Теория управления. Принципы системного анализа

Основные положения теории управления. Структура моделирования происшествий в техносфере. Модели основных функций организационно-технического управления. Понятие и основные принципы системного анализа. Программно-целевой подход к решению системных задач.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид анализ книги
Язык русский
Дата добавления 18.01.2011
Размер файла 7,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Статистические модели

Статистические модели том, что исследуемый процесс случаен и исследуется статистическими методами, в частности, так называемыми методами Монте-Карло. Наиболее успешно последние применяются при неполной информации о соответствующих объектах. Существует мнение, что статистические модели эффективны именно при этих условиях. Здесь возникает вопрос, сколь подробную информацию об объекте вообще нужно учитывать в модели и в какой ситуации можно говорить о недостатке информации. При построении и использовании статистических моделей возникают следующие проблемы: во-первых, необходим обширный фактический естественный материал, позволяющий провести его корректную статистическую обработку; во-вторых, установленные зависимости; верные для одной системы не всегда будут верны для другой, Например, в экологии смена одной экосистемы другой (например, смена сукцессий) не всегда может быть передана прежней моделью.

При моделировании процессов в техносфере необходимо не только определить размер ущерба и зон поражения, но и определить вероятность определенного ущерба. Это видно из самой структуры формулы риска:

{Риск} = {вероятность события}{значимость события}.

Кроме того, и определение самого характера опасного воздействия вредного везщества или разрушительного воздействия потоков энергии связано с необходимость учета большого числа факторов и параметровю Одни из них должны отражать специфику вредного выброса, другие - состав и характеристики людских, материальных и природных ресурсов, которые определяют их стойкость по отношению к соответствующим воздействиям. При этом число таких существенных факторов велико, они имеют разную направленность и недетерминистскую природу. Здесь, таким образом, необходимо использовать накопленные к настоящему времени статистические данные.

Модели типа «хищник -- жертва» или «паразит-хозяин»

Эти модели применяются», как это видно из названия, при изучении частных случаев взаимодействия популяций нескольких видов. С помощью данных моделей, также использующих уравнения неразрывности, получен ряд интересных выводов. Однако взаимодействием двух-трех и даже более видов, которые реализуются в таких моделях, не исчерпывается динамика объектов окружающей среды, поэтому такие модели имеют прикладное значение и не являются универсальными.

При моделировании сложных систем их разбивают на подсистемы и потому их математическая модель предстает как некий комплекс подмоделей; для каждой из них может быть использован различный математический аппарат.

При этом возникают проблемы стыковки таких подмоделей. Хотя это довольно сложные вопросы, они успешно решаются.

имитационное моделирование

Начнем рассмотрение имитационного моделирования с простого примера. Пусть моделью является некоторое дифференциальное уравнение. Решим его двумя способами.

В первом получим аналитическое решение, запрограммируем найденный набор формул и просчитаем на ЭВМ ряд интересующих нас вариантов.

Во втором воспользуемся одним из численных методов решения и для тех же вариантов проследим изменения системы от начальной точки до заданной конечной.

Какой способ лучше, и с каких позиций? Если запись аналитического решения сложна, включает операции вычисления интеграла, то трудоемкость обоих способов будет вполне сравнима. Есть ли принципиальная разница между двумя этими способами? Кажется, что 1-й способ обладает известными преимуществами даже при громоздком аналитическом решении (точность, простота программирования). Но обратим внимание на то, что в первом способе решение в конечной точке дается как функция начала и постоянных коэффициентов дифференциального уравнения. Во втором для его нахождения приходится повторять путь, который система проходит от начальной до конечной точки. В ЭВМ осуществляется воспроизведение, имитация хода процесса, позволяющая в любой момент знать и при необходимости фиксировать его текущие характеристики, такие, как интегральная кривая, производные.

Мы подходим к понятию имитационного моделирования. Но чтобы лучше разобраться в смысле этого термина, рассмотрим применительно к той области, где он возник, - в системах со случайными воздействиями и процессами. Для таких систем в ….-х годах стали моделировать на ЭВМ пошаговое протекание процессов во времени с вводом в нужный момент случайных действий. При этом однократное воспроизведение хода такого процесса в системе мало что давало. Но многократное повторение с разными воздействиями уже неплохо ориентировало исследователя в общей картине, позволяло делать выводы и давать рекомендации по улучшению системы.

Метод стали распространять на классы систем, где надо учесть возможно большее разнообразие в исходных данных, меняющиеся значения внутренних параметров системы, многовариантный режим работы, выбор управления при отсутствии четкой цели и др. Общим оставались специальная организация имитации поведения системы и многократное возобновление процесса по измененным сценариям.

Теперь дадим определение имитационному моделированию.

Моделирование процессов с многократным отслеживанием хода их протекания каждый раз для различных условий называется имитационным моделированием.

Цель этого вида моделирования - получить представление о возможных границах или типах поведения системы, влиянии на нее управлений, случайных воздействий, изменений в структуре и других факторов.

Важной особенностью имитационного моделирования является удобное включение человека, его знаний, опыта, интуиции в процедуру исследования модели. Это делается между отдельными имитациями поведения системы или сериями имитации. Человек изменяет сценарий имитации, что является важным звеном этого вида моделирования. Именно исследователь по результатам проведенных имитаций формирует следующие виды, домысливая полученные сведения, эффективно познает систему, двигается в ее исследовании к поставленной цели. Правда, следует заметить, что управлять процедурой многократной интуиции может и ЭВМ. Однако наиболее полезным ее примером оказывается все-таки в сочетании с оперативным экспертным просмотром и оценкой отдельных имитаций.

Значительная роль человека в имитационном моделировании даже позволяет говорить об определенном противопоставлении методов чисто математического моделирования и имитации. Поясним это на примерах. Пусть мы имеем задачу оптимизации, которую решаем на ЭВМ при помощи некоторого запрограммированного алгоритма. В ряде сложных ситуаций алгоритм может остановиться или «зациклиться» далеко от оптимального решения. Если же учесть весь путь решения шаг за шагом будет контролироваться исследователем, то это позволит, подправляя и возобновляя работу алгоритма, достичь удовлетворительного решения. Второй пример возьмем из области систем со случайными воздействиями. Последние могут иметь такие «плохие» вероятностные свойства, что математическая оценка их влияние на систему практически невозможна. Вот тогда исследователь начинает машинные эксперименты с разными видами этих действий и постепенно получает хоть какую-то картину их влияний на систему.

Однако противопоставлять имитационное моделирование математическому в целом было бы методически неверно. Правильнее ставить вопрос об их удачном совмещении. Так, строгое решение математических задач, как правило, является составной частью имитационной модели. С другой стороны, исследование крайне редко удовлетворяется однократным решением поставленной математической задачи. Обычно он стремится решить наиболее близких задач для выяснения «чувствительности» решения, уравнения с альтернативными вариантами задания исходных данных, а это не что иное, как элементы имитации.

Есть и другая веская причина широкого распространения имитационных моделей.

Достоинством перечисленных ранее математических моделей (оптимизационные, балансовые, статистические и т.п.) является наличие развитого математического аппарата, а проблемы и трудности заключаются в выполнении допущений, налагаемых использованием данного аппарата, при формализации имеющейся информации. Другой проблемой следует считать недостаток информации. В связи с этим необходимо отметить, что имеющийся математический аппарат в основном создавался для решения специфических задач классической физики 19-го и начала 20 в. Бурное развитие естествознания в 20 в. предъявило ряд новых требований, что привело к созданию современных отраслей математики, сгруппированных вокруг кибернетики.

Следовательно, основные проблемы применения упомянутых методов моделирования в исследованиях по безопасности и в экологии связаны с неподготовленностью математического аппарата для исследования новых систем. Поэтому при разработке нового аппарата и в математике иногда идут от объекта к теории, а не наоборот. Как раз такому подходу и соответствует метод имитационного математического моделирования. Здесь можно дать еще одно определение имитационному моделированию, характеризующее его с другой стороны:

Имитационное моделирование есть попытка формализации с помощью современных ЭВМ любых эмпирических знаний о рассматриваемом объекте.

То есть, имитационная модель представляет собой полное формализованное описание в ЭВМ изучаемого явления на грани нашего понимания. Слова «на грани нашего понимания» означают, что в процессе имитационного моделирования причинно-следственные связи необязательно прослеживать «до последнего гвоздя». Для построения модели достаточно знать лишь внешнюю сторону каких-либо связей типа: «если А, то В». Для построения модели не столь важно, почему произошло событие В: то ли в результате каких-то сдвигов в балансе вещества, то ли по другим причинам. Существенно, что оно произошло после события А. Это дает возможность более результативно использовать традиционные знания наук о Земле, что было невозможно при попытках учесть все причинно-следственные связи.

В процессе имитационного моделирования при отсутствии информации о функциональных связях элементов системы необходимо шире использовать логические переключатели состояний модели, которые в определенной мере отражают эти связи. Кроме того, целесообразно членение модели на отдельные блоки, которые сами могут являться самостоятельными моделями, причем принципы построения и математический аппарат в каждом блоке могут быть свои. Например, один блок является вероятностной моделью, другой-- балансовой.

В этих условиях математический аппарат играет подчиненную роль. Гораздо большего внимания требует содержательная часть моделирования, предварительная типизация, структурирование изучаемых объектов.

Обоснованием для проведения имитационного моделирования служит массовость и стохастичность результатов функционирования исследуемых систем. В отношение моделирования процессов в техносфере, можно сказать следующее:

выполнение большинства технологических операций удобно рассматривать в виде процесса функционирования человеко-машинной системы; при этом успешное или неуспешное завершение какой-либо из них следует считать случайным исходом;

при рассмотрении конкретной производственной операции, многократно выполняемой на различных объектах промышленности, энергетики и транспорта, можно утверждать массовый характер этих работ.

Таким образом, при анализе безопасности техносферы имитационное моделирование обосновано и целесообразно.

Можно также сказать, что имитационное моделирование является одной из форм диалога человека с ЭВМ и резко повышает эффективность изучения системы. Оно является особенно незаменимым, когда невозможна строгая постановка математической задачи (полезно попробовать разные постановки), отсутствует математический метод решения задачи (можно использовать имитацию для целенаправленного перебора), имеется значительная сложность полной модели (следует имитировать поведение декомпозиционных частей). Наконец, имитацией пользуются и в тех случаях, когда невозможно реализовать математическую модель из-за недостатка квалификации исследователя.

Кроме термина «имитационное моделирование» в литературе употребляется словосочетание «машинное моделирование». В него вкладывают весьма широкий смысл - от синонима имитации до указания на то, что в исследовании для каких-либо целей используется ЭВМ. Однако некоторыми авторами [1] отмечается наш взгляд, наиболее логичным является использование этого понятия в тех случаях, когда манипуляции с моделью целиком или почти целиком выполняются вычислительной техникой и не требуют участия человека.

8.7 Процесс построения математической модели

Процесс построения математической модели не является строго формализованным (зависит от исследователя, его опыта, таланта, опирается на определенный опытный материал (феноменологическая основа моделирования, содержит предположения, определяющую роль играет и интуиция).

В разработке моделей можно выделить три основные стадии:

построение модели;

пробная работа с моделью;

корректировка и изменение модели по результатам пробной работы.

Современное математическое моделирование немыслимо без привлечения вычислительной техники (численное моделирование, численный эксперимент).

Схематически процесс создания математической модели можно разбить на следующие этапы, отражающие степень взаимодействия человека и ЭВМ:

установление возможных форм связей (человек);

составление варианта математического моделирования (человек):

определение входных и выходных переменных;

введение допущений;

установление ограничений;

формирование математических зависимостей;

решение модельных задач (машина);

сравнение результатов решения с накопленной информацией, определение несоответствий (машина, человек);

анализ возможных причин несоответствия (человек);

составление нового варианта модели (человек).

При моделировании процессов в техносфере, как при нормальном функционировании человеко-машинных систем, так и в ЧС приходится иметь дело с их большим разнообразием и высокой сложностью, что требует знания не только наиболее общих законов, но и частных закономерностей.

К числу наиболее общих законов техносферы относятся уравнения баланса массы, законы сохранения центра масс, количества движения, момента количества движения, энергии, справедливые при определенных условиях для любых материальных тел и технологических процессов, независимо от их структуры, состояния и химического состава. Эти уравнения подтверждены огромным количеством экспериментов.

Более частные соотношения в физике и механике в частности называются физическими уравнениями или уравнениями состояния. Например, закон Гука, устанавливающий связь между механическим напряжением и деформацией упругих тел, или уравнение Клапейрона - Менделеева.

Объективная сложность процессов в техносфере делает невозможным их изучения с помощью моделей какого-либо одного типа. Моделирование таких процессов предполагает их представление в виде системы взаимодействующих разнородных компонентов. Таким образом, модель таких процессов может содержать в себе несколько разнородных субмоделей. Это накладывает свой отпечаток и на само моделирование, который удобно представить в виде определенных этапов, на которых проявляются особенности процессов в человеко-машинных системах (ЧМС). Основные этапы моделирования техносферных процессов представлены на рис. 8.

Рис. 8. Основные этапы моделирования процессов в техносфере

Этап 1. Содержательная постановка

Необходимость в новых моделях возникает при выполнении проектно-конструкторских работ, создания систем управления и контроля, а также выполнения работ на стыке различных отраслей. При этом вначале следует определить, нет ли более простых решений проблемы: возможности использовать существующие модели, модифицируя их.

Конечной целью этапа 1 служит является разработка технического задания. Для достижения этой цели необходимо решить следующие задачи:

исследовать моделируемый объект или процесс с целью выявления основных его свойств, параметров и факторов;

собрать и проверить доступные экспериментальные данные об объектах-аналогах;

проанализировать литературные источники и сравнить между собой построенные ранее модели данного объекта или ему подобные;

систематизировать и обобщить накопленный ранее материал;

разработать общий план создания и использования комплекса моделей.

На данном этапе осуществляется, таким образом, содержательная постановка задачи моделирования. При этом важно правильно поставить вопросы, на которые должна ответить модель. Для этого нужны специалисты, хорошо знающие предметную область и, вместе с тем имеющие достаточно широкий научный кругозор, чтобы общаться со специалистами в различных областях знания, в частности с заказчиком модели. Это является условием успешного формулирования таких требований к создаваемой модели, которые, с одной стороны, удовлетворят заказчика, а с другой стороны - удовлетворят ограничениям на сроки и ресурсы, выделенные для создания и реализации модели. В целом выполнение этого этапа может занять до 30% времени, отпущенного на разработку модели, а с учетом возможных уточнений - и более.

Этап 2. Концептуальная постановка

В отличие от 1-го этапа этап семантического моделирования выполняется рабочей группой без привлечения заказчика. Исходной информацией здесь являются сведения, полученные на 1-м этапе сведения о моделируемом объекте и уточненные требования к будущей модели.

При формулировке гипотез, которые должны лечь в основание концептуальной модели приходится преодолевать противоречия в преставлениях о процессах и происшествиях в человеко-машинных системах. Это касается причин возникновения ошибок, отказов, нерасчетных внешних воздействий, которые могут привести к аварии, катастрофе или несчастному случаю. Зачастую различные специалисты выдвигают разные версии развития подобных ситуаций. При моделировании аварийности и травматизма семантическая модель исследуемого явления может быть представлена в виде явления, декомпозируемого на потоки случайных событий - аварий и несчастных случаев. При этом каждое из них считается результатом совокупности других событий, образующих причинно-следственную цепь. Далее явление может быть представлено в виде схем, графов. Оформление результатов моделирования в форме причинно-следственных диаграмм явится в дальнейшем исходным материалом для последующего контроля и анализа.

Этап 3. Качественный анализ

Постановка задачи моделирования должна быть подвержена всесторонней проверке а затем и предварительному качественному анализу. Цель данного этапа состоит в проверке обоснованности концептуальной постановки задачи и коррекции. Это также проводится с членами рабочей группы, иногда с привлечением не входящих в нее экспертов.

Все принятые ранее гипотезы подлежат проверке, а затем предварительному (качественному) анализу. Выявляются возможные ошибки. Например, в причинно-следственных диаграммах наиболее распространенными ошибками являются избыточные или же недостающие элементы, а также излишне произвольная трактовка учитываемых событий и связей между ними.

Иногда на данном этапе моделирования уже могут быть получены те дополнительные сведения объекте-оригинале, ради которых он подвергается моделированию. Особенно часто удается это сделать в результате качественного анализа причинно-следственных диаграмм, позволяющих учесть такое количество существенных факторов, которыми невозможно одновременно манипулировать мысленно. Среди этого множества факторов (например, влияющих на вероятность аварии или травмы) на могут быть выявлены их сочетания, включающие малое число факторов, появление и/или отсутствие которых необходимо и достаточно для возникновения или недопущения конкретного нежелательного события.

Этап 4. Построение математической модели

После завершения проверки концептуальной постановки задачи и предварительного анализа соответствующей семантической модели рабочая группа приступает к построению математической модели, а затем к выбору наиболее подходящего метода ее исследования. Наиболее предпочтительной считается аналитическая постановка и такое же решение моделируемой задачи, поскольку в этом случае используется арсенал математического анализа, включая оптимизацию. Чаще всего, это системы алгебраических уравнений, для получения которых применяются различные методы аппроксимации в имеющихся статистических данных.

Особая ценность аналитического моделирования заключается в возможности точного решения поставленной задачи, в том числе нахождения оптимальных результатов. Вместе с тем, область использования аналитических методов ограничена размерностью учитываемых факторов и зависит от уровня развития соответствующих разделов математики. Поэтому для создания математических моделей сложных систем и процессов (как в техносфере, например) требуются уже алгоритмические (численные) модели, которые могут давать лишь приближенные решения.

Степень приближения результатов, например, численного и имитационного моделирования зависит от погрешностей, обусловленных преобразованием исходных математических соотношений в численные или имитационные алгоритмы, а также от ошибок округления, возникающих при выполнении любых расчетов на ЭВМ в связи с конечной точностью представления чисел в ее памяти. Вот почему основным требованием к каждом такому алгоритму служит необходимость получения решения исходной задачи за конечное число шагов с заданной точностью.

В случае применения численного метода совокупность исходных математических соотношений заменяется конечномерным аналогом, обычно получаемым в результате замены функций непрерывных аргументов на функции дискретных параметров. После такой дискретизации составляется вычислительный алгоритм, представляющий собой последовательность арифметических и логических действий, позволяющих за конечное число шагов получить решение дискретной задачи.

При имитационном моделировании дискретизации подвергаются не математические соотношения как в предыдущем случае, а сам объект исследования, который разбивается ена отдельные компоненты. Кроме того, здесь не записываетея совокупность математическихх соотношений, описывающих поведение всего обьекта-оригинала. Вместо этого обычно составляется алгоритм, моделирующий функционирование моделируемого объекта с помощью аналитических или алгоритмических моделей.

Следует заметить, что использование математической модели, построенной с применением алгоритмических методов, аналогично проведению экспериментов с объектом, только вместо натурного эксперимента с объектом проводится так называемый машинный (вычислительный) эксперимент с его моделью.

Контроль правильности математической модели. Контроль правильности математических соотношений осуществляется с помощью следующих действий:

контроль размерностей, включающий правило, согласно которому приравниваться, складываться, перемножаться и делиться могут только величины одинаковой размерности. При переходе к вычислениям добавляется дополнительное требования соблюдения одной и той же системы единиц для значений всех параметров;

проверка порядков, состоящая в сравнении порядков складываемых или вычитаемых величин и исключении из математических соотношений малозначимых параметров;

контроль характера зависимости, предполагающий, что направление и скорость изменения выходных параметров модели должны соответствовать физическому смыслу изучаемых процессов;

проверка экстремальных ситуаций, которая заключается в наблюдении за выходными результатами модели при приближении значений ее параметров к предельно допустимым. Зачастую это делает математические соотношения более простыми и наглядными (например, при равенстве нулю какой-либо величины);

контроль физического смысла, связанный с установлением физического смысла результата и проверкой его неизменности при варьировании параметров модели от исходных до промежуточных и граничных значений;

проверка математической замкнутости, состоящая в выявлении принципиальной возможности решения системы математических соотношений и получении на ее основе однозначно интерпретируемого результата.

Математически замкнутой или «корректно поставленной» задачей принято считать такую ее постановку, при которой малым изменениям непрерывно меняющихся исходных параметров соответствуют такие же незначительные изменения выходных ее результатов.

Если это условие не удовлетворяется, численные алгоритмы не могут быть применены.

Этап 5. Разработка компьютерных программ

Использование электронно-вычислительной техники, что требует наличия соответствующих алгоритмов и компьютерных программ. Несмотря на наличие в настоящее время богатого арсенала математических алгоритмов и прикладных программ, нередко возникает потребность в самостоятельной разработке новых программ. Сам процесс создания компьютерных программ в свою очередь может быть разбит на последовательные этапы: разработка технического задания (ТЗ), проектирования структуры программ, собственно программирование (кодирование алгоритма), тестирование и отладка программ.

Само ТЗ при этом имеет следующую структуру:

название задачи - имя программы (компьютерного кода), система программирования (язык), требования к аппаратному обеспечению;

описание - содержательная и математическая постановка задачи, метод дискретизации или обработки входных данных;

управление режимами - интерфейс «пользователь-компьютер»;

входные данные - содержание параметров, пределы их изменения;

выходные данные - содержание, объем, точность и форма представления;

ошибки - возможный перечень, способы выявления и защиты;

тестовые задания - примеры, предназначенные для тестирования и отладки программного комплекса.

Общая структура компьютерного кода, как правило, содержит три части: препроцессор (подготовка и проверка исходных данных), процессор (проведение вычислений) и постпроцессор (отображение результатов.

Этап 6. Анализ и интерпретация результатов моделирования

Системное исследование предполагает качественный и количественный анализ модели и полученных результатов. Качественный анализ предназначен для выявления общих закономерностей, связанных с функционированием исследуемого объекта, осуществляется рабочей группой, иногда с привлечением представителей заказчика. Цель количественного анализа достигается решением двух задач: 1) прогнозирование характеристик моделируемого объекта; 2) априорная оценка эффективности различных стратегий его совершенствования.

Процедура количественного анализа зависит от вида полученных математических зависимостей. Для сравнительно простых аналитических выражений она может проводиться преимущественно вручную, с использованием инструментария математического анализа и принятия решений. Анализ сложных, громоздких моделей реализуется на ЭВМ с помощью численных и имитационных методов.

Проверка адекватности модели. Эта проверка проводится путем установления соответствия между результатами моделирования и какими-либо другими данными, непосредственно относящимися к решаемой задаче. Обычно используют для этого эмпирические данные (результаты натурных экспериментов, статистику), либо подобные результаты, полученные в ходе решения так называемой тестовой задачи с помощью других моделей.

Проверка адекватности должна доказать не только правомерность принятых при моделировании гипотез, но и требуемую точность моделирования.

Различают качественное и количественное согласие результатов сравнения. Качественное согласие подразумевает совпадение некоторых характерных особенностей в распределении оценочных параметров, например, их знаков, тенденций изменения, наличия экстремальных точек и т.п.

Если качественное согласие достигнуто, оценивается совпадение на количественном уровне. При этом для моделей с оценочными функциями оно может оцениваться расхождением в 10-15%, а для используемых в управляющих и контролирующих системах - в 1-2% и ниже.

Причины неадекватности модели могут быть следующие:

значения параметров модели не соответствуют области, определяемой принятой системой гипотез;

константы и параметры в определяющих соотношениях, использованных в модели, установлены неточно;

вся исходная совокупность принятых гипотез неприменима для изучаемого объекта или условий его функционирования.

Для устранения этих причин требуется проведение дополнительных исследований как модели, так и объекта-оригинала. Если модель неадекватна, следует изменить значения констант и исходных параметров. Если и при этом положительный результат не достигнут, должны быть изменены принятые гипотезы (например, о характере влияния одного параметра на другой, учет новых факторов и т.п.).

Таким образом, последний этап в разработке математической модели исключительно важен, и пренебрежение им может стоить огромных издержек в будущем. Действительно, не всегда правдоподобный результат свидетельствует об адекватности модели, и в других случаях она будет давать качественно неверные решения.

Далее показано применение поэтапного моделирования на примере исследования аварийности и травматизма.

8.8 Структура моделирования происшествий в техносфере

1. Содержательная постановка задачи

1.1 Разработать комплекс смысловых и знаковых моделей, позволяющих установить основные закономерности возникновения техногенных происшествий и количественно оценить меру возможности их появления.

1.2. Модели должны: а) выявлять условия появления и предупреждения происшествий; б) вычислять вероятность их появления.

1.3. Исходные данные: параметры производственного объекта Ч (человека), М (машины) и С (среды), проводимых на нем технологических процессов Т, а также статистические данные по состоянию этих компонентов и их аналогов - Q().

2. Концептуальная постановка задачи

2.1. Исходные гипотезы и предпосылки относительно моделируемого явления:

а) аварийность и травматизм на производстве могут быть описаны в соответствии с канонами теории случайных процессов в сложных системах;

б) объектом моделирования должен быть случайный процесс, возникающий на производственном объекте и завершающийся появлением происшествий (аварий или несчастных случаев);

в) поток таких происшествий допустимо считать простейшим, т. е. удовлетворяющим условиям стационарности, ординарности и отсутствия последействия;

г) каждое происшествие может возникать при выполнении конкретных технологических операций, из-за случайно возникших ошибок персонала, отказов техники и нерасчетных внешних воздействий.

2.2. С учетом вышеизложенного можно сформулировать концептуальную постановку задачи моделирования следующим образом:

а) представить аварийность и травматизм в виде процесса просеивания потока заявок (t) на конкретные технологические операции в выходной поток случайных происшествий с вероятностью Q(t) их появления в момент времени t;

б) изобразить данный процесс в виде потоков( графа, интерпретирующего возникновение причинной цепи происшествий из отдельных предпосылок.

3. Проверка и качественный анализ семантической модели

3.1. Проверить обоснованность гипотез относительно природы потоков моделируемых событий и необходимости учета факторов внешней среды:

а) возможность представления простейшим потоком также и входного потока требований на проведение технологических операций;

б) правомерность допущения о несущественности предпосылок к происшествию, обусловленных неблагоприятными внешними воздействиями;

3.2. Провести качественный анализ потокового графа с целью ответа на следующие вопросы:

а) какие производственные процессы можно считать относительно «безопасными»?

б) какое технологическое и производственное оборудование следует рассматривать более «безопасным» в эксплуатации.

4. Математическая постановка и выбор метода решения задачи

4.1. Сформулировать задачу моделирования в виде системы алгебраических уравнений и проверить корректность математических соотношений, полученных каким-либо образом:

а) с учетом гипотезы о простейшем характере потока требований на выполнение технологических операций использовать свойство его инвариантности после разрежения за счет исключения событий для получения зависимостей

Q(t) = f (Ч, М, С, Т, t)

4.2. Разработать процедуру априорной оценки каждого из пара метров аналитической модели и проверить корректность всех по лученных математических соотношений с применением всех соответствующих правил.

Практическая реализация рассмотренного здесь подхода может способствовать совершенствованию безопасности техносферы в целом.

Лекция 9. Теория игр

9.1 Конфликт - предмет рассмотрения теории игр

В природе и обществе часто встречаются явления, в которых те или иные участники имеют несовпадающие интересы и располагают различными путями для достижения своих целей. Такие явления называются конфликтами. Конфликты являются предметом рассмотрения теории игр.

Под конфликтом будем понимать всякое явление, применительно к которому можно говорить:

1) кто и как в этом явлении участвует;

2) каковы возможные исходы этого явления;

3) кто в этих исходах заинтересован и в чем эта заинтересованность состоит.

Рассмотрим возможные причины возникновения конфликтов.

Одна из характерных черт всякого общественного, социально-экономического явления состоит в множественности, многосторонности интересов и в наличии сторон, выражающих эти интересы.

Например:

1) продавец и покупатель, имеющие противоположные интересы;

2) несколько производителей, фигурирующих на рынке и обладающих достаточной силой воздействия на цену товара, имеющих в связи с этим как противоположные, так и совпадающие интересы;

3) объединения или коалиции лиц, участвующих в столкновении интересов, как в случаях определения ставок заработной платы союзами или объединениями рабочих и предпринимателей, голосования в парламенте и т. д.

Конфликт может возникать также из различия целей, которые отражают не только несовпадающие интересы, но многосторонние интересы одного и того же лица. Например:

- конструктор согласует противоречивые технико-экономические требования в процессе конструирования изделия: минимизация габаритов, минимизация стоимости, максимизация надежности, простота в обращении;

- разработчики экономической политики согласуют противоречивые требования, предъявляемые к ситуации: рост объемов производства, повышение доходов, снижение экологической нагрузки и т. д.

Конфликт может проявиться не только в результате сознательных действий различных участников, но и как результат действия тех или иных «стихийных сил» (случай так называемых «игр с природой»).

Прямо противоположные интересы различных сторон явно проявляются в непосредственной борьбе: военной, дипломатической, экономической, спортивной.

Наконец, примерами конфликтных ситуаций являются обычные игры: салонные, карточные, шахматные, морской бой и т. д. Для конфликта характерно следующее:

- ни один из его участников заранее не знает решений, принимаемых остальными участниками, т.е. вынужден действовать в условиях неопределенности;

- ход событий в конфликте зависит от решений, принимаемых каждой из сторон, поэтому поведение любого участника конфликта, если оно разумно, должно определяться с учетом возможного поведения всех его участников.

Подводя итог сказанному, отметим, что общим, объединяющим все конфликты, независимо от их физической и социальной природы, является:

1) столкновение интересов нескольких (двух или более) сторон, в том числе сознательных индивидуумов или природы;

2) преследование сторонами различных целей;

3) наличие наборов альтернатив для достижения этих целей, каждая из которых приводит к одному (или к одному из нескольких) возможных исходов.

9.2 Понятие игры. Классификация игр. Формальное представление игр

Игрой называется математическая модель конфликта.

Математическая модель конфликта должна отражать присущие ему черты, а значит, должна описывать:

- множество заинтересованных сторон (игроков);

- возможные действия каждой из сторон (стратегии и ходы);

- интересы сторон, представленные функциями выигрыша (платежа) для каждого из игроков.

В теории игр предполагается, что функции выигрыша и множество стратегий, доступных каждому из игроков общеизвестны, т.е. каждый из игроков знает свою функцию выигрыша и набор имеющихся в его распоряжении стратегий, а так же функции выигрыша и стратегии всех остальных игроков. В соответствии с этой информацией каждый из игроков организует свое поведение.

Различные виды игр можно классифицировать следующим образом:

- по числу игроков;

- по числу стратегий;

- по свойствам функции выигрыша;

- по возможности предварительных переговоров и взаимодействия между игроками в ходе игры.

По числу игроков различают игры с двумя, тремя и более участниками. В принципе возможны так же игры с бесконечным числом игроков.

По числу стратегий различают конечные и бесконечные игры. В конечных играх игроки располагают конечным числом возможных стратегий. Например, в игре в орлянку у игроков по две стратегии - «орел» или «решка». В бесконечных играх игроки имеют бесконечное число возможных стратегий. Например, при взаимодействии продавца и покупателя каждый из игроков может назвать любую цену и любое количество продаваемого (покупаемого) товара.

По свойствам функции выигрыша различают игры:

- с нулевой суммой, когда выигрыш одного игрока равен проигрышу другого, т.е. налицо прямой конфликт между игроками;

- с постоянной разностью, в которых игроки и выигрывают, и проигрывают одновременно, так что им выгодно действовать сообща;

- с ненулевой суммой, где есть и конфликты, и согласованные действия игроков.

По возможности предварительных переговоров и взаимодействия между игроками в ходе игры различают кооперативные и некооперативные игры. Игра называется кооперативной, если до начала игры игроки образуют коалиции и принимают взаимообязывающие соглашения о своих стратегиях (например, образование коалиций в парламенте перед голосованием по некоторым вопросам).

Игра, в которой игроки не могут координировать свои стратегии подобным образом, называется некооперативной (например, все игры с нулевой суммой).

Рассмотрим примеры формального представления игр.

Обозначим через I множество всех игроков, через St - множество возможных действий игрока i , называемое множеством стратегий.

Например:

а) игра в орлянку

I = {1, 2}, Sf = {Орел, Решка};

б) голосование в парламенте

I = {1, 2, ..., n},

где n - число голосующих, Si = {За, Против, Воздержался};

в) взаимодействие на рынке двух продавцов

I = {1, 2} Si = {Pi: Pi > 0},

где Pi - цена продаваемого товара.

В партии игроки выбирают каждый свою стратегию , в результате чего складывается набор стратегий s = (s1, s2,…,sn), называемый ситуацией.

В рассмотренных выше примерах приведем возможные ситуации:

а) (Орел, Орел), (Орел, Решка), (Решка, Орел), (Решка, Решка);

б) (За, За, Против, За, Воздержался, … , Против);

в) (5 рублей, 3 рубля), (5 рублей, 7 рублей).

Заинтересованность игроков в конкретных ситуациях проявляется в том, что каждому игроку i в каждой ситуации s присваивается число, выражающее степень удовлетворения его интересов в данной ситуации. Это число называется выигрышем игрока i и обозначается Нi(s).

Вернемся к указанным выше примерам.

В игре в орлянку.

Н1(Орел, Орел) = Н1(Решка, Решка) = 1,

Н1(Орел, Решка ) = Н1 (Решка, Орел ) = -1,

Н2(Орел, Орел) = Н2(Решка, Решка) = -1,

Н2(Орел, Решка) = Н2(Решка, Орел) = 1.

Видно, что в любой ситуации Н1 + Н2 = 0.

Запишем это в виде матрицы выигрышей, где строки будут соответствовать стратегиям 1-го игрока, столбцы - стратегиям 2-го игрока.

При этом или Н1 + Н2 = 0.

Таким образом, орлянка является примером игры с нулевой суммой.

При голосовании в парламенте считается, что вопрос прошел при большем количестве проголосовавших «За», чем «Против», в противном случае - вопрос не прошел. Получаем:

В случае взаимодействия на рынке двух продавцов предположим, что потребитель приобретет товар у фирмы, объявившей меньшую цену, или распределит свой спрос поровну между фирмами в случае, если цены равны.

Если d(p) - функция спроса в зависимости от цены на товар, то функция выигрыша.

9.3 Определение бескоалиционной игры

Бескоалиционной игрой будем называть такую игру, в которой целью каждого игрока является получение по возможности большего индивидуального выигрыша.

Обозначим.

I - множество всех игроков. Далее будем считать I конечным. Обычно принято различать игроков по номерам, т.е. считать I = {1, 2, ..., n};

Si - множество стратегий игрока , т.е. множество возможных действий, имеющихся в распоряжении игрока i. Считается, что Si содержит не менее двух возможных стратегий, иначе его действия заранее определены.

Процесс игры состоит в выборе каждым из игроков одной своей стратегии . Таким образом, в результате каждой партии игры складывается система стратегий s = (s1, s2,...,sn), которая называется ситуацией.

Множество всех ситуаций S=S1?S2?…?Sn, т.е. S является декартовым произведением множеств стратегий всех игроков. Обозначим: Hi(s) - выигрыш игрока i в ситуации s. Функция Hi, определенная на множестве всех ситуаций, называется функцией выигрыша игрока i.

Hi: S > R, т.е. каждой ситуации Hi - сопоставляет вещественное число.

Бескоалиционной игрой называется система , в которой I и Si () являются множествами, а Hi - функции на множестве S=S1?S2?…?Sn, принимающие вещественные значения.

Бескоалиционная игра называется игрой с постоянной суммой, если существует такое постоянное число C, что , т.е. сумма выигрышей игроков постоянна в любой ситуации.

9.4 Приемлемые ситуации и ситуации равновесия

Ситуацию s в игре Г естественно считать приемлемой для игрока i, если этот игрок, изменяя в ситуации s свою стратегию на какую-либо другую, не может увеличить этим своего выигрыша.

Пусть s = (s1, s2,..., si-1, si, si+1,..., sn) - произвольная ситуация в игре, а si - некоторая стратегия игрока i.

Рассмотрим новую ситуацию , получившуюся из ситуации s заменой стратегии si игрока i на s'i . Очевидно, что s||s'i = s, если s'i совпадает с si (s'i = si).

Ситуация s в игре Г называется приемлемой для игрока i, если

Смысл названия «приемлемая» состоит в том, что, если в некоторой ситуации s для игрока i найдется такая стратегия s?i, что то игрок i в случае складывающейся ситуации s может получить больший выигрыш, выбирая s?i, вместо si. В этом смысле ситуация s для игрока может считаться неприемлемой.

Ситуация s называется ситуацией равновесия (или равновесной ситуацией), если она приемлема для всех игроков, т.е.

Из определения видно, что в ситуациях равновесия и только в них ни один игрок не заинтересован в отклонении от своей стратегии.

Равновесной стратегией игрока в бескоалиционной игре называется такая его стратегия, которая входит хотя бы в одну из равновесных ситуаций игры.

Процесс нахождения ситуаций равновесия в бескоалиционной игре называется решением игры.

9.5 Примеры игровых задач

«Дилемма заключенных»

Предположим, игроками 1 и 2 являются преступники, находящиеся в предварительном заключении по подозрению в тяжком преступлении. Прямых улик против них нет, и возможность их обвинения в значительной мере зависит от того, сознаются ли преступники сами.

Судья предложил каждому следующую сделку. Если он сознается в преступлении, а другой нет, то сознавшийся получает 1 год наказания, а несознавшийся - 10 лет. Если сознаются оба, то каждый получит по 7 лет. Заключенным известно, что если никто из них не сознается, то оба получат по 3 года.

Запишем функции выигрышей (потерь) игроков в рассмотренной игре.

Пусть П - признание, Н - непризнание, H1 - выигрыш 1-го игрока, H2 - выигрыш 2-го игрока.

H1 (П, П) = H2 (П, П) = -7,

H1 (Н, Н) = H2 (Н, Н) = -3,

H1 (П, Н) = H2 (Н, П) = -1,

H1 (Н, П) = H2 (П, Н) = -10.

Игру можно представить с помощью следующей матрицы, в клетках которой слева вверху стоит выигрыш первого заключенного, а справа внизу - второго.

Второй игрок

сознаться

не сознаваться

Первый игрок

сознаться

7

7

1

10

не сознаваться

10

1

3

3

Ситуацией равновесия в данной игре оказывается ситуация, в которой каждый из игроков должен признаться. Тогда каждый из игроков теряет 7, т.е. оказывается осужденным на 7 лет.

В ситуации же, когда ни один не признался, потери каждого всего 3 (каждый осужден на 3 года). Однако данная ситуация явно не устойчива, так как каждый из игроков заинтересован отклониться от выбранной стратегии и признаться, рассчитывая свалить вину на другого и избежать наказания, сведя свои потери к 1 (1 год осуждения, при этом потери партнера составят 10).

Таким образом, разумной стратегией для каждого игрока является признание, так как оно гарантирует игроку неполучение максимального срока в 10 лет. Хотя более выгодной кажется тактика непризнания, дающая возможность получения незначительного наказания (срок в год), однако чревата неожиданностью в виде максимального срока в 10 лет в случае признания со стороны соучастника.

«Обмен закрытыми сумками»

Два человека встречаются и обмениваются закрытыми сумками, понимая, что одна из них содержит деньги, другая -- товар. Каждый игрок может уважать сделку и положить в сумку то, о чём договорились, либо обмануть партнёра, дав пустую сумку.

В этой игре обман всегда будет наилучшим решением, означая также, что рациональные игроки никогда не будут играть в неё, и что рынок обмена закрытыми сумками будет отсутствовать.

В вариации, популярной у программистов и хакеров, каждый агент этой игры помнит предыдущие результаты (или имеет доступ к общественному мнению, «коллективной памяти»), и множество обменов повторяются длительное время.

Как отмечено выше, без памяти эта игра имеет мало смысла, она мало что объясняет в поведении систем и групп людей, кроме описания взаимодействий, которые не будут происходить.

Программисты и математики утверждают, что стратегия «око за око» наилучшая общая стратегия

Примеры с заключёнными, карточной игрой и обменом закрытыми сумками могут показаться надуманными, но на самом деле есть множество примеров взаимодействия людей и животных, имеющие такую же матрицу выигрышей.

В политологии, к примеру, сценарий ДЗ часто используется для иллюстрации проблемы двух стран, вовлечённых в гонку вооружений. Обе будут заявлять, что у них есть две возможности: либо увеличить расходы на военные нужды, либо сокращать вооружения. Ни одна из сторон не может быть уверена, что другая будет соблюдать договорённость, следовательно, обе будут стремиться к военной экспансии. Это можно считать теоретическим объяснением политики устрашения. Похожие явления наблюдаются и в автоспорте -- «Формула-1», где последние 20 лет происходит гонка бюджетов команд. Из-за этого число машин-участников сократилось с 36 в 1990 году до 20 в 2003.

В велогонках дилемма заключённого возникает, когда два сильных гонщика оторвались от общей группы. Каждый из них может либо предоставить соседу сотрудничество, либо ехать сзади. Для обоих идеалом будет, когда они по очереди «висят» друг у друга на хвосте -- но всегда есть желание не дать соседу преимущества (тогда тот постепенно устаёт и «скатывается» в пелотон, а ты финишируешь с большим отрывом).

Случай дилеммы заключённого может быть найден в бизнесе. Две конкурирующие фирмы должны определиться, сколько средств тратить на рекламу. Эффективность рекламы и прибыль каждой фирмы уменьшается с ростом расходов на рекламу у конкурента. Обе фирмы принимают решение увеличить расходы на рекламу, при этом их доли рынка и, возможно, объёмы продаж остаются неизменными, а прибыль сокращается. Предел гонки рекламных бюджетов -- прибыль, впрочем, они могут пытаться некоторое время работать и в убыток. Фирмы могут пойти на соглашение о сокращении расходов на рекламу, но всегда есть стимул его нарушить.


Подобные документы

  • Сущность и виды риска, основные положения его теории. Концепция приемлемого (допустимого) риска. Последовательность изучения опасностей. Цель системного анализа безопасности, принципы ее обеспечения и средства управления ею. Причины отказов оборудования.

    презентация [226,2 K], добавлен 09.02.2014

  • Цели и задачи системного анализа опасности, его этапы и принципы реализации. Исследование и оценка опасных и вредных факторов, возникающих на рабочем месте продавца продовольственных товаров. Производственный шум и вибрация, существующие способы защиты.

    контрольная работа [40,3 K], добавлен 22.12.2015

  • Безопасное использование ядерных технологий. Основные принципы построения системы физической защиты. Этапы проведения анализа уязвимости ядерного объекта. Понятие особо важной зоны. Система контроля управления доступом. Перегрузка ядерного топлива.

    курсовая работа [1,6 M], добавлен 10.11.2014

  • Методы и функции управления охраной труда. Принципы, направления и задачи государственной политики в области охраны труда в Республике Беларусь. Органы управления государственной системой охраны труда. Система управления охраной труда на предприятии.

    реферат [473,1 K], добавлен 25.12.2011

  • Полномочия и основные функции Межрегионального управления № 91 Федерального медико-биологического агентства России. Принципы проведения внеплановой проверки исполнения санитарного законодательства индивидуальными предпринимателями и юридическими лицами.

    отчет по практике [25,6 K], добавлен 10.12.2012

  • Задачи, функции, организационная структура и элементы системы управления охраной труда. Обеспечение производственной безопасности, снижение или исключение риска несчастных случаев и аварий. Этапы и принципы внедрения СУОТ. Нормативно-правовая база.

    презентация [629,0 K], добавлен 07.02.2016

  • Формирование здорового образа жизни путем системного и комплексного подхода к вопросам профилактики. Совершенствование работы по предупреждению дорожно-транспортных происшествий с участием детей и подростков. Программы развития здравоохранения в РБ.

    реферат [687,9 K], добавлен 25.11.2014

  • Понятие управления безопасностью, его сущность и особенности, подходы и методы. Основные мероприятия по обеспечению безопасности населения в чрезвычайных ситуациях, порядок их совершения. Особенности управления безопасностью в медицинских учреждениях.

    реферат [148,8 K], добавлен 16.04.2009

  • Понятие и значение, внутренняя структура и принципы работы системы управления охраной труда в РФ. Классификация производственных факторов, их негативное воздействие, оценка условий труда. Профилактика влияния производственных факторов, способы защиты.

    дипломная работа [886,4 K], добавлен 29.05.2015

  • Основные положения теории риска. Концепция приемлемого риска. Действие техногенных опасностей. Методические подходы к определению риска. Выявление источников опасностей. Системный анализ безопасности. Причины отказов оборудования на предприятиях.

    лекция [75,1 K], добавлен 24.07.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.