Основы автоматизации технологических процессов нефтегазового производства

Основные понятия и определения теории автоматического регулирования. Датчики линейного и углового перемещения. Измерение физико-химических свойств нефти и пластовых вод. Электромагнитные реле постоянного и переменного тока. Интерфейсы передачи данных.

Рубрика Геология, гидрология и геодезия
Вид учебное пособие
Язык русский
Дата добавления 03.09.2015
Размер файла 2,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

При исследовании непрерывного спектра обычно невозможно сказать, принадлежит ли он случайному сигналу или переходному. Это ограничение присуще частотному анализу Фурье, поэтому, сталкиваясь с непрерывным спектром полезно изучить его временную реализацию. Применительно к анализу вибрации машины, это позволяет отличить удары, имеющие импульсные временные реализации, и случайный шум, вызванный, например, кавитацией.

Единичный импульс, подобный этому, редко встречается в роторных машинах, однако при ударном тесте этот тип возбуждения используется специально для возбуждения машины. Хотя ее вибрационный отклик не будет такой классически гладкой кривой, какая приведена выше, но тем не менее он будет непрерывным в широком частотном диапазоне и иметь пики на собственных частотах конструкции. Это означает, что удар является очень хорошим типом возбуждения для выявления собственных частот, так как его энергия распределена непрерывно в широком частотном диапазоне.

Если импульс, имеющий приведенный выше спектр, повторяется с постоянной частотой, то результирующий спектр, который показан, здесь, будет уже не непрерывным, а состоящим из гармоник частоты повторения импульса, а его огибающая будет совпадать с формой спектра единичного импульса.

Подобные сигналы производят подшипники с дефектами (выбоины, царапины и т.п.) на одном из колец. Эти импульсы могут быть очень узкими, причем они всегда вызывают появление большой серии гармоник.

Модуляция

Модуляцией называют нелинейное явление, при котором несколько сигналов взаимодействуют друг с другом таким образом, что в результате получается сигнал с новыми частотами, отсутствовавшими в исходных.

Модуляция - это бич звукоинженеров, поскольку она вызывает модуляционное искажение, досаждающее любителям музыки. Существует множество форм модуляции, включая частотную и амплитудную модуляцию. Давайте рассмотрим по отдельности основные ее типы. Показанная здесь частотная модуляция (frequency modulation - FM) есть варьирование частоты одного сигнала под воздействием другого, имеющего обычно более низкую частоту.

Модулируемая частота называется несущей. На представленном спектре максимальная по амплитуде компонента и есть несущая, а другие составляющие, которые похожи на гармоники, называют боковыми полосами. Последние располагаются симметрично по обеим сторонам от несущей с шагом, равным величине модулирующей частоты Частотная модуляция часто встречается в спектрах вибрации машин, особенно в зубчатых передачах, где частота зацепления зубьев модулируется оборотной частотой колеса. Она также имеет место в некоторых акустических динамиках, хотя и на очень низком уровне.

Амплитудная модуляция

Частота временной реализации амплитудно модулированного сигнала, кажется постоянной, а ее амплитуда колеблется с постоянным периодом

Этот сигнал был получен посредством быстрого варьирования усиления на выходе электронного генератора сигналов в процессе записи. Периодическое изменение амплитуды сигнала с определенным периодом называют амплитудной модуляцией. Спектр в этом случае имеет максимальный пик на несущей частоте и по одной компоненте с каждой стороны. Эти дополнительные компоненты суть боковые полосы. Обратите внимание, что в отличие от частотной модуляции, приводящей к большому количеству боковых полос, амплитудная модуляция сопровождается только двумя боковыми полосами, которые располагаются относительно несущей симметрично на расстоянии, равном величине модулирующей частоты (в нашем примере модулирующая частота - это частота, с которой играли ручкой усиления при записи сигнала). В данном примере модулирующая частота значительно ниже модулируемой, или несущей, однако на практике они часто оказываются близкими друг к другу (например, на много роторных машинах, имеющих близкие частоты вращения роторов). Кроме того, в реальной жизни и модулирующий, и модулируемый сигналы имеют более сложную форму, чем приведенные здесь синусоиды.

Связь между амплитудной модуляцией и боковыми полосами можно наглядно представить в векторном виде. Представим временной сигнал в виде вращающегося вектора, величина которого равна амплитуде сигнала, а угол в полярных координатах - фазе. Векторное представление синусоидального колебания - это просто вектор постоянной длины, вращающийся вокруг своего начала со скоростью, равной частоте колебания. Каждый цикл временной реализации соответствует одному обороту вектора, т.е. один цикл - это 360 градусов.

Амплитудная модуляция синусоидального колебания в векторном представлении выглядит как сумма трех векторов: несущей модулируемого сигнала и двух боковых полос, Векторы боковых полос вращаются один чуть быстрее, а другой чуть медленней несущего.

Добавление этих боковых полос к несущей приводит к изменениям амплитуды суммы. При этом несущий вектор кажется неподвижным, как если бы мы находились в системе координат, вращающейся с несущей частотой. Заметим, что при вращении векторов боковых полос между ними поддерживается постоянное фазовое соотношение, поэтому суммарный вектор вращается с постоянной частотой (с частотой несущей).

Чтобы представить подобным образом частотную модуляцию, достаточно ввести небольшое изменение фазовых соотношений боковых векторов. Если боковой вектор меньшей частоты развернуть на 180 градусов, то возникнет частотная модуляция. При этом результирующий вектор качается вперед и назад вокруг своего начала. Это означает возрастание и убывание его частоты, то есть частотную модуляцию. Следует отметить также, что результирующий вектор изменяется по амплитуде. То есть наряду с частотной присутствует и амплитудная модуляция. Чтобы получить векторное представление чистой частотной модуляции, необходимо ввести в рассмотрение множество боковых векторов, имеющих точно определенные фазовые соотношения друг с другом. В вибрации оборудования почти всегда присутствует как амплитудная, так и частотная модуляция. В таких случаях, некоторые боковые полосы могут складываться в противофазе, в результате чего верхние и нижние боковые полосы будут иметь различные уровни, то есть не будут симметричны относительно несущей.

Биения

Приведенная временная реализация похожа на амплитудную модуляцию, однако, в действительности, это лишь сумма двух синусоидальных сигналов с немного отличающимися частотами, которая называется биение.

Из-за того, что эти сигналы немного различаются по частоте, их разность фаз изменяется в пределах от нуля до 360 градусов, а это означает, что их суммарная амплитуда будет то усиливаться (сигналы в фазе), то ослабляться (сигналы в противофазе). В спектре биения присутствуют компоненты с частотой и амплитудой каждого сигнала, и полностью отсутствуют боковые полосы. В данном примере амплитуды двух исходных сигналов различны, поэтому они не полностью взаимоуничтожаются в нулевой точке между максимумами. Биение - это линейный процесс: оно не сопровождается появлением новых частотных компонент.

Электродвигатели часто генерируют вибрационные и акустические сигналы, напоминающие биения, в которых частота лже-биения равна удвоенной частоте проскальзывания. В действительности, это есть амплитудная модуляция вибрационного сигнала удвоенной частотой проскальзыаания. Такое явление в электродвигателях иногда также называют биением, вероятно, по той причине, что при нем механизм звучит как расстроенный музыкальный инструмент, "бьет".

Этот пример биений аналогичен предыдущему, однако уровни складывающихся сигналов равны, поэтому они полностью взаимоуничтожаются в нулевых точках. Подобное полное взаимоуничтожение весьма редко встречается в реальных вибрационных сигналах роторного оборудования.

Выше мы видели, что биения и амплитудная модуляция имеют похожие временные реализации. Это действительно так, но с небольшой поправкой - в случае биений имеет место сдвиг фазы в точке полного взаимоуничтожений сигналов.

Логарифмическая частотная шкала

До сих пор мы рассматривали только один тип частотного анализа, в котором частотная шкала была линейной. Такой подход применим в том случае, когда частотное разрешение постоянно во всем частотном диапазоне, что характерно для так называемого узкополосного анализа, или анализа в полосах частот с постоянной абсолютной шириной. Именно такой анализ выполняют, например, БПФ-анализаторы.

Существуют ситуации, когда нужно провести частотный анализ, но узкополосный подход не обеспечивает представление данных в наиболее удобной форме. Например, когда изучается неблагоприятное воздействие акустического шума на организм человека. Человеческий слух реагирует не столько на сами частоты, сколько на их соотношения. Частота звука определяется по высоте тона, воспринимаемого слушателем, причем изменение частоты в два раза воспринимается как изменение тона на одну октаву, независимо от того, каковы точные значения частот. Например, изменение частоты звука со 100 Гц до 200 Гц соответствует увеличению высоты на одну октаву, но и увеличение с 1000 до 2000 Гц также есть сдвиг на одну октаву. Этот эффект настолько точно воспроизводится в широком частотном диапазоне, что удобно определить октаву, как полосу частот, у которой верхняя частота в два раза выше нижней, хотя в обыденной жизни октава есть лишь субъективная мера изменения звука.

Подводя итог, можно сказать, что ухо воспринимает изменение частоты пропорционально ее логарифму, а не самой частоте. Поэтому разумно выбирать для частотной оси акустических спектров логарифмическую шкалу, что и делается почти повсеместно. Например, частотные характеристики акустического оборудования всегда даются производителями в виде графиков с логарифмической частотной осью. При осуществлении частотного анализа звука также принято использовать логарифмический частотный масштаб.

Октавный и 1/3-октавный анализ

Октава представляет собой настолько важный частотный интервал для человеческого слуха, что анализ в так называемых октавных полосах утвердился в качестве стандартного типа акустических измерений. На рисунке показан типичный октавный спектр, в котором используются значения центральных частот в соответствии с международными стандартами ISO. Ширина каждой октавной полосы равна приблизительно 70% ее центральной частоты. Иными словами, ширина анализируемых полос увеличивается пропорционально их центральным частотам. По вертикальной оси октавного спектра обычно откладывают уровень в дБ.

Можно возразить, что частотное разрешение при октавном анализе слишком низкое для исследования вибрации машин. Однако можно определить более узкие полосы с постоянной относительной шириной. Наиболее общим примером этого является третьоктавный спектр, где ширина полос составляет примерно 27% от центральных частот. Три третьоктавные полосы укладываются в одну октаву, поэтому разрешение в таком спектре в три раза лучше, чем при октавном анализе. При нормировании вибрации и шума машин третьоктавные спектры часто применяются.

Важным преимуществом анализа в полосах частот с постоянной относительной шириной является возможность представления на едином графике очень широкого частотного диапазона с достаточно узким разрешением на низких частотах. Конечно, при этом страдает разрешение на высоких частотах, однако это не вызывает проблем в некоторых приложениях, например, при отыскании неисправностей в машинах.

Для диагностики машин узкополосные спектры (с постоянной абсолютной шириной полосы) очень полезны для обнаружения высокочастотных гармоник и боковых полос, однако для обнаружения многих простых неисправностей машин такое высокое разрешение часто не требуется. Оказывается, что спектры виброскорости большинства машин спадают на высоких частотах, и поэтому спектры с постоянной относительной шириной полосы являются, обычно, более однородными в широком частотном диапазоне, Это означает, что подобные спектры позволяют лучше использовать динамический диапазон приборов. Третьоктавные спектры достаточно узки при низких частотах, что позволяет выявить первые несколько гармоник оборотной частоты, и могут эффективно использоваться для обнаружения неисправностей с помощью построения трендов.

Следует, однако, признать, что использование спектров с постоянной относительной шириной полосы в целях вибродиагностики не очень широко принято в промышленности, за исключением, быть может, нескольких достойных внимания примеров, таких как подводный флот.

Линейный и логарифмический амплитудные масштабы

Может показаться, что лучше всего исследовать спектры вибрации в линейном масштабе амплитуды, который дает истинное представление измеренной амплитуды вибрации. При использовании линейной амплитудной шкалы очень легко выявить и оценить наивысшую компоненту в спектре, зато меньшие компоненты можно совершенно упустить или, в лучшем случае, возникнут большие трудности при оценке их величины. Человеческий глаз способен различить в спектре компоненты, которые приблизительно в 50 раз ниже максимальной, но все, что меньше этого будет упущено.

Линейный масштаб может применяться, если все существенные компоненты имеют примерно одинаковую высоту. Однако в случае вибрации машин, зарождающиеся неисправности в таких деталях, как, подшипники, порождают сигналы с очень малой амплитудой. Если мы хотим надежно отследить развитие этих спектральных компонент, то лучше всего откладывать на графике логарифм амплитуды, а не ее саму. При таком подходе мы легко сможем изобразить на графике и визуально интерпретировать сигналы, отличающиеся по амплитуде в 5000, т.е. иметь динамический диапазон по меньшей мере в 100 раз больший, чем позволяет линейный масштаб.

Различные типы амплитудного представления для одной и той же вибрационной характеристики (линейный и логарифмический масштабы амплитуды) представлены на рисунке.

Обратите внимание, что на линейном спектре линейная амплитудная шкала большие пики читаются очень хорошо, но пики с низким уровнем трудно разглядеть. При анализе вибрации машин, однако, часто интересуются именно малыми компонентами в спектре (например, при диагностике подшипников качения). Не забывайте, что при мониторинге вибрации нас интересуют рост уровней конкретных спектральных компонент, указывающий на развитие зародившейся неисправности. В шариковом подшипнике двигателя может развиваться небольшой дефект на одном из колец или на шарике, а уровень вибрации на соответствующей частоте поначалу будет очень маленьким. Но это не означает, что им можно пренебречь, ибо преимущество обслуживания по состоянию в том и заключается, что оно позволяет обнаружить неисправность в начальной стадии развития. Необходимо следить за уровнем этого небольшого дефекта, чтобы предсказать, когда он превратится в существенную проблему, требующую вмешательства.

Очевидно, что, если уровень вибрационной компоненты, соответствующей какому-то дефекту, удваивается, то, значит, с этим дефектом произошли большие изменения. Мощность и энергия вибрационного сигнала пропорциональны квадрату амплитуды, поэтому ее удвоение означает, что в четыре раза больше энергии диссипирует в вибрацию. Если мы попытаемся отследить спектральный пик с амплитудой около 0.0086 мм/с, то нам придется очень непросто, потому что он окажется слишком маленьким по сравнению с гораздо более высокими компонентами.

На 2-м из приведенных спектров представлена не сама амплитуда вибрации, а ее логарифм. Поскольку в этом спектре используется логарифмическая амплитудная шкала, умножение сигнала на любую константу означает простой сдвиг спектра вверх без изменения его формы и соотношений между компонентами.

Как известно, логарифм произведения равен сумме логарифмов множителей. Это означает, что если изменение коэффициента усиления сигнала, не влияет на форму его спектра в логарифмическом масштабе. Этот факт значительно упрощает визуальную интерпретацию спектров, измеренных при различных коэффициентах усиления - кривые просто смещаются на графике вверх или вниз, В случае использования линейной шкалы форма спектра резко изменяется при изменении коэффициента усиления прибора. Обратите внимание, что хотя по вертикальной оси на приведенном графике используется логарифмическая шкала, единицы измерения амплитуды остаются линейными (мм/с, дюймы/с), что соответствует увеличению количества нулей после запятой.

И в данном случае мы получили огромное преимущество для визуальной оценки спектра, так как вся совокупность пиков и их соотношения теперь стала видимой. Другими словами, если мы будем теперь сравнивать логарифмические спектры вибраций машины, у которой подшипники испытывают износ, то мы увидим рост уровней только у подшипниковых тонов, тогда как уровни других компонент будут оставаться неизменными. Форма спектра сразу изменится, что можно будет обнаружить невооруженным глазом.

Это особый тип логарифмической шкалы, который очень важен для вибрационного анализа.

Децибел

Удобной разновидностью логарифмического представления является децибел, или дБ. По существу, он представляет собой относительную единицу измерения, в которой используется отношение амплитуды к некоторому опорному уровню. Децибел (дБ) определяется по следующей формуле:

Lv= 20 lg (U/Uo), (5.9)

где Lv= Уровень сигнала в дБ; U - уровень вибрации в обычных единицах ускорения, скорости или смещения; Uo - опорный уровень, соответствующий 0 дБ.

Понятие децибела было впервые введено в практику компанией Bell Telephone Labs еще в 20-е годы. Первоначально оно применялось для измерений относительных потерь мощности и отношения сигнал-шум в телефонных сетях. Вскоре децибел стал использоваться в качестве меры уровня звукового давления. Будем обозначать уровень виброскорости в дБ как VдБ (от слова Velocity скорость), и определим его следующим образом:

Lv= 20 lg (V/Vo), (5.10)

или

Lv= 20 lg {V/(5*10-8 м/с2)}. (5.11)

Опорный уровень в 10-9 м/с2 достаточен для того, чтобы все измерения вибраций машины в децибелах были бы положительными. Указанный стандартизованный опорный уровень соответствует международной системе СИ, однако он не признается в качестве стандарта в США и других странах. Например, в ВМС США и многих американских отраслях промышленности в качестве опорного берется значение 10-8 м/с. Это приводит к тому, что американские показания для той же виброскорости будут на 20 дБ ниже, чем в СИ. (В российском стандарте используется опорный уровень виброскорости 510-8 м/с, поэтому российские показания Lv еще на 14 дБ ниже американских).

Таким образом, децибел - это логарифмическая относительная единица амплитуды колебаний, которая позволяет легко проводить сравнительные измерения. Любое увеличение уровня на 6 дБ соответствует удвоению амплитуды, независимо от исходного значения. Аналогично, любое изменение уровня на 20 дБ означает рост амплитуды в десять раз. То есть при постоянном соотношении амплитуд их уровни в децибелах будут различаться на постоянное число, независимо от их абсолютных значений. Такое свойство очень удобно при отслеживании развития вибрации (трендов): рост на 6 дБ всегда указывает на удвоение ее величины.

ДБ и соотношения амплитуд

В приведенной ниже таблице показана взаимосвязь между изменениями уровня в дБ и соответствующими отношениями амплитуд.

Мы настоятельно рекомендуем использовать в качестве единиц измерения амплитуды вибрации именно децибелы, так как в этом случае становится доступно гораздо больше информации по сравнению с линейными единицами. Кроме того, логарифмическая шкала в дБ значительно нагляднее, чем логарифмическая шкала с линейными единицами.

Таблица 5.1.

Взаимосвязь между изменениями уровня и отношениями амплитуд

Изменение уровня в дБ

Соотношение амплитуд

Изменение уровня в дБ

Соотношение амплитуд

0

1

30

31

3

1,4

36

60

6

2

40

100

10

3,1

50

310

12

4

60

1000

18

8

70

3100

20

10

80

10,000

24

16

100

100,000

Преобразование единиц измерений

Виброускорение и вибросмещение могут также выражаться в децибелах. Чтобы различать между ними, будем обозначать децибелы ускорения - АдБ (от Acceleration - ускорение), децибелы скорости - VдБ (от Velocity -скорость), а децибелы смещения - DдБ (от Displacement - смещение). Шкала АдБ является одной из наиболее употребительных; в качестве опорного уровня ускорения обычно используют значение 1 мкg (в России стандартный опорный уровень виброускорения - 1мкм/с2, то есть почти в 10 раз ниже; это означает, что значение La в АдБ, взятое в соответствии с российским стандартом, будет на 20 дБ выше американского).

Оказывается, что при 3,16 Гц уровни виброскорости в VдБ и виброускорения в АдБ совпадают (в американской системе это имеет место на частоте 159,2 Гц). Приведенные ниже формулы определяют взаимосвязи между уровнями виброускорения, скорости и смещения в АдБ, VдБ и DдБ соответственно:

LV = LA - 20 lg(f) + 10,

LV = LD + 20 lg(f) - 60, (5.12)

LD = LA - 20 lg(f2) + 70,

Примечание

Ускорение и Скорость в линейных единицах могут быть получены из соответствующих уровней по формулам:

, (5.13)

. (5.14)

Примечание

Заметим, что для временных реализации во временной области всегда используются линейные единицы измерения амплитуды: мгновенное значение сигнала может быть и отрицательным, и поэтому его невозможно логарифмировать.

5.2 Средства измерения вибрации

Для измерения вибрации и дополнительной оценки уровня шума применяются специализированные виброметры, виброскопы и универсальные шумовиброметры.

При измерении вибраций всегда участвуют три элемента: вибрирующее звено, исходное звено и устройство для измерения движения вибрирующего звена относительно невибрирующего. Средство измерения параметров вибраций носит название виброметр (рис. 5.37, а).

Обычно исходное (невибрирующее) звено создаётся с помощью массы, которая может перемещаться вдоль (или вокруг) оси вибраций.

Масса 1 связывается с основанием прибора 4 с помощью пружины 2 и демпфера 3. Преобразователь 5 выдаёт сигнал смещения корпуса относительно массы 1, в зависимости от параметров массы 1, пружины 2 и демпфера 3. Сигнал может быть пропорциональным относительному перемещению массы 1 и основания прибора 4, относительной скорости или ускорению. Масса 1 виброметра носит название сейсмического элемента, а система, образующаяся из массы 1, пружины 2 и демпфера 3 - сейсмической системы.

Рассмотрим конструктивные схемы некоторых типов виброметров.

Применяемые в настоящее время виброметры имеют электрический выход. В качестве преобразователей перемещения в электрический сигнал используют резисторные, индуктивные, ёмкостные, электромагнитные и др.

На рисунке 5.37, б представлена конструкция электромагнитного линейного виброметра с направляющей опорой для сейсмического элемента. Сейсмический элемент 8 установлен на опорном стержне 4 в вязкой жидкости 3. Направляющий диск 1 втулки 5 с малым трением позволяют перемещаться сейсмическому элементу вдоль оси чувствительности 2. Величина перемещения (вибрации) определяется наведением токов в обмотке 7, постоянным магнитом 6, закреплённым в сейсмическом элементе 8.

Виброметр этого типа при объёме 90 см3 и весе 450 г обладает собственной частотой 10 Гц, чувствительностью 0,03 В/(смЧс-2) и диапазоном входных смещений ±0,5 см.

Виброметр с индуктивным мостом (см. рис. 5.37, в). Сейсмический элемент 7, представляющий собой цилиндр из магнитного материала с малым гистерезисом, выполняет функции якоря 12 и перемещается между двумя катушками 5 в свободном пространстве, заполненном вязкой жидкостью 11. Сейсмический элемент 7 установлен на опорном стержне 1 с немагнитными втулками 3 и 9 и связан с корпусом прибора 13 пружинами 4 и 8. Регистрация сигнала виброметра производится на осциллографе. Виброметр при объёме 45 см3 весит 200 г.

При питании напряжением 10 В, 400 Гц он обладает чувствительностью 0,01 В/(смЧс2). Прибор работает в диапазоне измерения ускорений до 10 g.

Рис. 5.37. Средства измерения вибраций:

а - конструкция виброметра (1 -масса; 2 -пружина; 3 - демпфер;

4 - основание прибора; 5 - преобразователь); б - конструкция электромагнитного линейного виброметра (1 - направляющий диск; 2 - ось чувствительности; 3 - жидкость; 4 - опорный стержень; 5 - втулка; - постоянный магнит; 7 - обмотка; 8 - сейсмический элемент; 9 - каркас катушки; 10 - паз; 11 - воздушный зазор; 12 - пружинный мост; 13 - корпус прибора); в - конструкция виброметра с индуктивным мостом (1 - опорный стержень; 2 - входная ось; 3 и 9 - немагнитная втулка; 4 - пружина; 5 - катушки; 6 - лента; 7 - сейсмический элемент; 8 - пластинчатая пружина; 10 - паз; 11 - жидкость; 12 - якорь; 13 - корпус; 14 - шток).

Для измерения шума используются специальные приборы - шумомеры. Шумомер состоит, как правило, из датчика (микрофона), усилителя, частотных фильтров (анализатора частоты), регистрирующего прибора и индикатора, показывающего уровень измеряемой величины в дБ.

По точности шумомеры делятся на четыре класса 0, 1, 2 и 3. Шумомеры класса 0 используются как образцовые средства измерения; приборы класса 1 - для лабораторных и натурных измерений; 2 - для технических измерений; 3 - для ориентировочных измерений шума. Каждому классу приборов соответствует диапазон измерений по частотам: шумомеры классов 0 и 1 рассчитаны на диапазон частот от 20 Гц до 18 кГц, класса 2 - от 20 Гц до 8 кГц, класса 3 - от 31,5 Гц до 8 кГц. Для измерения эквивалентного уровня шума при усреднении за длительный период времени применяются интегрирующие шумомеры [35, 37-44].

Глава 6. ИЗМЕРЕНИЕ ФИЗИКО-ХИМИЧЕСКИХ СВОЙСТВ ЖИДКОСТЕЙ И ГАЗОВ

Исследование вопросов измерения физико-химических свойств таких жидкостей, как нефть и пластовая вода, а затем и газов, рассматривается в разделе по следующей схеме: краткое изучение предмета измерения - выявление его физико-химических свойств - рассмотрение методик измерения - изучение систем и средств измерения и контроля в соответствии с рассмотренными методиками.

6.1 Измерение физико-химических свойств нефти и пластовых вод

6.1.1 Измерение физико-химических свойств нефти

Известно, что нефть - горючая маслянистая жидкость, преимущественно темного цвета, представляет собой смесь различных углеводородов. Цвет нефти варьируется от светло-коричневого до темно-бурого и черного и зависит от растворенных в ней смол. Нефть представляет собой смесь жидких углеводородов (парафиновых, нафтеновых и ароматических), в которой растворены газообразные и твердые углеводороды. В незначительных количествах она содержит серные и азотные соединения, органические кислоты и некоторые другие химические соединения. В нефти встречаются следующие группы углеводородов:

· метановые (парафиновые) с общей формулой СnН2n+2;

· нафтеновые - СnН2ni;

· ароматические - СnH2n-6.

Преобладают углеводороды метанового ряда (табл.6.1).

Анализ нефтей с выделением индивидуальных соединений требует много времени. В технологических расчетах при определении качества сырья, продуктов нефтепереработки и нефтехимии часто пользуются данными технического анализа, который состоит в определении некоторых физических, химических и эксплуатационных свойств нефтепродуктов.

Таблица 6.1.

Углеводороды метанового ряда

Наименование

Формула

Примечание

Метан

СН4

При атмосферном давлении и нормальной температуре в газообразном состоянии

Этан

С2Н6

Пропан

С3Н8

Бутан

С4Н10

Пентан

С5Н12

Неустойчивы, легко переходят из газообразного состояния в жидкое и обратно

Гексан

С6Н14

Гептан

С7Н16

Октан

С8Н18

C17H36

Жидкие вещества

С18Н38 и т.д.

Твердые вещества (парафины)

Вообще, с этой целью используют методы, в комплексе дающие возможность охарактеризовать товарные свойства нефтепродуктов в различных условиях эксплуатации, связать их с составом анализируемых продуктов, дать рекомендации для наиболее рационального их применения:

· физические - определение плотности, вязкости, температуры плавления, замерзания и кипения, теплоты сгорания, молекулярной массы, а также некоторых условных показателей (пенетрация, дуктильность);

· химические, использующие классические приемы аналитической химии;

· физико-химические - колориметрия, потенциометрическое титрование, нефелометрия, рефрактометрия, спектроскопия, хроматография;

· специальные - определение октанового и цетанового чисел моторных топлив, химической стабильности топлив и масел, коррозионной активности, температуры вспышки и воспламенения и др. [45].

Однако, в рамках изучаемых в разделе вопросов, касающихся основных физических свойств нефти, выделим только принципы и средства измерения таких свойств, как:

1. Плотность;

2. Вязкость;

3. Испаряемость;

4. Сжимаемость;

5. Газосодержание;

6. Газовый фактор.

Измерение плотности.

Плотность - отношение массы к объему. Единица измерения плотности в системе СИ выражается в кг/м3.

Нефти различаются по плотности, т.е. по массе, содержащейся в единице их объема. Если в сосуд с нефтью налить воду, то, за исключением редких случаев, нефть всплывает. Обычно она легче воды. Плотность нефти, измеренная при 20°С, отнесенная к плотности воды, измеренной при 4°С, называется относительной плотностью нефти.

Определение плотности можно проводить при любой температуре, а затем вычислить значение относительной плотности, используя коэффициент объемного расширения, значения которого приводятся в справочной литературе. Относительная плотность нефтей колеблется в пределах 0,5-1,05 кг/дм3 (обычно 0,82-0,95). Нефти с относительной плотностью до 0,85 называются легкими. Своей легкостью они обязаны преобладанию в их составе метановых углеводородов. Относительную плотность от 0,85 до 0,90 имеют средние нефти, а свыше 0,90 - тяжелые. В тяжелых нефтях содержатся преимущественно циклические углеводороды.

Плотность нефти зависит от многих факторов: химической природы входящих в нее веществ, фракционного состава, количества смолистых веществ, количества растворенных газов и других. Плотность нефти зависит и от глубины залегания, как правило, уменьшаясь с ее увеличением. Исключения из этого правила объясняют вторичными явлениями, например, миграцией легких нефтей в более высокие горизонты залегания.

При определении плотности нефтей и нефтепродуктов обычно пользуются несколькими методами:

· с помощью ареометров (нефтеденсиметров),

· методом взвешенной капли,

· с помощью гидростатических весов,

· пикнометрическим методом (наиболее точный).

Ареометр (нефтеденсиметр) - прибор для определения плотности жидкости по глубине погружения поплавка, который представляет собой стеклянную полую трубку, зауженную в верхней части и герметично запаянную с обоих концов. В нижней части ареометра находится груз (как правило, металлическая дробь), вверху - шкала плотности. Масса ареометра заранее известна и точно отрегулирована. На шкале ареометра нанесены деления, показывающие плотность исследуемой нефти (рис. 6.2). Идея измерения плотности ареометром заключается в том, чтобы зафиксировать уровень нефтепродукта на шкале ареометра при различной глубине погружения ареометра в жидкость. Величина погружаемости ареометра обратно пропорциональна плотности измеряемой жидкости, т.е. чем ниже плотность жидкости, тем больше погрузится в нее ареометр.

Ареометры нефтепродуктов или нефтеденсиметры производят трех исполнений. У ареометров первого исполнения (АНТ-1) цена деления шкалы равна 0,5 кг/м3, у ареометров второго и третьего исполнения (АНТ-2 и АН) - 1 кг/м3. У ареометров первого и второго исполнения есть встроенный термометр с диапазонами измерения температуры от -20 до +40 0С. Ареометр АН термометра не имеет.

Для испытуемого нефтепродукта используют ареометр с соответствующим диапазоном шкалы, например: для бензинов - 640-780, для керосинов - 765-855, для дизельных топлив - 770-870. Затем подбирают цилиндр, чтобы его высота обеспечивала погружение ареометра, но при этом ареометр не касался дна цилиндра. Обычно для АНТ-1 используют цилиндры высотой 50 см, для АНТ-2 - 35 см.

Для малых количеств жидких нефтепродуктов или твердых нефтепродуктов используют метод выравнивания плотностей или метод взвешенной капли. При этом каплю или кусочек нефтепродукта вводят в спирто-водный или слабый водно-солевой раствор и добавляют в раствор воду или концентрированный раствор соли, пока испытуемый объект не будет взвешен в растворе. Затем ареометром определяют плотность раствора, она будет равна плотности испытуемого нефтепродукта.

С точностью до 0.0005 плотность определяют с помощью метода гидростатических весов, которые градуируются по плотности воды при 20оС и дают показания.

Пикнометрический метод позволяет определить плотность с точностью до 0.00005. Применяют пикнометры различной формы и емкости - в зависимости от агрегатного состояния и плотности исследуемого вещества. Высокую популярность при измерении плотности жидкостей получили плотномеры. Плотномер является электронным устройством, действующим по определенному принципу измерения. Плотномер заменяет традиционные средства измерения плотности жидкости - ареометры и пикнометры (рис. 6.4).

28 декабря 2010 года был принят и с 1 июля 2011 года введен в действие документ Р 50.2.075 «Нефть и нефтепродукты [46].

Лабораторные методы измерения плотности, относительной плотности и плотности в градусах API», в котором, кроме требований к ареометрическому и пикнометрическому методам, также сформулированы и требования к вибрационному методу измерения и установлена величина методической погрешности при измерении плотности нефти и нефтепродуктов.

Метрологические требования этого документа для разных методов измерения плотности сведены в табл. 6.2:

Таблица 6.2.

Метрологические требования для разных методов измерения плотности

Средство измерения

Диапазон, кг/м3

Погрешность СИ, кг/м3

Сходимость метода, кг/м3

Воспроизводимость метода, кг/м3

Ареометр

600…1100

±0.3, ±0.6

0.51) , 0.62)

1.21) , 1.52)

Пикнометр

777…892

--

0.7

1.0

Вибрационный плотномер

680…9701) 750…9502)

±0.1

0.11)

0.8…1.02)

0.51)

2.9…3.82)

1) Для светлых нефтепродуктов.

2) Для темных нефтепродуктов и сырой нефти.

Из приведенных данных следует, что использование вибрационного метода измерения для светлых нефтепродуктов дает более точные результаты в сравнении с другими методами измерения плотности. Для темных нефтепродуктов и сырой нефти сходимость и воспроизводимость результатов при вибрационном методе измерения хуже, чем при использовании ареометра или пикнометра.

В любом случае, использование плотномеров с пределом допустимой абсолютной погрешности измерения плотности лучше, чем 0.1 кг/м3 не представляется целесообразным потому, что определяющим фактором при формировании общей погрешности измерения плотности нефти или нефтепродуктов будет погрешность метода. Соответственно, вложение дополнительных средств в приобретение более точного плотномера не приведет к желаемому увеличению общей точности измерения.

Дополнительным аргументом в пользу отказа от применения более точных приборов для измерений плотности нефти и нефтепродуктов является сложность проведения их периодической поверки, поскольку доступные ГСО плотности имеют абсолютную погрешность не менее 0.05 кг/м3 .

Лабораторные приборы, обеспечивающие измерение плотности с пределом допустимой абсолютной погрешности в 0.1 кг/м3 , имеются в производственных линейках всех ведущих производителей вибрационных плотномеров. Обращает на себя внимание то, что все эти приборы имеют схожую компоновку с характерным расположением датчика и, соответственно, боковым вводом пробы, остающуюся неизменной на протяжении нескольких поколений этих приборов. Видимо, это объясняется схожей конструкцией датчиков, унаследованной от бесспорного «законодателя мод» в области вибрационной плотнометрии -- австрийской компании Anton Paar. Также все приборы имеют встроенные термостаты с принудительной вентиляцией и, соответственно, близкие технические характеристики: диапазоны температур и диапазоны измерения, минимальный объем пробы и прочее, вплоть до набора внешних интерфейсов. Имеющиеся отличия, в основном, касаются ряда вспомогательных функций, обеспечивающих некоторые конкурентные преимущества производителям.

Схожесть конструкций плотномеров от разных производителей определяет схожие массогабаритные характеристики, близкую потребляемую мощность и примерно одинаковый уровень цен

Плотномер отечественной компании «ТЕРМЭКС», благодаря собственной конструкции датчика и термостата, имеет другую компоновку, что позволило создать легкий, компактный и недорогой прибор с низким энергопотреблением, обладающий при этом сходными метрологическими характеристиками, соответствующими требованиям к рутинным измерениям плотности нефти и нефтепродуктов.

Технические характеристики плотномеров «ВИП-2М», «ВИП-2МР»

Диапазон показаний плотномеров, г/см3 ..................................от 0 до 3,0

Диапазон измерений плотномеров, г/см3...................................от 0 до 2,0

Предел допустимой абсолютной погрешности измерений плотности, г/см3:

· для модификации ВИП-2М................................................... ±0,0003

· для модификации ВИП-2МР................................................. ±0,0001

Вязкость контролируемой среды, мПа·с, не более............................... 300

Индикация измеряемой плотности..................................... цифровая

Цена единицы младшего разряда, г/см3:

· для модификации ВИП-2М..................................................... 0,0001

· для модификации ВИП-2МР .................................................0,00001

Номинальный объём измерительной ячейки, мл..................................1,5

Время прогрева плотномера, ч, не более ..............................................0,5

Время одного измерения при установившейся температуре в измерительной ячейке, с, не более .................................................................20

Диапазон температуры термостата датчика, °С ...от плюс 15 до плюс 60

Цена единицы младшего разряда показаний температуры, °С......................... 0,01

Материалы, контактирующие с анализируемыми жидкостями -- боросиликатное стекло, тефлон.

Интерфейс связи .............................................................................. RS232

Геометрические размеры, мм, не более .................................. 205Ч200Ч80

Масса, кг, не более...................................................................................3,0

Требование к электропитанию:

· напряжение питающей сети, В ............................................ 220±22

· частота тока питающей сети, Гц ...............................................50±1

Потребляемая мощность, B·А, не более..................................................12

Время непрерывной работы плотномера должно быть, ч, не менее.......8

Средний срок службы, лет, не менее ........................................................7

Наработка на отказ, ч, не менее .......................................................... 5000

Гарантийный срок службы, мес, не менее................................................24

Измерение вязкости.

Вязкость - свойство жидкости или газа оказывать сопротивление перемещению одних ее частиц относительно других. Она зависит от силы взаимодействия между молекулами жидкости. Для характеристики этих сил используется коэффициент динамической вязкости . За единицу динамической вязкости принят паскаль-секунда (Пас), т. е. вязкость такой жидкости, в которой на 1 м2 поверхности слоя действует сила, равная одному ньютону, если скорость между слоями на расстоянии 1 см изменяется на 1 см/с. Жидкость с вязкостью 1 Пас относится к числу высоковязких.

В нефтяном деле, так же как и в гидрогеологии и ряде других областей науки и техники, для удобства принято пользоваться единицей вязкости в 1000 раз меньшей - мПас. Так, пресная вода при температуре 20 имеет вязкость 1 мПас, а большинство нефтей, добываемых в России, - от 1 до 10 мПас, но встречаются нефти с вязкостью менее 1 мПас и несколько тысяч мПас. С увеличением содержания в нефти растворенного газа, ее вязкость заметно уменьшается. Для большинства нефтей, добываемых в России, вязкость при полном выделении из них газа (при постоянной температуре) увеличивается в 24 раза, а с повышением температуры резко уменьшается.

Вязкость жидкости характеризуется также коэффициентом кинематической вязкости, т. е. отношением динамической вязкости к плотности жидкости. За единицу в этом случае принят м2/с.

На практике иногда пользуются понятием условной вязкости, представляющей собой отношение времени истечения из вискозиметра определенного объема жидкости ко времени истечения такого же объема дистиллированной воды при температуре 20 .

Вязкость изменяется в широких пределах (при 50 1,2 ч 55·10-6 м2/с) и зависит от химического и фракционного состава нефти и смолистости (содержания в ней асфальтеново-смолистых веществ).

Приборы, предназначенные для измерения вязкости называются вискозиметрами. Раздел науки, изучающий измерения с помощью вискозиметров, получил название вискозиметрии.

К основным методам вискозиметрии относятся:

· капиллярный;

· вибрационный;

· падающего шарика (метод Стокса)

· ротационный;

· ультразвуковой.

Капиллярный метод вискозиметрии

Метод капиллярной вискозиметрии опирается на закон Пуазейля о вязкой жидкости, описывающий закономерности движения жидкости в капилляре.

Приведем уравнение гидродинамики для стационарного течения жидкости, с вязкостью з через капилляр вискозиметра:

, (6.1)

где Q - количество жидкости, протекающей через капилляр капиллярного вискозиметра в единицу времени, м3/с,

R - радиус капилляра вискозиметра, м

L - длина капилляра капиллярного вискозиметра, м

з - вязкость жидкости, Па·с,

р - разность давлений на концах капилляра вискозиметра, Па.

Отметим, что формула Пуазейля справедлива только для ламинарного потока жидкости, то есть при отсутствии скольжения на границе жидкость - стенка капилляра вискозиметра. Приведенное уравнение используют для определения динамической вязкости. Ниже размещено схематическое изображение капиллярного вискозиметра.

Рис.6.7. Принцип работы капиллярных вискозиметров.

В капиллярном вискозиметре жидкость из одного сосуда под влиянием разности давлений р истекает через капилляр сечения 2R и длины L в другой сосуд. Из рисунка видно, что сосуды имеют во много раз большее поперечное сечение, чем капилляр вискозиметра, и соответственно этому скорость движения жидкости в обоих сосудах в N раз меньше, чем в капилляре вискозиметра. Таким образом, не все давление пойдет на преодоление вязкого сопротивления жидкости, очевидно, что часть его будет расходоваться на сообщение жидкости нопределённой кинетической энергии. Следовательно, в уравнение Пуазейля необходимо ввести некоторую поправку на кинетическую энергию, называемую поправкой Хагенбаха:

, (6.2)

где h - коэффициент, стремящийся к единице, d -плотность исследуемой жидкости.

Вторую поправку условно назовём поправкой влияния начального участка капилляра вискозиметра на характер движения исследуемой жидкости. Она будет характеризовать возможное возникновение винтового движения и завихрения в месте сопряжения капилляра с резервуаром капиллярного вискозиметра (откуда вытекает жидкость). Суть поправки состоит в том, что вместо истинной длины капилляра вискозиметра L мы вводим кажущуюся длину L' (длину капилляра вискозиметра):

, (6.3)

где n - определяется экспериментально на основе изменений при разных значениях L и примерно равен единице.

Следует учитывать, что при измерении вязкости органических жидкостей с большой кинематической вязкостью поправка Хагенбаха незначительна и составляет доли процента. Если же говорить о высокотемпературных вискозиметрах, то вследствие малой кинематической вязкости жидких металлов поправка может достигать 15%.

Метод капиллярной вискозиметрии вполне можно отнести к высокоточному методу вискозиметрии в силу того, что относительная погрешность измерений составляет доли процента, в зависимости от подбора материалов вискозиметра и точности отсчёта времени, а также иных параметров, участвующих в методе капиллярного истечения.

Вибрационный метод вискозиметрии

Вибрационный метод вискозиметрии базируется на определении изменений параметров вынужденных колебаний тела правильной геометрической формы, называемого зондом вибрационного вискозиметра, при погружении его в исследуемую среду. Вязкость исследуемой среды определяется по значениям этих параметров, при этом обычно используется градуировочная кривая вискозиметра (для случая примитивного вибрационного вискозиметра; в целом, не теряя общности, этот принцип переносится и на более сложные приборы).

Введём несколько обозначений:

щ - частота колебаний, ф - время колебания тонкого упруго закрепленного зонда вибрационного вискозиметра, S - площадь пластины зонда вискозиметра; колебания происходят под действием гармонической силы . Вязкость и плотность исследуемой среды соответственно обозначим з и d.

Частотно-фазовый вариант вибрационного метода вискозиметрии используется для сильно-вязких жидкостей. В этом случае измеряется частота колебаний зонда вискозиметра, сначала не погруженного (щ0) и затем погруженного (щ) в жидкость при сдвиге фаз (фи) .

Для измерения вязкости менее вязких сред, например, металлических расплавов наиболее подходящим является амплитудно-резонансный вариант вибрационного метода вискозиметрии. В этом случае добиваются того, чтобы амплитуда А колебаний была максимальной (путём подбора частот колебаний). Поэтому измеряемым параметром, по которому определяется вязкость становится амплитуда колебаний зонда вискозиметра. В общем случае для малых значений вязкости имеем:

. (6.4)

Учтем поправки С2 (сторонние силы: трения, поверхностного натяжения, лобового сопротивления и т.п.). Имеем конечную формулу метода вибрационной вискозиметрии:

. (6.5)

Это основная формула вибрационного метода вискозиметрии.

Градуировка вискозиметра производится по известным жидкостям (именно определяются постоянные С12).

Метод падающего шарика вискозиметрии (метод Стокса)

Метод падающего шарика вискозиметрии основан на законе Стокса, согласно которому скорость свободного падения твердого шарика в вязкой неограниченной среде можно описать следующим уравнением:

, (6.6)

где V - скорость поступательного равномерного движения шарика вискозиметра; r - радиус шарика; g - ускорение свободного падения; d - плотность материала шарика; - плотность жидкости.

Необходимо отметить, что уравнение справедливо только в том случае, если скорость падения шарика вискозиметра довольно мала и при этом соблюдается некое эмпирическое соотношение: (соотношение вискозиметра Гепплера).

Как и в капиллярном методе вискозиметрии, необходимо учитывать возникающие поправки на конечные размеры цилиндрического сосуда вискозиметра с падающим шариком (высотой L и радиусом R, при условии, если выполняется вискозиметр с падающим шариком). Такие действия приводят к уравнению для определения динамической вязкости жидкости методом падающего шарика вискозиметрии:

. (6.7)

На основе метода создано множество моделей высокотемпературных вискозиметров, в которых измеряется вязкость расплавленных стекол и солей.

Ротационный метод вискозиметрии

Ротационный метод вискозиметрии заключается в том, что исследуемая жидкость помещается в малый зазор между двумя телами, необходимый для сдвига исследуемой среды. Одно из тел на протяжении всего опыта остаётся неподвижным, другое, называемое ротором ротационного вискозиметра, совершает вращение с постоянной скоростью. Очевидно, что вращательное движение ротора вискозиметра передается к другой поверхности (посредством движения вязкой среды; отсутствие проскальзывания среды у поверхностей тела предполагается, таким образом рассматриваются).

Отсюда следует тезис: момент вращения ротора ротационного вискозиметра является мерой вязкости.

Для простоты мы рассмотрим инверсную модель ротационного вискозиметра: вращаться будет внешнее тело, внутренее тело останется неподвижным, ему и будет сообщаться момент вращения. Однако для краткости изложения будем называть внутреннее тело ротором ротационного вискозиметра.

Где:

R1,L - радиус и длина ротора ротационного вискозиметра;

щ - постоянная угловая скорость вращения внешнего тела;

R2 - радиус вращающегося резервуара ротационного вискозиметра;

з - вязкость исследуемой cреды;

M1 - момент вращения, передаваемый через вязкую жидкость, равный

. (6.8)

d,l - диаметр и длина упругой нити,

ц - угол, на который закручивается неподвижно закреплённая нить,

G - момент упругости материала нити.

При этом крутящий момент M1 ротора ротационного вискозиметра уравновешивается моментом сил упругости нити М2:

. (6.9)

Заметим вновь, что М1 = М2, откуда после нескольких преобразований относительно з имеем:

(6.10)

где k - постоянная ротационного вискозиметра.

Эта формула называется формулой вязкости ротационного метода вискозиметрии.

Если рассматривать ту же задачу для ротационного вискозиметра с вращающимся внутренним (ротором висозиметра) и неподвижным внешним телами, имеем:

(6.11)

или формула вязкости ротационного вискозиметра.

В этом случае G - момент, необходимый для поддержания постоянной частоты вращения, (один оборот ротора вискозиметра за ф с).

Заметим, что полученные отношения справедливы для цилиндра бесконечной длины, в реальных условиях учитывается поправка на размеры тел ротационного вискозиметра. Для этого производится вычисление так называемой эффективной высоты H ротационного вискозиметра:

1. проводится измерение момента для жидкостей с различным значением вязкости (з1 и з2) при двух различных высотах внутреннего цилиндра (L1 и L2);

2. экстраполяцией прямых М1 = f(L) и М2 = f(L) к нулевому значению М1 и М2 получают величину ?L;

3. H=L+?L.

Эффективную высоту ротационного вискозиметра H подставляют в уравнения.

Ультразвуковой метод вискозиметрии

Сущность метода ультразвуковой вискозиметрии заключается в том, что в исследуемую среду погружают пластинку из магнито-стрикционного материала, называемую зондом вискозиметра на которую намотана катушка, в которой возникают короткие импульсы тока длительностью порядка 20±10 мксек, приводящие к возникновению колебаний. В соответствии с законом сохранения, при колебаниях пластинки в катушке наводится ЭДС, которая убывает со скоростью, зависящей от вязкости среды. Затем, при падении ЭДС до определённого порогового значения, в катушку поступает новый импульс. Вискозиметр определяет вязкость среды по частоте следования импульсов.


Подобные документы

  • Физические и химические свойства нефти. Теория возникновения газа. Применение продуктов крекинга. Внутреннее строение Земли. Геодинамические закономерности относительного изменения запасов и физико-химических свойств нефти различных месторождений.

    дипломная работа [3,8 M], добавлен 06.04.2014

  • Анализ процессов разработки залежей нефти как объектов моделирования. Расчет технологических показателей разработки месторождения на основе моделей слоисто-неоднородного пласта и поршевого вытеснения нефти водой. Объем нефти в пластовых условиях.

    контрольная работа [101,6 K], добавлен 21.10.2014

  • Условия залегания и свойства газа, нефти и воды в пластовых условиях. Физические свойства нефти. Главные свойства нефти в данных условиях, принципы и этапы отбора проб. Нефтенасыщенность пласта, характер и направления движения нефти внутри него.

    курсовая работа [1000,9 K], добавлен 19.06.2011

  • Физико-химические свойства нефти. Свойства турбулентной диффузии. Промысловый сбор и транспорт продукции скважин. Особенности разработки и обустройства нефтяного месторождения, технологическое оборудование, автоматизация технологических процессов.

    курс лекций [9,1 M], добавлен 29.12.2010

  • Общая характеристика месторождения Карачаганак: расположение, запасы нефти и газа, хроники реализации проекта. Особенности нефтеперерабатывающих заводов Казахстана. Перспективы развития нефтедобывающей и нефтеперерабатывающей промышленности Казахстана.

    реферат [166,1 K], добавлен 08.12.2011

  • Емкостные, фильтрационные и емкостные свойства коллекторов. Сжимаемость пород коллектора и пластовых жидкостей. Молекулярно-поверхностное натяжение и капиллярные явления. Реологические характеристики нефти. Подвижность флюидов в пластовых условиях.

    контрольная работа [288,3 K], добавлен 21.08.2016

  • Общие сведения о месторождении. Характеристика геологического строения. Состав и свойства пластовых флюидов. Физико-химическая характеристика нефти, газа и их компонентов. Основные этапы проектирования разработки месторождения. Запасы нефти и газа.

    курсовая работа [5,2 M], добавлен 18.06.2012

  • Изучение физико-химических свойств пластовых и дегазированных нефтей, попутных газов Северо-Альметьевской площади по кыновскому и пашийскому горизонтов. Характеристика фондов скважин и текущих дебитов. Методы увеличения нефтеотдачи пластов на объекте.

    курсовая работа [1,1 M], добавлен 06.06.2014

  • Общие сведения об Уршакском месторождении. Стратиграфия и тектоника. Характеристика нефтегазоносных пластов и пластовых флюидов. Физико-химические свойства нефти девонских отложений. Свойства пластовой нефти и воды. Состояние разработки месторождения.

    курсовая работа [3,4 M], добавлен 30.01.2016

  • Особенности химического состава нефти, глубина ее залегания и первые упоминания о добыче. Теории знаменитых ученых об абиогенном, органическом или космическом происхождении нефти. Перечень процессов, приводящих к образованию газообразного метана.

    презентация [631,2 K], добавлен 27.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.