Основы автоматизации технологических процессов нефтегазового производства
Основные понятия и определения теории автоматического регулирования. Датчики линейного и углового перемещения. Измерение физико-химических свойств нефти и пластовых вод. Электромагнитные реле постоянного и переменного тока. Интерфейсы передачи данных.
Рубрика | Геология, гидрология и геодезия |
Вид | учебное пособие |
Язык | русский |
Дата добавления | 03.09.2015 |
Размер файла | 2,4 M |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
X? (1.45)
Здесь знак минус относится к ПОС, знак плюс - к ООС.
Коэффициент передачи звена с обратной связью:
(1.46)
ПОС увеличивает коэффициент передачи, ООС - уменьшает.
1.4 Понятие об устойчивости систем автоматического регулирования
Всякая САР подвержена воздействию возмущающих сил. Эти силы стремятся вывести систему из состояния равновесия. Если система устойчива, то она противостоит действию возмущающих сил, а будучи выведенной из равновесия, возвращается к нему с определенной точностью. Неустойчивая система после действия возмущающих сил не возвращается к равновесному состоянию, а либо удаляется от него, либо совершает недопустимые колебания около равновесного состояния.
Понятие устойчивости может быть проиллюстрировано на примере шар-плоскость (рис.1.29).
Пример 1. Рассмотрим рис.1.29, а. Под действием возмущающих сил шар переместился из точки Ао в точку А1. После действия этих сил шар вернется в точку Ао - положение шара на вогнутой плоскости устойчиво. Поскольку есть трение, то, конечно, шар вернется не точно в точку Ао, а остановится рядом. Система будет устойчивой, если она от возмущенного состояния перейдет в некоторую конечную область, окружающую невозмущенное состояние равновесия.
Здесь и далее точка Ао - невозмущенное состояние равновесия системы, точка А1 - возмущенное состояние системы.
Пример 2 - рис.1.29, б. Здесь шар не вернется в свое состояние равновесия в точку Ао - случай неустойчивого положения шара на плоскости.
Рис. 1.29. Иллюстрация понятия устойчивости на примере плоскости и шара.
Есть и другие виды систем.
Пример 3 - рис.1.43, в. Система устойчива в малом, но неустойчива в большом.
Пример 4 - рис. 1.29, г. Полуустойчивое состояние равновесия.
Пример 5 - рис. 1.29, д. Безразличное состояние равновесия [3-5].
Глава 2. МЕТРОЛОГИЧЕСКИЕ ХАРАКТЕРИСТИКИ ТЕХНИЧЕСКИХ ИЗМЕРЕНИЙ
2.1 Основные метрологические термины и определения. Понятие измерения
Метрология зародилась в глубокой древности, когда начали формироваться первые государства, стала развиваться торговля, появилась необходимость выполнять достаточно большие общественные работы. Исторические памятники называют её возраст: более 6 тыс. лет.
На каждом этапе своего развития метрология решала собственные задачи, отражающие потребности общества. Вместе с этим менялось и само понятие метрологии. В дословном переводе с древнегреческого (от metron - мера и 1оgos - учение) метрология - наука о мерах. Измерить величину - значит сравнить ее с мерой.
Многие века меры были в основном антропометрическими (связанными с размерами человеческого тела - пядь, фут, локоть, аршин, сажень) или обиходными (например, первоначально дюйм - длина трех ячменных зерен, приставленных одно к другому своими концами). Раздробленность территорий и народов обусловила огромное разнообразие однородных мер. Так, к концу XVIII в. в разных странах существовало (округленно) 280 различных футов (мера длины), 390 фунтов (мера веса, в современном понимании - мера массы). С развитием торговых и финансовых связей отсутствие единых мер стало вызывать существенные трудности.
Важным событием в развитии метрологии стало принятие Национальным собранием Франции в 1790 г. Декрета о реформе мер. В основу декрета легла предложенная группой академиков метрическая система мер. В качестве базовой была выбрана естественная мера длины, равная одной десятимиллионной доле четверти парижского меридиана, которая получила название метра. Второй (производной) мерой системы был назван килограмм, равный массе одного кубического дециметра чистой воды при температуре 4 °С. В 1799 году были изготовлены и сданы на хранение в Архив Французской республики платиновые эталоны этих мер, названные «метром Архива» и «килограммом Архива».
К настоящему времени к Метрической конвенции присоединились 48 государств, в которых сосредоточено более 95% мирового промышленного капитала. День подписания Метрической конвенции - 20 мая - предложено отмечать как Всемирный день метрологии.
Главный элемент системы измерений в любой стране - национальный метрологический институт (НМИ). В соответствии с Метрической конвенцией многие промышленные страны учредили или реорганизовали свои НМИ. Первыми среди них стали: Федеральный физико-технический институт Германии в 1887 г., Главная палата мер и весов России в 1893 г., Национальная физическая лаборатория Великобритании в 1900 г., Национальное бюро стандартов NBS Соединенных Штатов Америки в 1901 г. (ныне - Национальный институт стандартов и технологий NIST). К концу XIX в. все страны, подписавшие Метрическую конвенцию, получили национальные эталоны метра и килограмма, изготовленные в 1889 г. по единой технологии из платино-иридиевого сплава с наивысшей возможной для того времени точностью. Те прототипы этих эталонов, которые оказались наиболее близкими по своим значениям к архивным эталонам 1799 г., получили статус международных эталонов и поступили в Международное бюро мер и весов (МБМВ).
Развитие метрологии в России получило серьезный импульс с назначением в 1892 г. управляющим Депо образцовых мер и весов крупнейшего российского ученого Д.И. Менделеева. По его инициативе Депо было преобразовано в Главную палату мер и весов (1893), ставшую одним из первых в мире национальных научных учреждений метрологического профиля. Под руководством Д.И. Менделеева была проведена работа по созданию комплекта российских эталонов и их международным сличениям, начала создаваться государственная метрологическая служба, реализована широкая программа научных исследований в области метрологии, проведена подготовка к внедрению в России метрической системы
Международный словарь основных и общих терминов метрологии [6] дает самое краткое определение метрологии как науки об измерениях.
Измерения сопутствуют человеку буквально на каждом шагу. В повседневной жизни мы постоянно сталкиваемся с измерениями расстояний, масс, времени, температуры, давления. В современной промышленности ежедневно выполняются миллиарды измерений. Доля затрат на выполнение измерений составляет в среднем 10-15% от общих трудозатрат, а в электронике от -60 до -80%. О роли измерений в научных исследованиях достаточно определенно высказался Д.И. Менделеев: «Наука начинается... с тех пор, как начинают измерять; точная наука немыслима без меры».
Итак, в дальнейшем под термином метрология - мы будем понимать науку об измерениях, методах и средствах обеспечения их единства и способах достижения требуемой точности.
Разделы метрологии:
Законодательная метрология - раздел метрологии, предметом которого является установление обязательных технических и юридических требований по применению единиц физических величин, эталонов, методов и средств измерений, направленных на обеспечение единства и необходимости точности измерений в интересах общества.
Теоретическая метрология - раздел метрологии, предметом которого является разработка фундаментальных основ метрологии.
Практическая (прикладная) метрология - раздел метрологии, предметом которого являются вопросы практического применения разработок теоретической метрологии и положений законодательной метрологии.
Предметом метрологии является получение качественной или количественной информации о свойствах объектов окружающего мира путем измерения. Само измерение - сложная процедура, включающая целый ряд последовательных и взаимодействующих элементов. Совокупность и порядок следования элементов процедуры измерения конкретного свойства фиксируется в форме соответствующей методики выполнения измерений.
Начальным элементом всякого измерения является его задача (цель). Задача измерения в общем случае - это получение результата измерения требуемого качества, т. е. необходимой точности и достоверности. Формулирование конкретной измерительной задачи осуществляется с учетом априорной (полученной до проведения самого измерения) информации об измеряемом объекте и его свойствах. Анализ априорной информации позволяет заранее определить характеристики предстоящего измерения, в том числе достижимый уровень его точности.
Объект измерения - это реальный объект (тело, вещество, поле, явление, процесс, организм), обладающий некоторой суммой свойств и находящийся в многосторонних и сложных связях с другими объектами.
Субъект измерения (человек, выполняющий измерение) принципиально не может охватить объект целиком, во всем многообразии его свойств и связей. Поэтому его взаимодействие с объектом измерения возможно только на основе модели объекта. Модель объекта измерения строится в соответствии с целью измерения на основе априорной информации об объекте и условиях измерения. Построение адекватной модели объекта измерения является сложной и неформализуемой задачей. Субъект измерения осуществляет выбор принципа, метода и средства измерений.
Принцип измерения - научно описанное явление (или эффект), положенное в основу метода измерения. Например, при эталонных измерениях электрического напряжения используется эффект Джозефсона, при измерении температуры - термоэлектрический эффект, при измерении скорости - эффект Доплера.
Метод измерения - логическая последовательность операций, описанная в общем виде и применяемая для сравнения конкретного проявления свойства объекта со шкалой измерений этого свойства. Методы измерений весьма разнообразны и могут быть классифицированы по различным признакам. Зачастую методу измерения дается собственное название не потому, что он существенно отличается от известных методов, а лишь для удобства его практического использования. Например, методы непосредственной оценки, противопоставления, замещения, совпадения, дифференциальный, нулевой методы являются, по существу, разновидностями метода сравнения с мерой.
Метод измерения реализуется с помощью средств измерений, которые рассмотрим ниже.
Важную роль в процессе измерения играют условия измерения - совокупность влияющих величин, описывающих состояние окружающей среды и средства измерений. К влияющим относят величины, не измеряемые в конкретной процедуре измерения, но оказывающие влияние на его результаты (температура, давление, влажность, электрическое напряжение, частота питания в сети и др.). Отклонение от нормальных условий измерения приводит к изменению состояния объекта измерения и средства измерений, что может вызвать расширение интервала неопределенности (или появление дополнительной погрешности измерения).
Измерительный эксперимент является центральным элементом процедуры измерения. В узком смысле - это отдельное, однократное измерение, которое часто называют наблюдением. В общем случае измерительный эксперимент содержит ряд последовательных операций по взаимодействию средства измерений с измеряемым объектом, получению, преобразованию и индикации сигналов измерительной информации, регистрации результатов наблюдений.
Завершает процедуру измерения операция обработки экспериментальных данных, включающая проведение вычислений согласно принятому алгоритму, получение результата измерения, оценку его точности и достоверности, запись результата и его неопределенности (или погрешности) в соответствии с установленной формой представления.
Реализация современных высоких технологий невозможна без применения всего арсенала метрологии. Такие технологии требуют получения и переработки огромного объема измерительной информации, без которой их внедрение не дает ожидаемого эффекта. Для осуществления измерений широко применяется микропроцессорная техника и персональные компьютеры, а также интеллектуальные средства измерений. Возросшие требования к качеству измерения превратили его в сложную процедуру подготовки и проведения измерительного эксперимента, обработки и интерпретации полученной информации. В связи с большим разнообразием измерений, их классифицируют по областям измерений, т. е. совокупностям видов измерений, свойственных какой-либо области науки или техники и выделяющихся своей спецификой.
Принято различать следующие области и виды измерений:
1. Геометрические измерения (длина, угол, отклонения формы и расположения поверхностей, параметры шероховатости поверхности, координаты сложной поверхности).
2. Механические измерения (масса, сила, крутящий момент, напряжение и деформация, твердость, параметры движения) метрологии
3. Измерения расхода, вместимости, уровня, параметров потока.
4. Измерения давления и вакуума.
5. Физико-химические измерения (вязкость, плотность, влажность, концентрация компонентов, кондуктометрия, рН-метрия).
6. Температурные и теплофизические измерения.
7. Измерения времени и частоты.
8. Электрические и магнитные измерения на постоянном и переменном токе (сила тока, напряжение, энергия, мощность, сопротивление, проводимость, емкость, индуктивность, добротность, параметры электрических и магнитных полей, магнитные характеристики материалов).
9. Радиоэлектронные измерения (интенсивность, параметры формы и спектра сигналов, параметры трактов и антенн, измерения свойств веществ и материалов радиотехническими методами).
10. Виброакустические измерения (параметры вибрации, акустические измерения в газовой и жидкой среде и в твердых телах).
11. Оптические и оптико-физические измерения (сила света, освещенность, энергетические параметры излучения, характеристики лазерного излучения, оптические свойства и характеристики материалов).
12. Измерения параметров ионизирующих излучений и ядерных констант.
13. Биологические и биомедицинские измерения [7].
2.2 Виды средств измерения (СИ)
Средство измерений - техническое средство, предназначенное для измерений, имеющее нормированные метрологические характеристики, воспроизводящее и (или) хранящее единицу физической величины, размер которой принимают неизменным (в пределах установленной погрешности) в течение известного интервала времени.
Суть средства измерений, заключается, во-первых, в «умении» хранить (или воспроизводить) единицу физической величины; во-вторых, в неизменности размера хранимой единицы. Эти важнейшие факторы и обуславливают возможность выполнения измерения (сопоставление с единицей), т.е. «делают» техническое средство средством измерений. Если размер единицы в процессе измерений изменяется более чем установлено нормами, таким средством нельзя получить результат с требуемой точностью. Это означает, что измерять можно лишь тогда, когда техническое средство, предназначенное для этой цели, может хранить единицу, достаточно неизменную по размеру во времени.
Большинство средств измерений являются конструктивно законченными техническими устройствами. Каждое средство измерений имеет нормированные метрологические характеристики, которые оказывают влияние на качество результатов измерений.
Своеобразным средством измерений является человек, который использует свои органы чувств (осязание, обоняние, зрение, слух, вкус) при органолептических измерениях, интуицию - при эвристических измерениях, знания и навыки - при экспертных измерениях.
Средства измерений классифицируют по принципам действия, построения и виду измеряемой величины. Важное значение имеют их метрологические характеристики.
Классификация средств измерений
1. по метрологическому назначению (образцовые СИ; рабочие СИ)
2. по выполняемым функциям
· измерительные преобразователи: аналоговые; аналогово-цифровые; цифро-аналоговые;
· метафизические величины: однозначная; многозначная; набор мер; магазин мер;
· стандартные образцы: стандартный образец свойства; стандартный образец состава;
· средства сравнения;
· измерительные приборы;
· измерительные устройства;
· измерительные цепи;
· измерительные механизмы;
· измерительные принадлежности.
3. по уровню агрегатирования и автоматизации
· автоматические СИ: измерительные автоматы, измерительные роботы;
· автоматизированные СИ;
· измерительные установки: поверочные; эталонные; измерительные машины;
· измерительные системы: информационные; контролирующие; управляющие, гибкие и др.
· измерительно-вычислительные комплексы;
4. по уровню стандартизации
· стандартизированные СИ
· узаконенные СИ: государственные эталоны; рабочие СИ;
· нестандартизированные СИ
5. по отношению к измеряемой величине
· основные СИ;
· вспомогательные СИ [8].
2.3 Системы и единицы физических величин
Понятие «величина» как оценка размеров какого-либо объекта появилось еще до математики, а математическое понятие «величина» на сегодняшний день связывают с числом. В физике и математике укоренился подход, в соответствии с которым существуют «размерные» и «безразмерные» величины. При этом «величина» рассматривается как число, наименование единицы - как «размерность». В метрологии эти понятия имеют принципиально иное значение, из-за чего иногда возникают недоразумения и путаница.
Применяемое для количественной оценки определенного свойства в математике и часто в физике понятие «величина» идеально - это абстрактная количественная оценка величины любого вида (физической либо нефизической), определяемая числом как номинальное или абсолютно точное значение. В метрологии документом РМГ 29-99 [9] введено понятие «физическая величина» (величина) - одно из свойств физического объекта (физической системы, явления или процесса), общее в качественном отношении для многих физических объектов, но в количественном отношении индивидуальное для каждого из них. В «Международном словаре основных и общих терминов метрологии» (VIM--93) понятие величина (измеримая) раскрывается как «характерный признак (атрибут) явления, тела или вещества, которое может выделяться качественно и определяться количественно».
Понятие «физическая величина» (сюда же включаются и «химические» либо иные величины) настолько фундаментально, что дать ему корректное определение практически невозможно. Понятно что физическая величина -свойство, присущее реальным объектам, которое на множестве свойств объектов может быть индивидуальным в количественном отношении, то есть иметь разные уровни интенсивности. Если уровни свойств доступны количественной оценке аппаратурными методами, их изучением занимается метрология.
Необходимость оценивания уровней интенсивности таких свойств привела к появлению в РМГ 29-99 ряда базовых терминов и определений:
Размер физической величины (размер величины) - количественная определенность физической величины, присущая конкретному материальному объекту, системе, явлению или процессу;
Значение физической величины - выражение размера физической величины в виде некоторого числа принятых для нее единиц;
Числовое значение физической величины - отвлеченное число, входящее в значение величины;
Истинное значение физической величины - значение физической величины, которое идеальным образом характеризует в качественном и количественном отношении соответствующую физическую величину.
Вообще, истинное значение физической величины может быть соотнесено с понятием абсолютной истины. Оно может быть получено только в результате бесконечного процесса измерений с бесконечным совершенствованием методов и средств измерений.
Для количественной оценки значений физических величин применяют единицы соответствующих физических величин. Поскольку существуют объективные связи между физическими величинами, очевидно, что единицы физических величин не могут назначаться произвольно. Логика требует объединения единиц физических величин в достаточно строгую систему.
Система (от древнегреческого уэуфзмб - соединенное в одно целое из многих частей) - множество закономерно соединенных между собой элементов, образующих определенную целостность, единство.
В определении следует обратить внимание на три важных момента: наличие элементов, их закономерное объединение и вновь образованное благодаря этому качество соединения - его целостность. Элементами системы могут выступать предметы, явления, процессы, принципы, теории; связями - объективно существующие или искусственно созданные закономерности.
Поскольку физические величины существуют как объективные свойства, а числовые значения единиц назначают, единицы вторичны по отношению к физическим величинам. В соответствии с данным положением для получения системы единиц физических величин теоретически правильным представляется предварительное создание системы физических величин.
Система физических величин - совокупность физических величин, образованная в соответствии с принятыми принципами, когда одни величины принимают за независимые, а другие определяют как функции независимых величин. В этих системах выбранные независимые величины называют основными, а прочие, получаемые с их использованием, - производными.
На базе системы физических величин создают систему единиц физических величин. Главной характеристикой системы единиц физических величин является наличие системно связанных значений каждой из величин, принятых за единицу. Единицы независимых величин устанавливают конвенционально (по договоренности), это основные единицы системы. Остальные единицы системы - производные - получают из физических формул (количественных уравнений связи между величинами) [9].
До начала глубокого исследования этой проблемы метрологами системы физических величин в явном виде не рассматривались, а проявлялись как побочный продукт эмпирически создаваемых систем единиц. Системы единиц предназначались для обслуживания конкретных областей физики, например, системы МТС (метр-тонна-секунда) или СГС (сантиметр-грамм-секунда) для механики, а для обеспечения механических и электрических измерений использовалась система МКСА (метр-килограмм-секунда-ампер).
Наличие множества разнообразных единиц для измерений одной физической величины, например, работы и энергии (эрг, джоуль, калория), приводит к необходимости пересчета числовых значений при переходе от одной системы к другой. Такие преобразования не только требовали выполнения лишней работы, но и приводили к частому появлению механических ошибок. Кооперация научно-технических областей, в которых применяли разные единицы, привела пользователей к выводу о необходимости создания универсальной системы единиц, которая позволяет избавиться от перерасчетов. Такая система требует соответствующей основы - универсальной системы физических величин.
Универсальная система физических величин должна охватывать максимум величин, с которыми имеют дело большинство потребителей в своей научной и производственной деятельности. Они и будут использовать единицы универсальной системы, образованной на базе соответствующей системы величин. Наряду с этим не отрицается возможность создания специальных систем единиц для конкретных узких областей.
В системах величин как в любых системах присутствуют элементы (физические величины) и связи между ними (уравнения связи между величинами). Уравнениями связи называют соотношения между величинами, записанные в качественной форме, например, скорость равна частному от деления расстояния (длины) на время, за которое это расстояние пройдено
V = L/T. (2.1)
Возможны еще две трансформированные формы этого уравнения связи (T = L/V и L = VT), но из всех этих трех выражений независимым уравнением связи можно назвать только одно (любое на выбор), поскольку все они несут одну и ту же информацию.
Строгость системы обеспечивается включением в нее только величин, связанных известными физическими законами. При этом число независимых связей оказывается меньше числа величин, поэтому для выражения неизвестных величин требуются дополнительные шаги, в частности назначение «основных величин», условно принимаемых за известные.
Для создания системы физических величин следует:
1. выбрать область распространения системы и определить полный набор входящих в систему величин (m штук);
2. составить систему уравнений, включающую все независимые уравнения связи между величинами (n уравнений);
3. определить необходимое число основных величин системы (k штук);
4. определить (выбрать и назначить) конкретные основные величины системы, назначить их размерности;
5. определить размерности производных величин через размерности основных, решая независимые уравнения связи между величинами.
Если в результате корректно выполненных действий однозначно определены размерности всех входящих в систему величин, то действительно создана строгая система физических величин.
Минимально необходимое число основных величин системы определяют как разность числа всех входящих в систему величин и числа независимых уравнений связи между величинами (k = m - n). Минимально необходимое и достаточное для создания системы число основных величин определяется расчетом, но выбор конкретных величин, теоретическими положениями не определяется.
Прагматические соображения при выборе основных величин могут быть основаны на попытке представить систему в наиболее логичном виде, либо на предположениях о реализации будущей системы единиц физических величин. Очевидно, что за основные принимают величины, наиболее изученные и наиболее часто встречающиеся в уравнениях связи. Но в предположении будущего эталонирования иногда преимущество отдают тем из альтернативных величин, которые позволят создать более точную, лучше воспроизводимую и более стабильную единицу. Сторонников любого набора основных величин можно обвинить в субъективном подходе, что вполне резонно для случаев экспертного выбора.
Назначение размерностей основных величин и определение через них размерностей производных можно рассматривать как чисто формальную процедуру. Размерности основных физических величин назначают произвольно, например, базой для Международной системы единиц физических величин (SI) является система величин «длина, масса, время, сила электрического тока, термодинамическая температура, количество вещества, сила света» с размерностями основных величин L M T I И N J.
Размерность dim х любой производной физической величины х, которую определяют через уравнения связи между величинами, в общем виде можно записать как произведения размерностей
dim х = Lб Mв Tг Iе Ий Nн Jф, (2.2)
где показатели б, в, г, е, ж и з являются, как правило, небольшими целыми числами, которые могут быть положительными, отрицательными или равными нулю, они называются показателями размерностей. Выражение в форме произведения символов размерностей, некоторые из которых возведены в степень, называют также формулой размерности.
Нежелательным результатом могут быть несколько отличающихся выражений для размерности одной и той же производной величины. Такая ситуация теоретически недопустима, поскольку свидетельствует об избыточном числе основных величин в системе. Иначе говоря, нарушение теоретических принципов при выборе числа основных величин приводит к созданию недостаточно строгой системы физических величин. Однако такие системы могут создаваться и использоваться из чисто прагматических соображений.
После построения системы физических величин на ее базе можно построить систему единиц физических величин.
Система единиц физических величин (система единиц) - совокупность основных и производных единиц физических величин, образованная в соответствии с принципами для заданной системы физических величин.
Схема построения системы единиц физических величин
СИСТЕМА ЕДИНИЦ ФИЗИЧЕСКИХ ВЕЛИЧИН (физические формулы дольные и кратные множители, правила их применения)
ОСНОВНЫЕ ЕДИНИЦЫ (k = m - n) штук
ПРОИЗВОДНЫЕ ЕДИНИЦЫ
СИСТЕМА ФИЗИЧЕСКИХ ВЕЛИЧИН ОСНОВНЫЕ ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ (k = m - n) штук
ПРОИЗВОДНЫЕ ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ размерности [L, M, T, I, J, N,...] формула размерности [V] = k ·( LбMвTгIдИеNжJз )
ФИЗИЧЕСКИЕ ВЕЛИЧИНЫ (m штук)
УРАВНЕНИЯ СВЯЗИ МЕЖДУ ВЕЛИЧИНАМИ (n уравнений)
Понятие «размерность величины» в метрологии имеет особый смысл - выражение в форме степенного одночлена, составленного из произведений символов основных физических величин в различных степенях и отражающее связь данной физической величины с физическими величинами, принятыми в данной системе величин за основные с коэффициентом пропорциональности, равным 1.
Из определения следует, что метрологический термин размерность физической величины имеет смысл рассматривать при обсуждении систем физических величин, а не систем единиц физических величин, которые построены на их основе. Понятие «размерность» в системах единиц физических величин является избыточным, хотя может использоваться как вспомогательное.
При рассмотрении систем единиц физических величин размерность физической величины в некоторых ситуациях фактически осложняет понимание связи между производными и основными единицами. Если в обозначениях единиц момент силы представляется весьма логичным (произведение единиц силы и длины или ньютон на метр), то размерность (L2 M T - 2) ясности не добавляет. Цепочки связей между некоторыми производными и основными величинами оказываются слишком протяженными и неочевидными. Примеры размерностей некоторых производных физических величин, образованных в соответствии с базовой для SI системой величин LMTIИNJ, приведены в таблице 2.1.
Таблица 2.1
Примеры размерностей производных физических величин в системе LMTIИNJ
Физическая величина |
Единица |
||||
наименование |
размерность |
наименование |
обозначение международное |
обозначение русское |
|
Момент силы |
L2 M T - 2 |
ньютон-метр |
N•m |
Н•м |
|
Электрическое сопротивление |
L2 M T - 3 I - 2 |
ом |
Щ |
Ом |
|
Теплопроводность |
L M T - 3И - 1 |
ватт на метр-кельвин |
W/mK |
Вт/(м/К) |
|
Сила излучения |
L2 M T - 3 |
ватт на стерадиан |
W/sr |
Вт/ср |
Архаизмами можно считать такие стандартные термины в РМГ 29-99, как «размерная физическая величина» и «безразмерная физическая величина».
Размерная физическая величина - физическая величина, в размерности которой хотя бы одна из основных физических величин возведена в степень, не равную нулю (сила F в системе LMTIИNJ является размерной величиной: dim F=LMT-2). Безразмерная физическая величина - физическая величина, в размерность которой основные физические величины входят в степени, равной нулю.
Приведенные термины некорректны с лингвистических позиций (напоминают выражение «безразмерные носки», что противоречит понятию «размер величины»), поскольку любая физическая величина имеет размер, характеризующий ее количественную определенность. По сути определений также возникают сомнения, поскольку в системы физических величин входят основные и производные величины, каждая из которых имеет размерность.
Не имеющие размерности («безразмерностные») физические величины, например относительные, следует рассматривать как внесистемные, поскольку они инвариантны по отношению к любой системе физических величин. Например, коэффициент полезного действия, относительная влажность, объемные или массовые доли компонента в растворе и подобные им величины фактически не входят ни в одну из систем физических величин, хотя характеризуют физические свойства. Однако следует иметь в виду, что, например выраженные в неименованных или именованных единицах (в процентах) коэффициенты полезного действия, могут быть рассчитаны на основе учета потерь в механических, термодинамических, электрических и других устройствах с различными исходными единицами.
В таблице 2.2 приведены основные единицы Международной системы единиц физических величин, и указаны годы утверждения их определений.
Таблица 2.2
Основные единицы Международной системы единиц (SI)
Физическая величина |
Единица физической величины |
|||||
Наименование |
Размер-ность |
Наименование |
Обозначение |
Определение |
||
междунар. |
русск. |
|||||
Длина |
L |
метр |
m |
м |
Метр есть длина пути, проходимого светом в вакууме за интервал времени 1/299792458 секунды (XVII ГКМВ, 1983 г.) |
|
Масса |
M |
килограмм |
kg |
кг |
Килограмм есть единица массы, равная массе международного прототипа килограмма (I ГКМВ, 1889 г. и III ГКМВ, 1901 г.) |
|
Время |
T |
секунда |
s |
с |
Секунда есть время, равное 9 192 631 770 периодам излучения, соответствующего переходу между двумя сверхтонкими уровнями основного состояния атома цезия-133 (XIII ГКМВ, 1967 г.) |
|
Сила электрического тока |
I |
ампер |
A |
Ампер есть сила неизменяющегося тока, который при прохождении по двум параллельным прямолинейным проводникам бесконечной длины и ничтожно малой площади кругового поперечного сечения, расположенным в вакууме на расстоянии 1 метр один от другого, вызвал бы на каждом участке проводника длиной 1 метр силу взаимодействия, равную 2х10-7 ньютона (IX ГКМВ, 1948 г.) |
||
Термо-динамическая температура |
И |
кельвин |
K |
К |
Кельвин есть единица термодинамической температуры, равная 1/273,16 части термодинамической температуры тройной точки воды (XIII ГКМВ, 1967 г.) |
|
Количество вещества |
N |
моль |
mol |
моль |
Моль есть количество вещества системы, содержащей столько же структурных элементов, сколько содержится атомов в углероде-12 массой 0,012 килограмма. При применении моля структурные элементы должны быть специфицированны и могут быть атомами, молекулами, ионами, электронами и другими частицами или специфицированными группами частиц (XIV ГКМВ, 1971 г.) |
|
Сила света |
J |
кандела |
cd |
кд |
Кандела есть сила света в заданном направлении источника, испускающего монохроматическое излучение частотой 540х1012 герц, энергетическая сила света которого в этом направлении составляет 1/683 ватт/стерадиан (XVI ГКМВ, 1979 г.) |
Международная система единиц физических величин (для краткого обозначения используется международная аббревиатура SI - сокращение от «Система Интернациональная Единиц Физических Величин») применяется в большинстве стран мира, что зафиксировано в их основополагающих метрологических стандартах или иных НД по стандартизации в метрологии.
В основу Международной системы была положена система единиц физических величин Д. Джорджи (МКСА), которая первоначально содержала шесть основных единиц. SI была утверждена Генеральной конференцией по мерам и весам (ГКМВ) в 1960 году. С тех пор система несколько трансформировалась, в частности, добавлена седьмая основная единица (моль), ликвидированы «дополнительные единицы» (единицы плоского и телесного угла), изменились определения некоторых единиц.
Международная система единиц имеет ряд достоинств:
· универсальность (обеспечивает ее применение во всех отраслях производства и областях науки);
· унификация единиц физических величин;
· унификация механизма образования дольных и кратных единиц;
· когерентность системы.
Унификация единиц физических величин, например давления, заключается в отказе от таких ранее использовавшихся единиц, как атмосфера физическая, атмосфера техническая, миллиметры водяного столба, миллиметры ртутного столба и др., образующих неоправданное разнообразие единиц.
Когерентной является система, в которой производные единицы получают из основных с коэффициентом в виде неименованной единицы. Например, единица скорости 1 м/с образована делением единицы длины 1 м на единицу времени 1 с, единица давления 1 Па, образована делением единицы силы 1 Н на единицу площади 1 м2, которая в свою очередь образована произведением единиц длины 1 м на 1 м.
Наряду с безусловными достоинствами Международной системы единиц у нее есть и недостатки, в частности универсальность системы и недостаточная строгость построения. Универсальность любого объекта всегда имеет как положительную, так и отрицательную стороны.
Пример. Универсальный складной нож с отверткой, пилкой, консервооткрывателем и другими инструментами позволяет делать множество операций, но удобства работы такой отверткой или пилой несопоставимы с комфортом использования специализированных инструментов. Изображения, полученные с камеры мобильного телефона, веб-камеры или камеры наблюдения не сопоставимы по уровню качества с картинками фотоаппарата, набирать текст на полной клавиатуре компьютера намного удобнее, чем сообщения на «мобильнике». Ряд примеров может быть продолжен.
Недостаточная строгость построения Международной системы единиц физических величин заключается в избыточном количестве основных единиц. Макс Планк установил, что для построения универсальной системы достаточно четырех основных единиц, а число основных единиц SI составляет семь. Последняя единица появилась существенно позже ранее выбранных, что подтверждает ее избыточность - ведь система была вполне работоспособной и без нее.
Кроме базисных основных и производных единиц используют также кратные и дольные единицы, образованные умножением базисной единицы на десять в целой положительной или отрицательной степени (в SI приняты модули показателей 1, 2, 3, и далее через 3 до 24). При образовании кратных и дольных единиц к базисным единицам добавляют приставки, наименования и обозначения которых приведены в таблице 2.3.
Таблица 2.3
Множители и приставки для образования кратных и дольных единиц SI
Множитель |
Приставка |
||||
Наименование |
Обозначение |
||||
Международное |
Русское |
Международное |
Русское |
||
10 24 |
yotta |
йотта |
Y |
И |
|
10 21 |
zetta |
зетта |
Z |
З |
|
10 18 |
exa |
экса |
E |
Э |
|
10 15 |
peta |
пета |
P |
П |
|
10 12 |
tera |
тера |
T |
Т |
|
10 9 |
giga |
гига |
G |
Г |
|
10 6 |
mega |
мега |
M |
М |
|
10 3 |
kilo |
кило |
k |
к |
|
10 2 |
hecto |
гекто |
h |
г |
|
10 1 |
deca |
дека |
da |
да |
|
10 -1 |
deci |
деци |
d |
д |
|
10 -2 |
centi |
санти |
c |
с |
|
10 -3 |
milli |
милли |
m |
м |
|
10 -6 |
micro |
микро |
м |
мк |
|
10 -9 |
nano |
нано |
n |
н |
|
10 -12 |
pico |
пико |
p |
п |
|
10 -15 |
femto |
фемто |
f |
ф |
|
10 -18 |
atto |
атто |
a |
а |
|
10 -21 |
zepto |
зепто |
z |
з |
|
10 -24 |
yocto |
йокто |
y |
и |
Не следует забывать, что фактически используемая номенклатура единиц физических величин значительно шире любой даже самой универсальной системы единиц. Наряду с единицами SI, положенной в основу стандартов на узаконенные единицы, широко используют также единицы, заимствованные из других систем или не входящие ни в какие системы.
Широко известные примеры применения узаконенных единиц, заимствованных из других систем и разрешенных к применению наравне с единицами SI, таких как угловые градусы, минуты, секунды; единицы времени, кратные секунде (минута, час, сутки и другие).
Используют также внесистемные единицы уникального вида (например, парсек, карат), относительные, относительные логарифмические и условные единицы (процент, промилле, бел, единицы твердости, единицы светочувствительности фотоматериалов).
К «внесистемным единицам» можно отнести собственно внесистемные, которые не входят в строго выстроенные системы физических единиц величин, а также единицы, не входящие в данную систему, но заимствованные из других систем и имеющие иные системы собственного построения (миля-кабельтов, минута-час-сутки-неделя-месяц…). Одним из признаков внесистемных (по отношению к SI) единиц является кратность (дольность), не соответствующая десяти, например, кратностью 60 связаны угловые секунды, минуты и градусы, минута и час, секунда и минута.
Для измерений недостаточно назначить единицу физической величины и даже написать ее подробную спецификацию. Единицу следует воспроизвести с максимально возможной точностью, например, с помощью эталона, а затем передать рабочим средствам измерений с помощью эталонных (образцовых) средств измерений.
Кроме физических величин в практике приходится использовать множество других, которые тоже требуют количественной оценки. Например, счетом оценивают деньги, штучные товары, «объемы» произведений печати, количество записанной на носитель информации и многое другое. Оценка (измерение) значений таких величин может быть корректной в пределах принятых правил (счет денег, перевод их в иную валюту, определение объема текста в печатных знаках) или откровенно субъективной (экспертной).
Вполне реализуема аппаратурная оценка некоторых величин из этого ряда, например автоматический счет единиц продукции, определение количества информации в файле. В Приложении А ГОСТ 8.417 редакции 2002 г. представлены «единицы количества информации» бит и байт (1 байт равен 8 бит). Бит - единица информации в двоичной системе счисления, причем в соответствии со стандартом МЭК 60027-2 единицы бит и байт «можно применять с приставками SI». Однако фактически в вычислительной технике при использовании двоичной системы счисления для кратных приставок используют не 103 = 1000, а 210 = 1024, в результате килобайт равен 1024 байт (1 Кбайт = 1024 байт), мегабайт равен 1024 Кбайт, гигабайт равен 1024 мегабайт. При этом приставку «кило» в отличие от установленного в SI обозначения обозначают прописной, а не строчной буквой.
Свойства, которые не подлежат аппаратурной оценке из-за отсутствия объективно оцениваемого содержания, а также те, представления о физическом содержании которых на нынешнем этапе недостаточно корректно, относят к «нефизическим величинам». В отличие от метрологии, объектом которой являются аппаратурные измерения физических величин, экспертными оценками и повышением их объективности занимается квалиметрия. Квалиметрия успешно использует метрологические методы и приемы для аппаратурно оцениваемых свойств, а также разрабатывает собственные специфические методы оценивания. Существуют экспертные методы оценивания объема и качества интеллектуальной работы, знаний субъекта в определенной области, уровня художественных произведений, жесткости природных проявлений и ряда других сложных явлений [10-20].
2.4 Метрологические характеристики средств измерений. Градуировка и поверка средств измерений
2.4.1 Метрологические характеристики средств измерений
Метрологические характеристики средств измерений -- это характеристики свойств, оказывающие влияние на результаты и погрешности измерений. Информация о назначении метрологических характеристиках приведена в документации на средства измерений (в ГОСТе, в ТУ, в паспорте). Метрологические характеристики, установленные нормативными документами, называют нормируемыми.
При установлении совокупности нормируемых метрологических характеристик для средств измерений конкретного вида необходимо использовать номенклатуру характеристик, регламентированных государственным стандартом ГОСТ 8.009--84 «ГСИ. Нормируемые метрологические характеристики средств измерений» [21]. В этом стандарте приведены рекомендации по выбору метрологических характеристик для различных видов СИ и критерий рациональности основных составляющих погрешности. Положения ГОСТ 8.009--84 гармонизированы с международными рекомендациями.
Все метрологические свойства (характеристики) можно разделить на две группы:
1. свойства, определяющие область применения СИ;
2. свойства, определяющие качество измерения.
Основными метрологическими характеристиками, определяющими свойства первой группы, являются диапазон измерений и порог чувствительности.
Диапазон измерений -- область значений величины, в пределах которых нормированы допускаемые пределы погрешности. Значение величины, ограничивающее диапазон измерений снизу или сверху (слева и справа), называют соответственно нижним или верхним пределом измерений.
Порог чувствительности -- наименьшее изменение измеряемой величины, которое вызывает заметное изменение выходного сигнала.
К метрологическим свойствам второй группы относятся три главных свойства, определяющих качество измерений: точность, сходимость и воспроизводимость измерений.
В практике применения средств измерений широко используется такая характеристика, как класс точности.
Класс точности СИ-- обобщенная характеристика, выражаемая пределами допускаемых погрешностей, а также другими характеристиками, влияющими на точность. Классы точности конкретного типа СИ устанавливают в нормативных документах. При этом для каждого класса точности определяют конкретные требования к метрологическим характеристикам, в совокупности отражающим уровень точности СИ данного класса. Класс точности позволяет судить о том, в каких пределах находится погрешность измерений этого класса. Это необходимо знать при выборе СИ в зависимости от заданной точности будущих измерений.
Требования к назначению, применению и обозначению классов точности регламентированы в ГОСТ 8.401--80 «ГСИ. Классы точности средств измерений. Основные положения» [22]. Этот стандарт гармонизирован с международными рекомендациями.
2.4.2 Градуировка и поверка средств измерений
Градуировкой называется процесс нанесения отметок на шкалы средств измерений, а также определение значений измеряемой величины, соответствующих уже нанесенным отметкам для составления градуировочных кривых или таблиц.
Различают следующие способы градуировки.
1. Использование типовых шкал. Для подавляющего большинства рабочих и многих образцовых приборов используют типовые шкалы, которые изготовляются заранее в соответствии с уравнением статической характеристики идеального прибора. При регулировке параметрам элементов прибора экспериментально придают такие значения, при к????ых погрешность в точках регулировки становится равной нулю.
2. Индивидуальная градуировка шкал. Индивидуальную градуировку шкал осуществляют в тех случаях, когда статическая характеристика прибора нелинейная или близка к линейной, но характер изменения систематической погрешности в диапазоне измерения случайным образом меняется от прибора к прибору данного типа так, что регулировка не позволяет уменьшить основную погрешность до пределов ее допускаемых значений.
3. Градуировка условной шкалы. Условной называется шкала, снабженная некоторыми условными равномерно нанесенными делениями, например, через миллиметр или угловой градус. В результате определяют зависимость числа делений шкалы, пройденных указателем от значений измеряемой величины. Эту зависимость представляют в виде таблицы или графика [23].
Калибровка (поверка) средств измерений - это комплекс действий и операций, определяющих и подтверждающих настоящие (действительные) значения метрологических характеристик и (или) пригодность средств измерений, не подвергающихся государственному метрологическому контролю.
Пригодность средства измерений - это характеристика, определяющаяся соответствием метрологических характеристик средства измерения утвержденным (в нормативных документах, либо заказчиком) техническим требованиям Калибровочная лаборатория определяет пригодность средства измерений.
Калибровка сменила поверку и метрологическую аттестацию средств измерений, которые проводились только органами государственной метрологической службы. Калибровка, в отличие от поверки и метрологической аттестации средств измерений, может осуществляться любой метрологической службой при условии, что у нее есть возможность обеспечить соответствующие условия для проведения калибровки. Калибровка осуществляется на добровольной основе и может быть проведена даже метрологической службой предприятия.
Но, тем не менее, метрологическая служба предприятия обязана выполнять определенные требования. Основное требование к метрологической службе - обеспечение соответствия рабочего средства измерений государственному эталону, т. е. калибровка входит в состав национальной системы обеспечения единства измерений.
Выделяют четыре метода поверки (калибровки) средств измерений:
1) метод непосредственного сравнения с эталоном;
2) метод сличения при помощи компьютера;
3) метод прямых измерений величины;
4) метод косвенных измерений величины.
Метод непосредственного сличения с эталоном средства измерений, подвергаемого калибровке, с соответствующим эталоном определенного разряда практикуется для различных средств измерений в таких сферах, как электрические измерения, магнитные измерения, определение напряжения, частоты и силы тока. Данный метод базируется на осуществлении измерений одной и той же физической величины калибруемым (поверяемым) прибором и эталонным прибором одновременно. Погрешность калибруемого (поверяемого) прибора вычисляется как разность показаний калибруемого прибора и эталонного прибора (т. е. показания эталонного прибора принимаются за настоящее значение измеряемой физической величины).
Преимущества метода непосредственного сличения с эталоном:
• простота;
• наглядность;
• возможность автоматической калибровки (поверки);
• возможность проведения калибровки с помощью ограниченного количества приборов и оборудования.
Метод сличения с помощью компьютера - осуществляется с использованием компаратора - специального прибора, посредством которого проводится сравнение показаний калибруемого (поверяемого) средства измерений и показаний эталонного средства измерений. Необходимость использования компаратора обусловливается невозможностью провести непосредственное сравнение показаний средств измерений, измеряющих одну и ту же физическую величину. Компаратором может быть средство измерения, одинаково воспринимающее сигналы эталонного средства измерения и калибруемого (поверяемого) прибора. Преимущество данного метода в последовательности во времени сравнения величин.
Метод прямых измерений величины - используется в случаях, когда есть возможность провести сравнение калибруемого средства измерения с эталонным в установленных пределах измерений. Метод прямых измерений базируется на том же принципе, что и метод непосредственного сличения. Различие между этими методами состоит в том, что при помощи метода прямых измерений осуществляется сравнение на всех числовых отметках каждого диапазона (поддиапазона).
Метод косвенных измерений - используется в случаях, когда настоящие (действительные) значения измеряемых физических величин невозможно получить посредством прямых измерений или когда косвенные измерения выше по точности, чем прямые измерения. При использовании данного метода для получения искомого значения сначала ищут значения величин, связанных с искомой величиной известной функциональной зависимостью. А затем на основании этой зависимости находится расчетным путем искомое значение. Метод косвенных измерений, как правило, используется в установках автоматизированной калибровки (поверки).
Для того чтобы передача размеров единиц измерений рабочим приборам от эталонов единиц измерений осуществлялась без больших погрешностей, составляются и применяются поверочные схемы.
Поверочные схемы - это нормативный документ, в котором утверждается соподчинение средств измерений, принимающих участие в процессе передачи размера единицы измерений физической величины от эталона к рабочим средствам измерений посредством определенных методов и с указанием погрешности. Поверочные схемы утверждают метрологическое подчинение государственного эталона, разрядных эталонов и средств измерений.
Поверочные схемы разделяют на:
1) государственные поверочные схемы;
2) ведомственные поверочные схемы;
3) локальные поверочные схемы.
Государственные поверочные схемы - устанавливаются и действуют для всех средств измерений определенного вида, использующихся в пределах страны.
Ведомственные поверочные схемы - устанавливаются и действуют на средства измерений данной физической величины, подлежащие ведомственной поверке. Ведомственные поверочные схемы не должны вступать в противоречие с государственными поверочными схемами, если они установлены для средств измерений одних и тех же физических величин Ведомственные поверочные схемы могут быть установлены при отсутствии государственной поверочной схемы. В ведомственных поверочных схемах можно непосредственно указывать определенные типы средств измерений.
Подобные документы
Физические и химические свойства нефти. Теория возникновения газа. Применение продуктов крекинга. Внутреннее строение Земли. Геодинамические закономерности относительного изменения запасов и физико-химических свойств нефти различных месторождений.
дипломная работа [3,8 M], добавлен 06.04.2014Анализ процессов разработки залежей нефти как объектов моделирования. Расчет технологических показателей разработки месторождения на основе моделей слоисто-неоднородного пласта и поршевого вытеснения нефти водой. Объем нефти в пластовых условиях.
контрольная работа [101,6 K], добавлен 21.10.2014Условия залегания и свойства газа, нефти и воды в пластовых условиях. Физические свойства нефти. Главные свойства нефти в данных условиях, принципы и этапы отбора проб. Нефтенасыщенность пласта, характер и направления движения нефти внутри него.
курсовая работа [1000,9 K], добавлен 19.06.2011Физико-химические свойства нефти. Свойства турбулентной диффузии. Промысловый сбор и транспорт продукции скважин. Особенности разработки и обустройства нефтяного месторождения, технологическое оборудование, автоматизация технологических процессов.
курс лекций [9,1 M], добавлен 29.12.2010Общая характеристика месторождения Карачаганак: расположение, запасы нефти и газа, хроники реализации проекта. Особенности нефтеперерабатывающих заводов Казахстана. Перспективы развития нефтедобывающей и нефтеперерабатывающей промышленности Казахстана.
реферат [166,1 K], добавлен 08.12.2011Емкостные, фильтрационные и емкостные свойства коллекторов. Сжимаемость пород коллектора и пластовых жидкостей. Молекулярно-поверхностное натяжение и капиллярные явления. Реологические характеристики нефти. Подвижность флюидов в пластовых условиях.
контрольная работа [288,3 K], добавлен 21.08.2016Общие сведения о месторождении. Характеристика геологического строения. Состав и свойства пластовых флюидов. Физико-химическая характеристика нефти, газа и их компонентов. Основные этапы проектирования разработки месторождения. Запасы нефти и газа.
курсовая работа [5,2 M], добавлен 18.06.2012Изучение физико-химических свойств пластовых и дегазированных нефтей, попутных газов Северо-Альметьевской площади по кыновскому и пашийскому горизонтов. Характеристика фондов скважин и текущих дебитов. Методы увеличения нефтеотдачи пластов на объекте.
курсовая работа [1,1 M], добавлен 06.06.2014Общие сведения об Уршакском месторождении. Стратиграфия и тектоника. Характеристика нефтегазоносных пластов и пластовых флюидов. Физико-химические свойства нефти девонских отложений. Свойства пластовой нефти и воды. Состояние разработки месторождения.
курсовая работа [3,4 M], добавлен 30.01.2016Особенности химического состава нефти, глубина ее залегания и первые упоминания о добыче. Теории знаменитых ученых об абиогенном, органическом или космическом происхождении нефти. Перечень процессов, приводящих к образованию газообразного метана.
презентация [631,2 K], добавлен 27.03.2014