Основы автоматизации технологических процессов нефтегазового производства

Основные понятия и определения теории автоматического регулирования. Датчики линейного и углового перемещения. Измерение физико-химических свойств нефти и пластовых вод. Электромагнитные реле постоянного и переменного тока. Интерфейсы передачи данных.

Рубрика Геология, гидрология и геодезия
Вид учебное пособие
Язык русский
Дата добавления 03.09.2015
Размер файла 2,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Напряжение на выходе фазового детектора по частоте и амплитуде соответствует частоте и интенсивности следования вихрей, которая, в силу пропорциональности скорости потока, является мерой расхода.

Вихревые расходомеры применяются и для жидкостей, и для газов. Они не чувствительны к изменениям плотности, температуры или давления, имеют точность ±1% и используются при давлении до 10 МПа и температуре до 200 °С [36].

4.5.8 Кориолисовы расходомеры

Законами механики установлено, что на массу m, движущуюся со скоростью относительно системы отсчёта, находящейся во вращательном движении с угловой скоростью , действует сила , называемая силой Кориолиса (Г. Кориолис (1792 - 1843) - французский физик).

Появление кориолисовой силы можно обнаружить на следующем примере. Возьмем горизонтально расположенный диск, который может вращаться вокруг вертикальной оси. Прочертим на диске радиальную прямую ОА (рис. 4.49).

Запустим в направлении от О к А шарик со скоростью . Если диск не вращается, шарик должен катиться вдоль ОА. Если же диск привести во вращение в направлении, указанном стрелкой, то шарик будет катиться по кривой ОВ, причем его скорость относительно диска быстро изменяет свое направление. Следовательно, по отношению к вращающейся системе отсчета шарик ведет себя так, как если бы на него действовала сила fc , перпендикулярная направлению движения шарика.

Сила Кориолиса не является «настоящей» в смысле механики Ньютона. При рассмотрении движений относительно инерциальной системы отсчета такая сила вообще не существует. Она вводится искусственно при рассмотрении движений в системах отсчета, вращающихся относительно инерциальных, чтобы придать уравнениям движения в таких системах формально такой же вид, что и в инерциальных системах отсчета.

Чтобы заставить шарик катиться вдоль ОА, нужно сделать направляющую, выполненную в виде ребра. При качении шарика направляющее ребро действует на него с некоторой силой. Относительно вращающейся системы (диска), шарик движется с постоянной по направлению скоростью. Это можно объяснить тем, что эта сила уравновешивается приложенной к шарику силой инерции:

, (4.43)

где - масса; - скорость относительно принятой системы отсчета; -угловая скорость вращения диска.

Сила Кориолиса вызывает кориолисово ускорение. Выражение для этого ускорения имеет вид

. (4.44)

Ускорение направлено перпендикулярно векторам и и максимально, если относительная скорость точки ортогональна угловой скорости вращения подвижной системы отсчета. Кориолисово ускорение равно нулю, если угол между векторами и и равен нулю или р, либо если хотя бы один из этих векторов равен нулю.

Следовательно, в общем случае, при использовании уравнений Ньютона во вращающейся системе отсчета, возникает необходимость учитывать центробежную, центростремительную силы инерции, а также кориолисову силу.

Таким образом, всегда лежит в плоскости, перпендикулярной к оси вращения. Сила Кориолиса возникает только в случае, когда тело изменяет свое положение по отношению к вращающейся системе отсчета.

Эта закономерность является основой принципа действия расходомеров.

Жидкость, массовый расход Q которой необходимо измерить, течёт со скоростью v через измерительную трубку U-образной формы (4.50). Трубку приводят в колебательное движение относительно оси ОО', перпендикулярной рукавам U-образной трубки; мгновенная угловая скорость трубки равна W. При отсутствии расхода жидкости оба рукава трубки колеблются синфазно, т.е. угол O поворота трубки равен нулю. При ненулевом расходе жидкости возникает сила Кориолиса, которая действует на рукава трубки в разных направлениях, так как жидкость течёт в них в разные стороны.

В результате рукава колеблются со сдвигом по фазе. Величину этого сдвига можно определить по сигналам преобразователей перемещения, укреплённых на рукавах трубки. В расходомере Метран-360 для этой цели применяют индуктивные преобразователи перемещений.

А в качестве устройства возбуждения колебаний применяют электромагнит переменного тока. Колебания трубки происходят на её собственной частоте, которая зависит от массы трубки вместе с находящейся в ней жидкостью. Так как объём трубки всегда постоянный, то масса трубки однозначно зависит от плотности заполняющей её среды.

Таким образом, по частоте колебаний трубки можно определить плотность, находящейся в ней жидкости.

Погрешность измерения расхода составляет 0,25%. Абсолютная погрешность измерения плотности составляет ±2…3 кг/м3. Недостатком таких расходомеров является высокая стоимость.

В России одним из основных прозводителей расходомеров подобного типа являются предприятия ПГ «Метран». На рис. 4.51 показан внешний вид современного кариолисового расходомера Метран-360 [37].

Глава 5. МЕТОДЫ И СРЕДСТВА ИЗМЕРЕНИЯ ВИБРАЦИИ

5.1 Методы измерения вибрации

Вибрация - это механические колебания тела.

Самый простой вид вибрации - это колебание или повторяющееся движение объекта около положения равновесия. Этот тип вибрации называется общей вибрацией, потому что тело перемещается как единое целое и все его части имеют одинаковую по величине и направлению скорость. Положением равновесия называют такое положение, в котором тело находится в состоянии покоя или положение которое оно займет, если сумма действующих на него сил равна нулю.

Колебательное движение твердого тела может быть полностью описано в виде комбинации шести простейших типов движения: поступательного в трех взаимно перпендикулярных направлениях (х, у, z в декартовых координатах) и вращательного относительно трех взаимно перпендикулярных осей (Ох, Оу, Оz). Любое сложное перемещение тела можно разложить на эти шесть составляющих. Поэтому о таких телах говорят, что они имеют шесть степеней свободы.

Например, корабль может перемещаться в направлении оси "корма-нос" (прямо по курсу), подниматься и опускаться вверх-вниз, двигаться в направления оси правый борт - левый борт, а также вращаться относительно вертикальной оси и испытывать бортовую и килевую качку.

Представим себе некий объект, перемещения которого ограничены одним направлением, например, маятник настенных часов. Такая система называется системой с одной степенью свободы, т.к. положение маятника в любой момент времени может быть определено одним параметром - углом в точке закрепления. Другим примером системы с одной степенью свободы является лифт, который может перемещаться только вверх и вниз вдоль ствола шахты.

Вибрация тела всегда вызывается какими-то силами возбуждения. Эти силы могут быть приложены к объекту извне или возникать внутри него самого. Далее мы увидим, что вибрация конкретного объекта полностью определяется силой возбуждения, ее направлением и частотой. Именно по этой причине вибрационный анализ позволяет выявить силы возбуждения при работе машины. Эти силы зависят от состояния машины, и знание их характеристик и законов взаимодействия позволяет диагностировать дефекты последней.

Простейшее гармоническое колебание

Самыми простыми из существующих в природе колебательных движений являются упругие прямолинейные колебания тела на пружине (рис.5.1).

Такая механическая система обладает одной степенью свободы. Если отвести тело на некоторое расстояние от положения равновесия и отпустить, то пружина вернет его в точку равновесия. Однако тело приобретет при этом определенную кинетическую энергию, проскочит точку равновесия и деформирует пружину в противоположном направлении. После этого скорость тела начнет уменьшаться, пока оно не остановится в другой крайней позиции, откуда сжатая или растянутая пружина опять начнет возвращать тело назад в положение равновесия. Такой процесс будет повторяться вновь и вновь, при этом происходит непрерывное перетекание энергии от тела (кинетическая энергия) к пружине (потенциальная энергия) и обратно.

Рис. 5.1. Пример простейшего колебания.

На рис.5.1 представлен также график зависимости перемещения тела от времени. Если бы в системе отсутствовало трение, то эти колебания продолжались бы непрерывно и бесконечно долго с постоянными амплитудой и частотой. В реальных механических системах такие идеальные гармонические движения не встречаются. Любая реальная система обладает трением, которое приводит к постепенному затуханию амплитуды и превращает энергию колебаний в тепло. Простейшее гармоническое перемещение описывается следующими параметрами: Т - период колебаний, F - частота колебаний, = 1/Т.

Период колебаний - это интервал времени, который необходим для завершения одного цикла колебания, то есть это время между двумя последовательными моментами пересечения нулевой точки в одном направлении. В зависимости от быстроты колебаний, период измеряют в секундах или миллисекундах.

Частота колебаний - величина обратная периоду, определяет количество циклов колебания за период, она измеряется в герцах (1Гц= 1/секунду). Когда рассматриваются вращающиеся машины, то частота основного колебания соответствует частоте вращения, которая измеряется в об/мин (1/мин) и определяется как:

автоматический регулирование ток датчик

= F 60, (5.1)

где F- частота в Гц, т.к. в минуте 60 секунд.

Уравнения колебаний

Если по вертикальной оси графика отложить положение (смещение) объекта, испытывающего простые гармонические колебания, а по горизонтальной шкале - время (см. рис.5.1), то результатом будет синусоида, описываемая уравнением:

d=D sin(щ t), (5.2)

где d - мгновенное смещение; D - максимальное смещение; щ= 2F - угловая (циклическая) частота, =3,14.

Это та самая синусоидальная кривая, которая всем хорошо известна из тригонометрии. Ее можно считать простейшей и основной временной реализацией вибрации. В математике функция синуса описывает зависимость отношения катета к гипотенузе от величины противолежащего угла. Синусоидальная кривая при таком подходе является просто графиком синуса в зависимости от величины угла. В теории вибраций синусоидальная волна также является функцией времени, однако один цикл колебания иногда рассматривают также как изменение фазы на 360 градусов. Об этом мы еще поговорим подробнее при рассмотрении понятия фазы.

Упомянутая выше скорость движения определяет быстроту изменения положения тела. Скорость (или быстрота) изменения некоторой величины относительно времени, как известно из математики, определяется производной по времени:

V =dn/dt=Dcos(щ t), (5.3)

где n - мгновенная скорость.

Из этой формулы видно, что скорость при гармоническом колебании также ведет себя по синусоидальному закону, однако, вследствие дифференцирования и превращения синуса в косинус, скорость сдвинута по фазе на 90 (то есть на четверть цикла) относительно смещения.

Ускорение - это скорость изменения скорости:

a=dV /dt= щ -2 Dsin(щ t), (5.4)

где а - мгновенное ускорение.

Следует отметить, что ускорение сдвинуто по фазе еще на 90 градусов, на что указывает отрицательный синус (то есть на 180 градусов относительно смещения).

Из приведенных уравнений видно, что скорость пропорциональна смещению, умноженному на частоту, а ускорение - смещению, умноженному на квадрат частоты.

Это означает, что большие смещения на высоких частотах должны сопровождаться очень большими скоростями и чрезвычайно большими ускорениями. Представьте, например, вибрирующий объект, который испытывает смещение 1 мм с частотой 100 Гц. Максимальная скорость такого колебания будет равна смещению, умноженному на частоту:

V=1*100=100 мм/с . (5.5)

Ускорение равно смещению, умноженному на квадрат частоты, или

а = 1 * (100)2 = 10000 мм с2 = 10 м/с2. (5.6)

Ускорение свободного падения g равно 9,81 м/с2. Поэтому в единицах g полученное выше ускорение приблизительно равно 10/9,811 g.

Теперь посмотрим, что произойдет, если мы увеличим частоту до 1000 Гц

V=1 1000 = 1000 мм/с =1 м/с,

а = 1 (1000)2 = 1000000 мм/с2 = 1000 м/с2 = 100 g. (5.7)

Таким образом, мы видим, что высокие частоты не могут сопровождаться большими смещениями, поскольку возникающие в этом случае огромные ускорения вызовут разрушение системы.

Динамика механических систем

Небольшое компактное тело, например кусочек мрамора, можно представить как простую материальную точку. Если приложить к ней внешнюю силу, она придет в движение, которое определяется законами Ньютона. В упрощенном виде, законы Ньютона гласят, что покоящееся тело будет оставаться в покое, если на него не действует внешняя сила. Если же к материальной точке приложена внешняя сила, то она придет в движение с ускорением, пропорциональным этой силе.

Большинство механических систем является более сложными, чем простая материальная точка, и они совсем не обязательно будут перемещаться под воздействием силы как единое целое. Роторные машины не являются абсолютно твердыми и отдельные их узлы имеют различные жесткости. Как мы увидим далее, их реакция на внешнее воздействие зависит от природы самого воздействия и от динамических характеристик механической конструкции, причем эту реакцию очень тяжело предсказать. Проблемы моделирования и предсказания реакции конструкций на известное внешнее воздействие решаются с помощью метода конечных элементов (МКЭ) и модального анализа. Здесь мы не будем подробно останавливаться на них, так как они достаточно сложны, однако для понимания сущности вибрационного анализа машин полезно рассмотреть, как взаимодействуют между собой силы и конструкции.

Измерения амплитуды вибрации

Для описания и измерения механических вибраций используются следующие понятия:

· Максимальная амплитуда (Пик) - это максимальное отклонение от нулевой точки, или от положения равновесия.

· Размах (Пик-Пик) - это разница между положительным и отрицательным пиками. Для синусоидального колебания размах в точности равен удвоенной пиковой амплитуде, так как временная реализация в этом случае симметрична. Однако, как мы скоро увидим, в общем случае это неверно.

Среднеквадратическое значение амплитуды (СКЗ) равно квадратному корню из среднего квадрата амплитуды колебания. Для синусоидальной волны СКЗ в 1,41 раза меньше пикового значение, однако такое соотношение справедливо только для данного случая.

СКЗ является важной характеристикой амплитуды вибрации. Для ее расчета необходимо возвести в квадрат мгновенные значения амплитуды колебаний и усреднить получившиеся величины по времени. Для получения правильного значения, интервал усреднения должен быть не меньше одного периода колебания. После этого извлекается квадратный корень и получается СКЗ.

СКЗ должно применяться во всех расчетах, относящихся к мощности и энергии колебания. Например, сеть переменного тока 117 В (речь идет о северо-американском стандарте). 117 В - это среднеквадратичное значение напряжения, которое применяется для расчета мощности (Вт), потребляемой включенными в сеть приборами. Напомним еще раз, что для синусоидального сигнала (и только для него) среднеквадратичная амплитуда равна 0,707 х пик.

Понятие фазы

Фаза есть мера относительного сдвига во времени двух синусоидальных колебаний. Хотя по своей природе фаза является временной разностью, ее почти всегда измеряют в угловых единицах (градусах или радианах), которые представляют собой доли цикла колебания и, следовательно, не зависят от точного значения его периода.

Задержка 1/4 периода = сдвигу по фазе на 90 градусов

Разность фаз двух колебаний часто называют сдвигом фазы. Сдвиг фазы в 360 градусов представляет собой временную задержку на один цикл, или на один период, что, по существу, означает полную синхронность колебаний. Разность фаз в 90 градусов соответствует сдвигу колебаний на 1/4 цикла друг относительно друга и т.д. Сдвиг фазы может быть положительным либо отрицательным, то есть одна временная реализация может отставать от другой или, наоборот, опережать ее.

Фазу можно также измерять по отношению к конкретному моменту времени. Примером этого является фаза дисбалансовой компоненты ротора (тяжелого места), взятая относительно положения какой-то его фиксированной точки. Для измерения этой величины необходимо сформировать прямоугольный импульс, соответствующий определенной опорной точке на валу. Этот импульс может генерироваться тахометром или любым другим магнитным или оптическим датчиком, чувствительным к геометрическим или световым неоднородностям на роторе, и называется иногда тахоимпульсом. Измеряя задержку (опережение) между циклической последовательностью тахоимпульсов и вибрацией, вызванной дисбалансом, мы тем самым определяем и их фазовый угол.

Фазовый угол может измеряться относительно опорной точки как в направлении вращения, так и в направлении, противоположном вращению, т.е. либо как фазовая задержка, либо как фазовое опережение. Различные производители оборудования используют как тот, так и другой подходы.

Единицы измерения вибрации

До сих пор мы рассматривали вибросмещение как меру амплитуды вибрации. Вибросмещение равно расстоянию от точки отсчета, или от положения равновесия. Помимо колебаний по координате (смещение), вибрирующий объект испытывает также колебания скорости и ускорения. Скорость представляет собой быстроту изменения координаты и обычно измеряется в м/с. Ускорение есть скорость изменения скорости и обычно измеряется в м/с2 или в единицах g (ускорение свободного падения).

Как мы уже видели, графиком смещения тела, испытывающего гармонические колебания, является синусоида. Мы показали также, что и виброскорость в этом случае подчиняется синусоидальному закону. Когда смещение максимально, скорость равна нулю, так как в этом положении происходит изменение направления движения тела. Отсюда следует, что временная реализация скорости будет сдвинута по фазе на 90 градусов влево относительно временной реализации смещения. Другими словами, скорость опережает по фазе смещение на 90 градусов.

Вспомнив, что ускорение - это скорость изменения скорости, легко, по аналогии с предыдущим, понять, что ускорение объекта, испытывающего гармонического колебания, также синусоидально и равно нулю, когда скорость максимальна. И наоборот, когда скорость равна нулю, ускорение максимально (скорость изменяется наиболее быстро в этот момент). Таким образом, ускорение опережает по фазе скорость на 90 градусов.

Существует еще один вибрационный параметр, а именно, быстрота изменения ускорения, называемая резкостью (jerk).

Резкость - это то внезапное прекращение замедления в момент остановки, которое вы ощущаете, когда тормозите на автомобиле, не отпуская педаль тормоза. В измерении этой величины заинтересованы, например, производители лифтов, потому что пассажиры лифтов чувствительны именно к изменению ускорения.

Краткая справка по единицам измерения амплитуды

В англоязычных странах вибросмещение обычно измеряют в миллидюймах (1/1000 дюйма; 1 дюйм = 2,54 см), и по традиции применяют значение "peak-to-peak" (размах). В европейских странах принята международная система единиц и вибросмещение измеряют в микрометрах (мкм).

Виброскорость обычно измеряют в м/с или в мм/с, в англоязычных странах - дюйм/с (ips). При измерении виброскорости используются как СКЗ, так и пиковое значения. В некоторых странах, например, в США, в силу давней традиции, пиковое значение является более употребительным.

Виброускорение обычно измеряют в единицах g СКЗ (g - ускорение свободного падения). В действительности g не является системной единицей - это просто то ускорение, которое мы испытываем, находясь на Земле. Стандартными единицами измерения ускорения являются м/с2, а в англоязычных странах - дюйм/c2. 1g=9.81м/с2.

Процесс преобразования смещения в скорость или скорости в ускорение эквивалентен математической операции дифференцирования. Обратное преобразование ускорения в скорость и скорости в смещение называется интегрированием. Сегодня можно проводить эти операции внутри самих измерительных приборов и легко переходить от параметров измерения к другим.

На практике, однако, дифференцирование приводит к росту шумовой составляющей сигнала, и поэтому оно редко применяется. Интегрирование, напротив, может быть осуществлено с высокой точностью с помощью простых электрических цепей. Это является одной из причин, почему акселерометры сегодня стали основными датчиками вибрации: их выходной сигнал можно легко подвергнуть однократному или двухкратному интегрированию и получить либо скорость, либо смещение. Интегрирование, однако, непригодно для сигналов с очень низкой частотой (ниже 1 Гц), так как в этой области уровни паразитного шума чрезвычайно увеличиваются и точность интегрирования падает. Большинство имеющихся на рынке интеграторов правильно работают на частотах выше 1 Гц, что достаточно почти для всех приложений, связанных с вибрациями. Смещение, скорость и ускорение

Как отмечалось выше, вибрационный сигнал смещения на определенной частоте может быть преобразован в скорость посредством дифференцирования. Дифференцирование сопровождается умножением амплитуды на частоту, поэтому амплитуда виброскорости на определенной частоте пропорциональна смещению, умноженному на эту частоту. При фиксированном смещении, скорость будет удваиваться с удвоением частоты, а если частота увеличится в десять раз, то и скорость умножится на десять.

Чтобы получить из скорости ускорение, необходимо еще одно дифференцирование, а, значит, и еще одно умножение на частоту. Поэтому, ускорение при фиксированном смещении будет пропорционально квадрату частоты.

Проиллюстрируем это на следующем примере: вы без труда можете махать рукой, отводя ее вперед и назад на 30 см, делая один цикл в одну секунду, т.е. с частотой 1 Гц. Вероятно, вы сможете осуществлять движения с такой амплитудой в 5 или 6 раз быстрее, то есть с частотой 5-6 Гц. Однако представьте себе, насколько быстро должна двигаться ваша рука, чтобы проходить туда и обратно то же самое расстояние с частотой 100 Гц или 1000 Гц.

А теперь представьте себе, какую силу вам придется приложить для этого. По второму закону Ньютона, сила равна массе, умноженной на ускорение. Поэтому при заданном смещении сила также пропорциональна квадрату частоты. Именно по этой причине мы никогда не сталкиваемся с процессами, где большие ускорения сопровождаются большими смещениями. На практике просто не существует таких огромных сил, которые требуются для этого, а если бы они нашлись, то были бы крайне разрушительны.

Исходя из этих простых рассуждений, легко понять, что одни и те же вибрационные данные, представленные в виде графиков смещения, скорости или ускорения будут выглядеть по-разному. На графике смещения будет усилена низкочастотная область, а на графике ускорения - высокочастотная при ослаблении низкочастотной.

Величины смещения, скорости и ускорения в стандартных международных единицах связаны следующими уравнениями:

(5.8)

(5.9)

(5.10)

На приведенном рисунке один и тот же вибрационный сигнал представлен в виде виброперемещения, виброскорости и виброускорения.

Рис. 5.7. Представление одного вибросигнала в виде виброперемещения, виброскорости и виброускорения.

Обратим внимание, что график смещения очень трудно анализировать на высоких частотах, зато высокие частоты хорошо видны на графике ускорения. Кривая скорости наиболее равномерно по частоте среди этих трех. Это типично для большинства роторных машин, однако в некоторых ситуациях самыми равномерными являются кривые смещения или ускорения. Лучше всего выбирать такие единицы измерения, для которых частотная кривая выглядит наиболее плоской: тем самым обеспечивается максимум визуальной информации для наблюдателя. Для диагностики машин наиболее часто применяют виброскорость.

Сложная вибрация

Вибрация есть движение, вызванное колебательной силой. У линейной механической системы частота вибрации совпадает с частотой возбуждающей силы. Если в системе одновременно действуют несколько возбуждающих сил с разными частотами, то результирующая вибрация будет суммой вибраций на каждой частоте. При этих условиях результирующая временная реализация колебания уже не будет синусоидальной и может оказаться очень сложной.

В простых случаях, подобных этому, достаточно легко определить частоты и амплитуды отдельных компонент, анализируя форму временного графика (временную реализацию) сигнала, однако большинство вибрационных сигналов значительно сложнее, и их гораздо труднее интерпретировать. Для типичной роторной машины часто весьма сложно извлечь необходимую информацию о ее внутреннем состоянии и работе, изучая лишь временные реализации вибрации, хотя в некоторых случаях анализ последних является достаточно мощным инструментом, о чем поговорим далее в разделе о мониторинге вибраций машин.

Энергия и мощность

Для возбуждения вибрации необходимо затратить энергию. В случае вибрации машин эта энергия генерируется двигателем самой машины. Таким источником энергии может быть сеть переменного тока, двигатель внутреннего сгорания, паровая турбина и т.д. В физике энергия определяется как способность совершать работу, а механическая работа есть произведение силы на расстояние, на котором действовала эта сила. Единица измерения энергии и работы в международной системе (СИ) - Джоуль. Один Джоуль эквивалентен силе в один Ньютон, действующей на расстоянии в один метр.

Доля энергии машины, приходящаяся на вибрацию, обычно не очень велика, по сравнению с полной энергией, необходимой для работы машины.

Мощность есть работа, выполняемая в единицу времени, или энергия, затрачиваемая в единицу времени. В системе СИ мощность измеряется в Ваттах, или в Джоулях в секунду. Мощность в одну лошадиную силу эквивалентна 746 Ваттам. Мощность вибрации пропорциональна квадрату амплитуды колебаний (аналогично, электрическая мощность пропорциональна квадрату напряжения или тока).

В соответствии с законом сохранения энергии, энергия не может возникать из ничего или исчезать в никуда: она переходит из одной формы в другую. Энергия вибраций механической системы постепенно диссипирует (то есть переходит) в тепло.

При анализе вибрации более или менее сложного механизма полезно рассмотреть источники вибрационной энергии и пути, по которым эта энергия передается внутри машины. Энергия всегда движется от источника вибрации к поглотителю, в котором она превращается в тепло. Иногда этот путь может быть очень коротким, однако в других ситуациях энергия может пропутешествовать на большие расстояния, прежде чем поглотится.

Важнейшим поглотителем энергии машины является трение. Различают трение скольжения и вязкое трение. Трение скольжение возникает вследствие относительного перемещения различных частей машины друг относительно друга. Вязкое трение создается, например, пленкой масляной смазки в подшипнике скольжения. Если трение внутри машины мало, то ее вибрация обычно велика, т.к. из-за отсутствия поглощения энергия вибраций накапливается. Например, машины с подшипниками качения, называемыми иногда антифрикционными, обычно вибрируют сильнее, чем машины с подшипниками скольжения, в которых смазка действует как значительный поглотитель энергии. Поглощением энергии вибраций вследствие трения объясняется также применение в авиации заклепок вместо сварных соединений: клепаные соединения испытывают небольшие перемещения друг относительно друга, благодаря чему поглощается энергия вибраций. Тем самым предотвращается развитие вибрации до разрушительных уровней. Подобные конструкции называют сильно демпфированными. Демпфирование - это, по существу, мера поглощения энергии вибраций.

Собственные частоты

Любая механическая конструкция может быть представлена в виде системы пружин, масс и демпферов. Демпферы поглощают энергию, а массы и пружины - нет. Как мы видели в предыдущем разделе, масса и пружина образуют систему, которая имеет резонанс на характерной для нее собственной частоте. Если подобной системе сообщить энергию (например, толкнуть массу или оттянуть пружину), то она начнет колебаться с собственной частотой, а амплитуда вибрации будет зависеть от мощности источника энергии и от поглощения этой энергии, т.е. демпфирования, присущего самой системе. Собственная частота идеальной системы масса-пружина без демпфирования дается соотношением:

, (5.8)

где Fn - cобственная частота; k - коэффициент упругости (жесткость) пружины; m - масса.

Отсюда следует, что с увеличением жесткости пружины увеличивается и собственная частота, а с увеличением массы собственная частота падает. Если система обладает демпфированием, а это так для всех реальных физических систем, то собственная частота будет несколько ниже рассчитанного по приведенной выше формуле значения и будет зависеть от величины демпфирования.

Множество систем пружина-масса-демпфер (то есть простейших осцилляторов), которыми можно моделировать поведение механической конструкции, называют степенями свободы. Энергия вибраций машины распределяется между этими степенями свободы в зависимости от их собственных частот и демпфирования, а также в зависимости от частоты источника энергии. Поэтому вибрационная энергия никогда не распределена равномерно по всей машине. Например, в машине с электродвигателем главным источником вибраций является остаточный дисбаланс ротора двигателя. Это приводит к заметным уровням вибрации на подшипниках двигателя. Однако если одна из собственных частот машины близка к оборотной частоте ротора, то ее вибрации могут быть велики и на довольно большом удалении от двигателя. Этот факт необходимо учитывать при оценке вибрации машины: точка с максимальным уровнем вибрации не обязательно располагается рядом с источником возбуждения. Вибрационная энергия часто перемещается на большие расстояния, например, по трубам, и может вызвать настоящее опустошение при встрече с удаленной конструкцией, чья собственная частота близка к частоте источника.

Линейные и нелинейные системы

Для понимания механизма передачи вибраций внутри машины важно усвоить понятие линейности и то, что понимают под линейной или нелинейной системами. До сих пор мы пользовались термином линейный лишь применительно к шкалам амплитуды и частоты. Однако этот термин применяют также для описания поведения любых систем, имеющих вход и выход. Системой мы называем здесь любое устройство или конструкцию, которые могут воспринимать возбуждение в какой-либо форме (вход) и давать на него соответствующий отклик (выход). В качестве примера можно привести магнитофоны и усилители, преобразующие электрические сигналы, или механические конструкции, где на входе мы имеем возбуждающую силу, а на выходе -вибросмещение, скорость и ускорение.

Определение линейности

Систему называют линейной, если она удовлетворяет двум следующим критериям:

Если вход х вызывает в системе выход X, то вход 2х даст выход 2Х. Иными словами, выход линейной системы пропорционален ее входу.

Если вход х дает выход X, а вход у - выход Y, то вход х+у даст выход X+Y. Иными словами, линейная система обрабатывает два одновременных входных сигнала независимо друг от друга, причем они не взаимодействуют между собой внутри нее. Отсюда следует, в частности, что линейная система не дает на выходе сигнал с частотами, отсутствовавшими во входных сигналах.

Обратите внимание, что эти критерии отнюдь не требуют, чтобы выход был аналоговым или сходным по своей природе со входом. Например, на входе может быть электрический ток, а на выходе - температура. В случае механических конструкций, в частности, машин, мы будем рассматривать в качестве входа вибрационную силу, а в качестве выхода - саму измеряемую вибрацию.

Нелинейные системы

Ни одна реальная система не является абсолютно линейной. Существует большое разнообразие нелинейностей, которые в той или иной степени присутствуют в любой механической системе, хотя, многие из них ведут себя почти линейно, особенно при слабом входе. Не полностью линейная система имеет на выходе частоты, которых не было на входе. Примером этого являются стереоусилители или магнитофоны, которые генерируют гармоники входного сигнала вследствие так называемого нелинейного (гармонического) искажения, ухудшающего качества воспроизведения. Гармоническое искажение почти всегда сильнее при высоких уровнях сигнала. Например, маленький радиоприемник звучит довольно чисто при тихом уровне громкости, и начинает трещать при усилении звука. Это явление проиллюстрировано ниже:

Многие системы имеют почти линейный отклик на слабый входной сигнал, но становятся нелинейными при более высоких уровнях возбуждения. Иногда существует определенный порог входного сигнала, незначительное превышение которого ведет к сильной нелинейности. Примером может служить отсечение сигнала в усилителе, когда входной уровень превышает допустимый размах напряжения или тока блока питания усилителя.

Еще одним типом нелинейности является взаимная модуляция, когда два или более входных сигнала взаимодействуют друг с другом и производят новые частотные компоненты, или модуляционные боковые полосы, отсутствовавшие в любом из них. Именно с модуляцией связаны боковые полосы в спектрах вибрации.

Нелинейности роторных машин

Как мы уже упоминали, вибрация машины - это, фактически отклик на силы, вызванные ее движущимися частями. Мы измеряем вибрацию в разных точках машины и находим значения сил. Измеряя частоту вибрации, мы предполагаем, что и вызывающие ее силы имеют те же частоты, а ее амплитуда пропорциональна величине этих сил. То есть мы предполагаем, что машина является линейной системой. В большинстве случаев такое предположение разумно.

Однако по мере того, как машина изнашивается, увеличиваются ее зазоры, появляются трещины и разболтанность и т.д., ее отклик будет все больше отклоняться от линейного закона, и в результате характер измеряемой вибрации может стать отличным от характера возбуждающих сил.

Например, несбалансированный ротор воздействует на подшипник с синусоидальной силой на частоте 1Х, и других частот в этом возбуждении нет. Если механическая структура машины нелинейная, то возбуждающая синусоидальная сила будет искажена, и в результирующем спектре вибрации помимо частоты 1Х появятся ее гармоники. Количество гармоник в спектре и их амплитуда являются мерой нелинейности машины. Например, по мере износа подшипника скольжения в спектре его вибрации возрастает количество гармоник и увеличиваются их амплитуда.

Гибкие соединения с несоосностью являются нелинейными. Именно поэтому их вибрационные характеристики содержат сильную вторую гармонику оборотной частоты (то есть 2Х). Износ муфты с несоосностью часто сопровождается сильной третьей гармоникой оборотной частоты (3Х). Когда силы с разными частотами взаимодействуют внутри машины нелинейным образом, возникает модуляция, и в спектре вибрации появятся новые частоты. Эти новые частоты, или боковые полосы присутствуют в спектрах дефектных зубчатых передач, подшипников качения и т.д. Если зубчатое колесо имеет эксцентриситет или какую-то неправильную форму, то оборотная частота будет модулировать частоту зацепления зубьев, приводя к боковым полосам в спектре вибрации. Модуляция - это всегда нелинейный процесс, при котором появляются новые частоты, отсутствовавшие в возбуждающей силе.

Резонанс

Резонансом называют такое состояние системы, при котором частота возбуждения близка к собственной частоте конструкции, то есть частоте колебаний, которые будет совершать эта система, будучи предоставлена самой себе после выведения из состояния равновесия. Обычно механические конструкции имеют множество собственных частот. В случае резонанса уровень вибрации может стать очень высоким и привести к быстрому разрушению конструкции.

Резонанс проявляется в спектре в виде пика, положение которого остается постоянным при изменении скорости машины. Этот пик может быть очень узким или, наоборот, широким, в зависимости от эффективного демпфирования конструкции на данной частоте.

Для того, чтобы определить, имеет ли машина резонансы, можно выполнить один из следующих тестов:

Тест-удар (bump test) - По машине ударяют чем-нибудь тяжелым, например, киянкой, записывая при этом вибрационные данные. Если машина имеет резонансы, то в ее затухающей вибрации выделятся собственные частоты.

Разгон или Выбег - машину включают (или отключают) и одновременно снимают вибрационные данные и показания тахометра. Когда обороты машины приблизятся к собственной частоте конструкции, на временной реализации вибрации появятся сильные максимумы.

Тест с вариацией скорости - скорость машины меняют в широком диапазоне (если это возможно), снимая данные вибрации и показания тахометра. Полученные данные затем интерпретируют так же, как в предыдущем тесте. На рисунке приведена идеализированная кривая механического резонансного отклика. Поведение резонирующей системы под воздействием внешней силы, очень интересно и немного противоречит бытовой интуиции. Оно строго зависит от частоты возбуждения.

Если эта частота ниже собственной (то есть располагается слева от пика), то вся система будет вести себя подобно пружине, в которой смещение пропорционально силе. В простейшем осцилляторе, состоящем из пружины и массы, именно пружина будет определять отклик на возбуждение такой силой. В этой частотной области поведение конструкции будет совпадать с обыденной интуицией, откликаясь на большую силу большим смещением, причем смещение будет находиться в фазе с силой.В области справа от собственной частоты ситуация другая. Здесь масса играет определяющую роль, и вся система реагирует на силу, грубо говоря, так, как это делала бы материальная точка. Это означает, что пропорциональным приложенной силе будет ускорение, а амплитуда смещения будет относительно неизменной с изменением частоты.

Отсюда следует, что вибросмещение будет в противофазе с внешней силой (так как оно в противофазе с виброускорением): когда вы будете давить на конструкцию, она будет двигаться к вам и наоборот!

Если частота внешней силы в точности совпадает с резонансом, то система будет вести себя совершенно по-другому. В этом случае реакции массы и пружины взаимоуничтожатся, и сила будет видеть только демпфирование, или трение, системы. Если система является слабо демпфированной, то внешнее воздействие будет подобно толканию воздуха. Когда вы пробуете его толкнуть, он легко и невесомо уступает вам. Следовательно, на резонансной частоте вы не сможете приложить к системе большую силу, а если попытаетесь это сделать, то амплитуда вибрации достигнет очень больших значений. Именно демпфирование управляет движением резонансной системы на собственной частоте.

На собственной частоте сдвиг фазы (фазовый угол) между источником возбуждения и откликом конструкции всегда составляет 90 градусов.

У машин с длинными роторами, например, турбин, собственные частоты называют критическими скоростями. Необходимо следить, чтобы в рабочем режиме таких машин их скорости не совпадали с критическими.

Тест-удар

Тест-удар - это хороший способ найти собственные частоты машины или конструкции. Ударное тестирование является упрощенной формой измерения подвижности, при которой не используется динамометрический молоток, и поэтому величина прилагаемой силы не определяется. Получающаяся в результате кривая не будет корректной в точном смысле. Однако пики этой кривой будут соответствовать истинным значениям собственных частот, что обычно достаточно для оценки вибрации машины.

Проведение Тест-удара с помощью БПФ анализатора чрезвычайно просто. Если анализатор обладает встроенной функцией отрицательной задержки, то ее триггер устанавливают на величину порядка 10% длины временной записи. Затем по машине вблизи места расположения акселерометра ударяют тяжелым инструментом с достаточно мягкой поверхностью. Для удара можно использовать стандартный измерительный молоток или кусок дерева. Масса молотка должна составлять около 10% массы испытываемой машины или конструкции. Если это возможно, временное окно БПФ анализатора должно быть экспоненциальным, чтобы обеспечить нулевой уровень сигнала в конце временной записи.

Слева приведена типичная кривая отклика на удар. При отсутствии в анализаторе функции задержки запуска может быть использована немного другая методика. В этом случае выбирается окно Ханна и задаются 8 или 10 усреднений. Затем запускают процесс измерений, а одновременно хаотически ударяя молотком до тех пор, пока анализатор не закончит измерения. Плотность ударов должна быть равномерно распределена во времени, чтобы частота их повторения не появилась в спектре. Если используется трехосевой акселерометр, то будут записываться собственные частоты по всем трем осям.

В этом случае для возбуждения всех мод колебаний убедитесь, что удары наносятся под 45 градусов ко всем осям чувствительности акселерометра.

Частотный анализ

Чтобы обойти ограничения анализа во временной области, обычно на практике применяют частотный, или спектральный, анализ вибрационного сигнала. Если временная реализация есть график во временной области, то спектр - это график в частотной области. Спектральный анализ эквивалентен преобразованию сигнала из временной области в частотную. Частота и время связаны друг с другом следующей зависимостью:

Время= 1/Частота

Частота= 1/Время

Расписание автобусов наглядно выявляет эквивалентность представлений информации во временной и частотной областях. Вы можете перечислить точные времена отправления автобусов (временная область), а можете сказать, что они уходят каждые 20 минут (частотная область). Та же самая информация значительно компактнее выглядит в частотной области. Очень длинное расписание по времени сжимается до двух строчек в частотном виде. Это очень показательно: события, занимающие большой интервал времени сжимаются в частотной области до отдельных полос.

Для чего нужен частотный анализ? Обратите внимание, что на приведенном рисунке, частотные составляющие сигнала отделены друг от друга и явно выражены в спектре, а их уровни легко идентифицировать. Эту информацию было бы очень непросто выделить из временной реализации.

На следующем рисунке видно, что события, перекрывающиеся друг с другом во временной области разделяются в частотной области на отдельные компоненты.

Временная реализация вибрации несет в себе большое количество информации, которая для невооруженного глаза незаметна. Часть этой информации может приходиться на очень слабые компоненты, величина которых может быть меньше, чем толщина линии графика. Тем не менее подобные слабые компоненты могут быть важны для выявления развивающихся неисправностей в машине, например, дефектов подшипников. Сама суть диагностики и обслуживания по состоянию, заключается в раннем обнаружении зарождающихся неисправностей, поэтому, необходимо обращать внимание и на чрезвычайно малые уровни вибрационного сигнала.

Рис. 5.21. Спектр сигнала.

На приведенном спектре очень слабая компонента представляет небольшую развивающуюся неисправность в подшипнике, и она осталась бы незамеченной, если бы мы анализировали сигнал во временной области, то есть ориентировались на общий уровень вибрации. Поскольку СКЗ - это просто общий уровень колебания в широком частотном диапазоне, поэтому небольшое возмущение на подшипниковой частоте может остаться незамеченным в изменении уровня СКЗ, хотя для диагностики это возмущение очень важно.

Как выполняется частотный анализ?

Прежде чем приступить к процедуре выполнения спектрального анализа рассмотрим на различные типы сигналов, с которыми предстоит работать.

С теоретической и практической точек зрения можно разделить сигналы на несколько групп. Различным типам сигналов соответствуют различные типы спектров, и во избежание ошибок при выполнении частотного анализа, важно знать характеристики этих спектров.

Стационарный сигнал

В первую очередь все сигналы делятся на стационарные и нестационарные. Стационарный сигнал имеет постоянные по времени статистические параметры. Если вы посмотрите несколько мгновений на стационарный сигнал и затем через какое-то время опять вернетесь к нему, то он будет выглядеть, по существу, тем же самым, то есть его общий уровень, распределение амплитуды и стандартное отклонение будут почти неизменными. Роторные машины производят, как правило, стационарные вибрационные сигналы.

Стационарные сигналы подразделяются далее на детерминированные и случайные. Случайные (нестационарные) сигналы непредсказуемы по своему частотному составу и уровням амплитуды, однако их статистические характеристики все-таки почти постоянны. Примеры случайных сигналов - дождь, падающий на крышу, шум реактивной струи, турбулентность в потоке газа или жидкости и кавитация.

Детерминированный сигнал

Детерминированные сигналы представляют собой специальный класс стационарных сигналов. Они сохраняют относительно постоянный частотный и амплитудный состав в течение длительного периода времени. Детерминированные сигналы генерируются роторными машинами, музыкальными инструментами и электронными генераторами. Они подразделяются в свою очередь на периодические и квазипериодические. Временная реализация периодического сигнала непрерывно повторяется через равные отрезки времени. Частота повторения квазипериодической временной формы варьируется во времени, однако на глаз сигнал кажется периодическим. Иногда роторные машины производят квазипериодические сигналы, особенно это относится к оборудованию с ременной передачей.

Детерминированные сигналы - это, по-видимому, наиболее важный тип для анализа вибраций машин, а их спектры схожи с приведенным здесь:

Периодические сигналы всегда имеют спектр с дискретными частотными компонентами, называемыми гармониками или гармоническими последовательностями. Сам термин гармоника пришел из музыки, где гармоники - это целые кратные фундаментальной (опорной) частоты.

Нестационарный сигнал

Нестационарные сигналы подразделяют на непрерывные и переходные. Примеры нестационарного непрерывного сигнала - вибрация, производимая отбойным молотком или артиллерийская канонада. Переходным, по определению, называют сигнал, начинающийся и заканчивающийся на нулевом уровне и длящийся конечное время. Он может быть очень коротким или довольно долгим. Примеры переходного сигналы - удар молотка, шум пролетающего самолета или вибрация машины на разгоне и выбеге.

Примеры временных реализаций и их спектров

Ниже приведены примеры временных реализации и спектров, иллюстрирующих важнейшие понятия частотного анализа. Хотя данные примеры в некотором смысле идеализированы, поскольку они были получены с помощью электронного генератора сигналов с последующей обработкой БПФ-анализатором. Тем не менее, они, определяют некоторые характерные черты, присущие спектрам вибрации машин.

Синусоидальное колебание содержит только одну частотную компоненту, а ее спектр - это единичная точка. Теоретически, истинное синусоидальное колебание существует в неизменном виде бесконечное время. В математике преобразование, переводящее элемент из временной области в элемент частотной области, называют преобразованием Фурье. Такое преобразование сжимает всю информацию, содержащуюся в синусоидальном колебании бесконечной продолжительности до единственной точки. На приведенном выше спектре единственный пик имеет конечную, а не нулевую ширину, что обусловлено погрешностью применяемого алгоритма численного расчета, называемого БПФ (см. далее).

В машине с дисбалансом ротора возникает синусоидальная возбуждающая сила с частотой 1Х, то есть один раз за один оборот. Если бы отклик такой машины был абсолютно линейным, то результирующая вибрация была бы также синусоидальной и подобна приведенной выше временной реализации. Во многих плохо сбалансированных машинах временная реализация колебаний действительно напоминает синусоиду, а в спектре вибрации имеется большой пик на частоте 1Х, то есть на оборотной частоте.

На следующем рисунке представлен гармонический спектр периодического колебания типа обрезанной синусоиды.

Этот спектр состоит из компонент, разделенных постоянным интервалом, равным 1/(период колебания). Самая низшая из этих компонент (первая после нуля), называется основной, а все остальные - ее гармониками. Такое колебание было получено с помощью генератора сигналов, и, как видно из рассмотрения временного сигнала, оно несимметрично относительно нулевой оси (положения равновесия). Это означает, что сигнал имеет постоянную составляющую, превращающуюся в спектре в первую линию слева. Данный пример иллюстрирует способность спектрального анализа воспроизводить частоты вплоть до нулевой (нулевая частота соответствует постоянному сигналу или, другими словами, отсутствию колебаний).

Как правило, при вибрационном анализе машин нежелательно проводить спектральный анализ на таких низких частотах по ряду причин. Большинство датчиков вибраций не обеспечивают правильные измерения до 0 Гц, и только специальные акселерометры, применяемые, например, в инерциальных навигационных системах, позволяют это делать. Для машинных вибраций наименьшая представляющая интерес частота обычно составляет 0,3Х. В некоторых машинах это может быть ниже 1 Гц, Чтобы измерять и интерпретировать сигналы ниже в диапазоне ниже 1 Гц необходимы специальные методики.

При анализе вибрационных характеристик машин не так уж редко приходится видеть временные реализации, срезанные наподобие приведенной выше. Обычно это означает, что в машине возникла какая-то разболтанность, и что-то ограничивает движение ослабленного элемента в одном из направлений.

Показанный далее сигнал аналогичен предыдущему, но срез в нем имеет место, как с положительной, так и с отрицательной сторон.

В результате временной график колебания (временная реализация) получается симметричным. Сигналы подобного типа могут возникать в машинах, в которых движение ослабленных элементов ограничено в обоих направлениях. В этом случае в спектре также будут спектр периодического сигнала присутствовать гармонические составляющие, однако это будут только нечетные гармоники. Все четные гармонические составляющие отсутствуют. Любое периодическое симметричное колебание будет обладать похожим спектром. Спектр сигнала квадратной формы также выглядел бы подобно этому.

Иногда похожий спектр встречается в машине с очень сильной разболтанностью, в которой смещение вибрирующих частей ограничено с каждой стороны. Примером этого является разбалансированная машина с ослабленными затяжными болтами крепления.

Спектр короткого импульса, полученный с помощью генератора сигналов, очень широкий.

Обратите внимание, что его спектр не дискретный, а непрерывный. Другими словами энергия сигнала распределена по всему частотному диапазону, а не сосредоточена на нескольких отдельных частотах. Это характерно для недетерминированных сигналов, таких как случайный шум, и переходные процессы. Заметьте, что, начиная с определенной частоты, уровень равен нулю. Эта частота обратно пропорциональна длительности импульса, поэтому, чем короче импульс, тем шире его частотный состав. Если бы в природе существовал бесконечно короткий импульс (говоря математически,- дельта-функция), то его спектр занимал бы весь частотный диапазон от 0 до +.


Подобные документы

  • Физические и химические свойства нефти. Теория возникновения газа. Применение продуктов крекинга. Внутреннее строение Земли. Геодинамические закономерности относительного изменения запасов и физико-химических свойств нефти различных месторождений.

    дипломная работа [3,8 M], добавлен 06.04.2014

  • Анализ процессов разработки залежей нефти как объектов моделирования. Расчет технологических показателей разработки месторождения на основе моделей слоисто-неоднородного пласта и поршевого вытеснения нефти водой. Объем нефти в пластовых условиях.

    контрольная работа [101,6 K], добавлен 21.10.2014

  • Условия залегания и свойства газа, нефти и воды в пластовых условиях. Физические свойства нефти. Главные свойства нефти в данных условиях, принципы и этапы отбора проб. Нефтенасыщенность пласта, характер и направления движения нефти внутри него.

    курсовая работа [1000,9 K], добавлен 19.06.2011

  • Физико-химические свойства нефти. Свойства турбулентной диффузии. Промысловый сбор и транспорт продукции скважин. Особенности разработки и обустройства нефтяного месторождения, технологическое оборудование, автоматизация технологических процессов.

    курс лекций [9,1 M], добавлен 29.12.2010

  • Общая характеристика месторождения Карачаганак: расположение, запасы нефти и газа, хроники реализации проекта. Особенности нефтеперерабатывающих заводов Казахстана. Перспективы развития нефтедобывающей и нефтеперерабатывающей промышленности Казахстана.

    реферат [166,1 K], добавлен 08.12.2011

  • Емкостные, фильтрационные и емкостные свойства коллекторов. Сжимаемость пород коллектора и пластовых жидкостей. Молекулярно-поверхностное натяжение и капиллярные явления. Реологические характеристики нефти. Подвижность флюидов в пластовых условиях.

    контрольная работа [288,3 K], добавлен 21.08.2016

  • Общие сведения о месторождении. Характеристика геологического строения. Состав и свойства пластовых флюидов. Физико-химическая характеристика нефти, газа и их компонентов. Основные этапы проектирования разработки месторождения. Запасы нефти и газа.

    курсовая работа [5,2 M], добавлен 18.06.2012

  • Изучение физико-химических свойств пластовых и дегазированных нефтей, попутных газов Северо-Альметьевской площади по кыновскому и пашийскому горизонтов. Характеристика фондов скважин и текущих дебитов. Методы увеличения нефтеотдачи пластов на объекте.

    курсовая работа [1,1 M], добавлен 06.06.2014

  • Общие сведения об Уршакском месторождении. Стратиграфия и тектоника. Характеристика нефтегазоносных пластов и пластовых флюидов. Физико-химические свойства нефти девонских отложений. Свойства пластовой нефти и воды. Состояние разработки месторождения.

    курсовая работа [3,4 M], добавлен 30.01.2016

  • Особенности химического состава нефти, глубина ее залегания и первые упоминания о добыче. Теории знаменитых ученых об абиогенном, органическом или космическом происхождении нефти. Перечень процессов, приводящих к образованию газообразного метана.

    презентация [631,2 K], добавлен 27.03.2014

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.