на видеоусилитель с логарифмической характеристикой и динамическим диапазоном 60 дБ. Минимальной пороговый сигнал при котором система следит за целью составляет 5*10в-8Вт. Зеркало слежения за целью приводится в движение по азимуту и углу места сервомоторами. Система слежения позволяет определять местоположение воздушных целей на удалении до 19 км. при этом точность сопровождения целей, определяемая экспериментально составляет 0,1 мрад. по азимуту и 0,2 мрад по углу места цели. Точность измерения дальности + 15 см.
Лазерные дальномеры на рубине и неодимовом стекле обеспечивают измерение расстояния до неподвижной или медленно перемещающихся объектов, поскольку частота следования импульсов небольшая. Не более одного герца. Если нужно измерять небольшие расстояния, но с большей частотой циклов измерений, то используют фазовые дальномеры с излучателем на полупроводниковых лазерах. В них в качестве источника применяется, как правило , арсенид галлия. Вот характеристика одного из дальномеров : выходная мощность 6,5 Вт в импульсе, длительность которого равна 0,2 мкс, а частота следования импульсов 20 кГц. Расходимость луча лазера составляет 350*160 мрад т.е. напоминает лепесток. При необходимости угловая расходимость луча может быть уменьшена до 2 мрад. Приемное устройство состоит из оптической системы, а фокальной плоскости которой расположена диафрагма, ограничивающая поле зрения приемника в нужном размере. Коллимация выполняется короткофокусной линзой, расположенной за диафрагмой. Рабочая длина волны составляет 0,902 мкм, а дальность действия от 0 до 400м. В печати сообщается , что эти характеристики значительно улучшены в более поздних разработках. Так, например уже разработан лазерный дальномер с дальностью действия 1500м. и точностью измерения расстояния + 30м. Этот дальномер имеет частоту следования 12,5 кГц при длительности импульсов 1 мкс. Другой дальномер , разработанный в США имеет диапазон измерения дальности от 30 до 6400м. Мощность в импульсе 100Вт, а частота следования импульсов составляет 1000 Гц.
Поскольку применяется несколько типов дальномеров, то наметилась тенденция унификации лазерных систем в виде отдельных модулей. Это упрощает их сборку, а также замену отдельных модулей в процессе эксплуатации. По оценкам специалистов, модульная конструкция лазерного дальномера обеспечивает максимум надежности и ремонтопригодности в полевых условиях.
Модуль излучателя состоит из стержня, лампы-накачки, осветителя, высоковольтного трансформатора, зеркал резонатора. модулятора добротности. В качестве источника излучения используется обычно неодимовое стекло или аллюминиево-натриевый гранат, что обеспечивает работу дальномера без системы охлаждения. Все эти элементы головки размещены в жестком цилиндрическом корпусе. Точная механическая обработка посадочных мест на обоих концах цилиндрического корпуса головки позволяет производить их быструю замену и установку без дополнительной регулировки, а это обеспечивает простоту технического обслуживания и ремонта. Для первоначальной юстировки оптической системы используется опорное зеркало, укрепленное на тщательно обработанной поверхности головки, перпендикулярно оси цилиндрического корпуса. Осветитель диффузионного типа представляет собой два входящих один в другой цилиндра между стенками которых находится слой окиси магния. Модулятор добротности рассчитан на непрерывную устойчивую работу или на импульсную с быстрым запусками. основные данные унифицированной головки таковы: длина волны - 1,06 мкм, энергия накачки - 25 Дж, энергия выходного импульса - 0,2 Дж, длительность импульса 25нс, частота следования импульсов 0,33 Гц в течение 12с допускается работа с частотой 1 Гц), угол расходимости 2 мрад. Вследствие высокой чувствительности к внутренним шумам фотодиод, предусилитель и источник питания размещаются в одном корпусе с возможно более плотной компоновкой, а в некоторых моделях все это выполнено в виде единого компактного узла. Это обеспечивает чувствительность порядка 5*10 в -8 Вт.
В усилителе имеется пороговая схема, возбуждающаяся в тот момент, когда импульс достигает половины максимальной амплитуды, что способствует повышению точности дальномера, ибо уменьшает влияние колебаний амплитуды приходящего импульса. Сигналы запуска и остановки генерируются этим же фотоприемником и идут по тому же тракту, что исключает систематические ошибки определения дальности. Оптическая система состоит из афокального телескопа для уменьшения расходимости лазерного луча и фокусирующего объектива для фотоприемника. Фотодиоды имеют диаметр активной площадки 50, 100, и 200 мкм. Значительному уменьшению габаритов способствует то, что приемная и передающая оптические системы совмещены , причем центральная часть используется для формирования излучения передатчика, а периферийная часть - для приема отраженного от цели сигнала.
3. Оптический дальномер
Оптические дальномеры - обобщенное название группы дальномеров с визуальной наводкой на объект (цель), действие которых основано на использовании законов геометрической (лучевой) оптики. Распространены оптические дальномеры: с постоянным углом и выносной базой (например, нитяной дальномер, которым снабжают многие геодезические инструменты - теодолиты, нивелиры и т. д.); с постоянной внутренней базой - монокулярные (например, фотографический дальномер) и бинокулярные (стереоскопические дальномеры).
Оптический дальномер (светодальномер) - прибор для измерения расстояний по времени прохождения оптическим излучением (светом) измеряемого расстояния. Оптический дальномер содержит источник оптического излучения, устройство управления его параметрами, передающую и приёмную системы, фотоприёмное устройство и устройство измерения временных интервалов. Оптический дальномер делятся на импульсные и фазовые в зависимости от методов определения времени прохождения излучением расстояния от объекта и обратно.
Рис. 4 - Современный оптический дальномер
Рис.5 - Оптический дальномер типа «Чайка»
В дальномерах измеряется не сама длина линии, а некоторая другая величина, относительно которой длина линии является функцией.
Как ранее говорилось, в геодезии применяют 3 вида дальномеров:
· оптические (дальномеры геометрического типа),
· электрооптические (светодальномеры),
· радиотехнические (радиодальномеры).
3.1 Физические основы измерений и принцип действия
Рис. 6 Геометрическая схема оптических дальномеров
Пусть требуется найти расстояние АВ. Поместим в точку А оптический дальномер, а в точку В перпендикулярно линии АВ - рейку.
Обозначим: l - отрезок рейки GM, ц - угол, под которым этот отрезок виден из точки А.
Из треугольника АGВ имеем:
D=1/2*ctg(ц/2) (3.1)
D = l * сtg(ц) (3.2)
Обычно угол ц небольшой (до 1o) , и, применяя разложение функции Ctgц в ряд, можно привести формулу (4.1.1) к виду (4.1.2). В правой части этих формул два аргумента, относительно которых расстояние D является функцией. Если один из аргументов имеет постоянное значение, то для нахождения расстояния D достаточно измерить только одну величину. В зависимости от того, какая величина - ц или l, - принята постоянной, различают дальномеры с постоянным углом и дальномеры с постоянным базисом.
В дальномере с постоянным углом измеряют отрезок l, а угол ц - постоянный; он называется диастимометрическим углом.
В дальномерах с постоянным базисом измеряют угол ц, который называется параллактическим углом; отрезок l имеет постоянную известную длину и называется базисом.
3.1.1 Нитяной дальномер с постоянным углом
В сетке нитей зрительных труб, как правило, имеются две дополнительные горизонтальные нити, расположенные по обе стороны от центра сетки нитей на равных расстояниях от него; это - дальномерные нити (рис.7).
Нарисуем ход лучей, проходящих через дальномерные нити в трубе Кеплера с внешней фокусировкой. Прибор установлен над точкой А; в точке В находится рейка, установленная перпендикулярно визирной линии трубы. Требуется найти расстояние между точками А и В.
Рис. 7 - Дальномерные нити
Построим ход лучей из точек m и g дальномерных нитей. Лучи из точек m и g, идущие параллельно оптической оси, после преломления на линзе объектива пересекут эту ось в точке переднего фокуса F и попадут в точки М и G рейки. Расстояние от точки A до точки B будет равно:
D = l/2 * Ctg(ц/2) + fоб + d (3.3)
где d - расстояние от центра объектива до оси вращения теодолита; fоб-фокусное расстояние объектива; l - длина отрезка MG на рейке.
Обозначим (fоб + d) через c, а величину 1/2*Ctg ц/2 - через С, тогда
D = C * l + c. (3.4)
Постоянная С называется коэффициентом дальномера. Из Dm'OF имеем:
Ctg ц/2 = ОF/m'O; m'O= p/2 (3.5)
Ctg ц/2 = (fоб*2)/p, (3.6)
где p - расстояние между дальномерными нитями. Далее пишем:
С = fоб/p. (3.7)
Коэффициент дальномера равен отношению фокусного расстояния объектива к расстоянию между дальномерными нитями. Обычно коэффицент С принимают равным 100, тогда Ctg ц/2 = 200 и ц = 34.38'. При С = 100 и fоб = 200 мм расстояние между нитями равно 2 мм .
3.1.2 Измерение нитяным дальномером наклонного расстояния
Пусть визирная линия трубы JK при измерении расстояния АВ имеет угол наклона н, и по рейке измерен отрезок l (рис. 8). Если бы рейка была установлена перпендикулярно визирной линии трубы, то наклонное расстояние было бы равно:
D = l0 * C + c (3.8)
Но
l0 = l*Cos н (3.9)
поэтому
D = C*l*Cosн + c. (3.10)
Горизонтальное проложение линии S определим из Д JKE :
S = D*Cosн (3.11)
Или
S= C*l*Cos2н + c*Cosн. (3.12)
Рис. 8 - Измерение нитяным дальномером наклонного расстояния
Для удобства вычислений принимаем второе слагаемое равным с*Cos2н ; поскольку с величина небольшая (около 30 см), то такая замена не внесет заметной ошибки в вычисления. Тогда
S = (C * l + c) * Cos2н (3.13)
или
S = D'* Cos2н (3.14)
Oбычно величину (C*l + c) назыывают дальномерным расстоянием. Обозначим разность (D' - S) через ДD и назовем ее поправкой за приведение к горизонту, тогда
S = D' - ДD (3.15)
где
ДD = D' * Sin2 н (3.16)
Угол н измеряют вертикальным кругом теодолита; причем при поправка ДD не учитывается. Точность измерения расстояний нитяным дальномером обычно оценивается относительной ошибкой от 1/100 до 1/300.
Кроме обычного нитяного дальномера существуют оптические дальномеры двойного изображения.
3.2 Особенности конструкции и принцип работы
В импульсном светодальномере источником излучения чаще всего является лазер, излучение которого формируется в виде коротких импульсов. Для измерения медленно меняющихся расстоянии используют одиночные импульсы, при быстро изменяющихся расстояниях применяется импульсный режим излучения. Твердотельные лазеры допускают частоту следования импульсов излучения до 50--100 Гц, полупроводниковые -- до 104--105 Гц. Формирование коротких импульсов излучения в твердотельных лазерах осуществляется механическими, электрооптическими или акустооптичекими затворами или их комбинациями. Инжекционные лазеры управляются током инжекции.
В фазовых светодальномерах в качестве источников света применяются накальные или газосветные лампы, светодиоды и почти все виды лазеров. Оптический дальномер со светодиодами обеспечивают дальность действия до 2--5 км, с газовыми лазерами при работе с оптическими отражателями на объекте -- до 100 км, а при диффузном отражении от объектов -- до 0,8 км; аналогично, Оптический дальномер с полупроводниковыми лазерами обеспечивает дальность действия 15 и 0,3 км. В фазовых Светодальномерное излучение модулируется интерференционными, акустооптическим и злектрооптическими модуляторами. В СВЧ фазовых оптических дальномерах применяются электрооптические модуляторы на резонаторных и волноводных СВЧ структурах.
В импульсных светодальномерах обычно в качестве фотоприёмного устройства применяются фотодиоды, в фазовых светодальномерах фотоприём осуществляется на фотоэлектронные умножители. Чувствительность фотоприёмного тракта оптического дальномера может быть увеличена на несколько порядков применением оптического гетеродинирования. Дальность действия такого Оптического дальномера ограничивается длиной когерентности) передающего лазера, при этом возможна регистрация перемещений и колебаний объектов до 0,2 км.
Измерение временных интервалов чаще всего осуществляется счётно-импульсным методом.
дальномер лазерный оптический прибор
Вывод
Дальномер - является лучшим прибором для измерения расстояния на длинные дистанции. Сейчас лазерные дальномеры используются и в наземной военной технике и в авиации и на флоте. Ряд дальномеров принят на вооружение во многих армиях мира. Так же дальномер стал незаменимой частью охоты, что делает его уникальным и очень полезным.
Библиографический список
1. Герасимов Ф.Я., Говорухин А.М. Краткий топографо-геодезический словарь-справочник, 1968; М Недра
2. Лемтюжников Д.С. Элементарный курс оптики и дальномеров, Воениздат, 1938, 136 с.
3. Солодилов К.Е. Военные оптико-механические приборы, Оборонпром, 1940, 263 с.
4. Интернет магазин оптики. Принципы работы лазерного дальномера.
5. Автор: Дьяков Борис Николаевич, профессор кафедры геодезии СГГА
6. Электронная версия учебного пособия в форме гипертекста по дисциплине "Геодезия".
Размещено на Allbest.ru
Подобные документы
Виды дальномеров, применяемых в тахеометрах. Лазерный дальномер: физические основы измерений и принцип действия, особенности конструкции и применение. Физические основы измерений и принцип действия оптического дальномера, измерение нитяным дальномером.
доклад [431,1 K], добавлен 02.04.2012Характеристика и применение основных видов измерительных приборов, способы измерения высот и расстояния на участке местности. Изучение геодезии как науки о производстве измерений. Роль, сущность и значение измерений на местности в различных сферах жизни.
курсовая работа [819,5 K], добавлен 30.03.2018Сущность, порядок производства и выполнения тахеометрической и мензульной съемок, их основные достоинства и недостатки, характеристика применяемых приборов. Постоянные и временные маркшейдерские знаки и марки, практическое их применение в геодезии.
контрольная работа [21,5 K], добавлен 22.10.2009Основные задачи геодезии в кадастровых работах. Аэросъемочная система лазерного картографирования ALTM 3100. Сравнение традиционных съемок и лазерного сканирования. Принципы построения и функционирования воздушных лазерных систем, их преимущества.
дипломная работа [2,4 M], добавлен 15.02.2017Определение средней квадратической ошибки угла, измеренного одним полным приемом при помощи теодолита Т-30. Оценка точности коэффициента дальномера зрительной трубы. Уравновешивание результатов нивелирования системы ходов способом косвенных измерений.
контрольная работа [99,6 K], добавлен 17.05.2010Понятие и содержание геодезии как научной дисциплины, предмет и направления ее исследования, структура и основные элементы. Топографические планы и карты. Угловые и линейные измерения на местности, методика их реализации и необходимое оборудование.
презентация [8,7 M], добавлен 11.10.2013Причины создания части геодезических приборов – компенсаторов, их современное применение в приборах, устройство и принцип работы. Необходимость применения компенсаторов угла наклона и основные элементы жидкостного уровня. Поверки и исследования нивелиров.
курсовая работа [920,4 K], добавлен 26.03.2011Сущность угловых геодезических измерений. Обзор и применение оптико-механических и электронных технических теодолитов для выполнения геодезической съемки. Принципы измерения горизонтальных и вертикальных углов, особенности обеспечения высокой их точности.
курсовая работа [241,6 K], добавлен 18.01.2013Принцип действия наземных лазерных сканеров. Классификация ошибок в результатах наземного лазерного сканирования. Использование сигнала, отраженного от поверхности объекта. Анализ точности лазерных сканирующих систем. Условия проведения испытаний.
реферат [2,0 M], добавлен 16.12.2015Назначение Тагис-38, его техническая характеристика, устройство и принцип действия. Метрологическое обеспечение работы аппаратуры и методика провидения метрологических работ. Определение погрешностей измерений скважин и качества полученных результатов.
курсовая работа [324,3 K], добавлен 26.12.2012