Теория управления. Принципы системного анализа

Основные положения теории управления. Структура моделирования происшествий в техносфере. Модели основных функций организационно-технического управления. Понятие и основные принципы системного анализа. Программно-целевой подход к решению системных задач.

Рубрика Безопасность жизнедеятельности и охрана труда
Вид анализ книги
Язык русский
Дата добавления 18.01.2011
Размер файла 7,6 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Дальнейший расчет сводится к обращению матрицы С и определению вектора . Зная компоненты вектора и используя систему уравнений (7), можно вычислить значение искомой функции в любой точке. Таким образом, задача полностью решена.

Выше было отмечено, что узловые значения функции определяются дифференциальным уравнением задачи или условием минимизации некоторого функционала. В ряде случаев эти операции не требуется выполнять в явном виде. Можно использовать какой-нибудь другой принцип, отвечающий физической сущности задачи. Так, используя уравнения метода перемещений при расчете строительных конструкций, мы автоматически минимизируем функционал энергии системы, поскольку канонические уравнения указанного метода являются следствием такой минимизации.

При рассмотрении примера (рис. 1) конечная задача состояла в определении функции . Часто такая функция может быть лишь промежуточным звеном между координатой х и другой переменной, подлежащей определению. Так, уравнение изогнутой оси балки интересует нас не как геометрический объект конфигурации системы, а как функция, позволяющая вычислить изгибающие моменты и поперечные силы или нормальные и касательные напряжения. В таком случае соответствующие зависимости между этими величинами могут быть включены в состав конечных элементов и в их ансамбль.

15.2 Сети одномерных конечных элементов

На рис. 3 приведены примеры из различных предметных областей с одинаковой топологией с точки зрения теории графов, имеющие одинаковый принцип построения математической модели на основе МКЭ.

На рис. 3, а показана электрическая схема из семи резисторов. Источники питания на схеме не показаны, но их влияние характеризуется токами

Если резистор рассмотреть изолированно от системы, то с помощью закона Ома можно записать соотношение между исходящими токами и напряжениями на его концах:

(11)

или в матричной форме

(12)

(12 а)

Узлы сети и ее элементы можно нумеровать произвольно, однако при выделении каждого элемента условимся под индексом i всегда понимать меньший номер. Нетрудно видеть, что поэтому силу тока в узле i можно определять по формуле

(13)

а если рассматривается узел , то правую часть формулы (13) следует умножить на -1.

а) электрическая; б) механическая; в) гидравлическая

Рис. 3 Сети одномерных конечных элементов:

При составлении ансамбля конечных элементов запишем уравнения «равновесия» (закон Кирхгофа) поочередно для каждого узла. Для формализации процедуры будем рассматривать все элементы сети независимо от того, примыкают они к данному узлу или нет. Если элемент примыкает к рассматриваемому узлу своим началом, будем принимать равенство (13) со своим знаком, т. е. умножать его на 1. Если это окажется конец элемента, то будем вводить множитель - 1. Если элемент не примыкает к узлу, то принимать множитель 0. С целью сокращения записей условимся матрицу жесткости обозначать буквой К, снабженной индексом, указывающим номер элемента. Для первого узла (рис. 3, а) будем иметь:

для второго узла

Поступая аналогично с остальными узлами, можем записать математическую модель электрической системы:

(14)

При рассмотрении элементов анализа сетей было дано определение и указан прием построения матрицы инциденций ориентированного графа. Здесь мы получили такую матрицу, занумерованные узлы и элементы сети.

Перейдем к рассмотрению механической системы (рис. 3, 6) в виде фермы, загруженной силой Р. Предварительно отметим существенное отличие этой системы от ранее рассмотренной. В электрической системе сила тока есть скалярная величина, поэтому не имеет значения пространственное расположение резисторов, важен лишь факт их примыкания к данному узлу. Для фермы все иначе: здесь имеет значение не только топология, но и геометрия фермы, а также ориентация внешних сил и реакций связей. Для плоской фермы с шарнирными узлами каждый узел имеет две степени свободы, что определяет 10 степеней свободы для всей совокупности узлов. Однако внешние связи исключают две степени свободы в первом узле и по одной (в вертикальном направлении) - в 4 и 5 узлах. Для учета этого обстоятельства необходимо вычеркнуть соответствующие строки матрицы S, характеризующей степени свободы системы (две строки для первого узла и вторые строки - для 4 и 5 узлов):

(15)

При рассмотрении конечного элемента для электрической системы основным параметром, определяющим связь между фазовыми переменными I и U, было электрическое сопротивление резистора r, а сама связь устанавливалась законом Ома.

В случае фермы фазовыми переменными будут усилия в стержнях N и удлинения стержней, параметром - погонная жесткость, а связь переменных состояния определится законом Гука

15.3 Виды конечных элементов

Выше были рассмотрены системы, включающие одномерные симплекс-элементы, при этом функции формы элемента (4) оставались одинаковыми для задач из разных предметных областей. Физическая сущность задачи отображается матрицей жесткости. В электрических системах эта матрица зависит от сопротивлении R, емкостей С, индуктивностей L элементов, составляющих систему. В системах, характеризующих работу строительных конструкций, матрица жесткости непосредственно связана с погонными жесткостями для растянутых (сжатых) элементов, - для изгибаемых элементов и т.д. Для нелинейных систем, например, для схемы «в» (рис. 2), где связь между напором V и расходом J имеет вид , матрица жесткости будет представлять уже не массивы констант, а некоторые функции от напора жидкости.

В случае функции двух переменных х, у используют плоские конечные элементы в виде многоугольников, обычно треугольника и прямоугольника.

Рассмотрим двумерный симплекс-элемент, представляющий собой плоский треугольник (рис. 4).

Интерполяционный полином, аппроксимирующий непрерывную функцию v(x, у) внутри симплекс-элемента, имеет вид

(16)

Рис. 4. Двумерный симплекс-элемент

Для придания этому выражению вида, удобного для применения в методе конечных элементов, будем поступать так же, как это делали на втором этапе п.п. 15.1 [см. формулы (1)...(6)]. Граничные условия будут иметь вид:

при функция v(x, у) примет значение;

при функция v(x, у) примет значение.

Используя формулу (16), получим систему трех уравнений для определения коэффициентов Подставляя эти коэффициенты в полином (16) и проделав необходимые преобразования, аналогичные рассмотренным в п. 15.1, запишем аналогичную (5) формулу

(17)

где функции формы элемента имеют вид:

(18)

Здесь ? - площадь треугольника конечного элемента;

- коэффициенты, определяемые путем круговой перестановки индексов выражений:

. (19)

Формулы (16)...(19) будут одинаковыми для всех задач, где используют треугольные симплекс-элементы. Матрицы жесткостей будут зависеть от физической сущности задачи. Рассмотрим это на примере плоской задачи теории упругости. Заметим, что в этом случае каждый узел имеет две степени свободы, поэтому вектор имеет две компоненты vx и каждую из которых определяют по формуле (17).

Деформации внутри конечного элемента можно выразить через перемещения с помощью зависимостей Коши:

Выполняя дифференцирование равенства (17) с учетом обозначений (18), запишем зависимости Коши в матричной форме:

(20)

или

. (20 а)

Для перехода от деформаций тела к напряжениям используем закон Гука при плоском напряженном состоянии:

(21)

или

. (21 а)

Матрицы D и В содержат всю информацию о конечном элементе: матрица D определяет его упругие характеристики а матрица В - геометрические. Остается определить еще одну матрицу (матрицу жесткости К), которая связывает усилия, действующие в узлах конечного элемента, с перемещениями этих узлов. Для записи этой матрицы воспользуемся принципом возможных перемещений, согласно которому при равновесии тела работа внешних сил Р на возможных перемещениях узлов т. е. равна по величине работе внутренних сил на тех же перемещениях: , где - деформация, отвечающая возможным перемещениям; - объем конечного элемента. В результате преобразований получим искомую связь между усилиями в узлах конечного элемента и перемещениями этих узлов:

, (22)

где матрица жесткости К будет равна

(23)

Матрица жесткости (23) конечного элемента не зависит от действующих на элемент нагрузок и поэтому остается неизменной для всех нагружений. Элементы этой матрицы представляют собой коэффициенты канонических уравнений метода перемещений для расчета одного конечного элемента.

Рассмотрим объединение конечных элементов в ансамбль на примере простейшей сети из трех конечных элементов (рис. 5).

Для каждого конечного элемента мы можем записать формулу (17), заменяя узлы конкретными номерами. Так, для первого элемента

.

Поступая аналогично с остальными узлами, получим:

(24)

Рис.5. Ансамбль трех конечных элементов

Напомним, что узловые значения искомой функции

пока еще не известны и подлежат определению. С этой целью нужно использовать какой-нибудь принцип, выражающий физическую сущность задачи. В задачах строительной механики таким принципом могут быть уравнения равновесия с учетом совместности перемещений. Когда мы все это проделаем, задача будет решенной, поскольку формулы (20), (21), (24) с учетом обозначений (18), (19) позволяют определить в любой точке области нормальные и касательные напряжения, найти угловые и линейные деформации, вычислить перемещения данной точки в направлении осей х и у. Совокупность указанных формул, полностью определяющих поведение исследуемой системы, составляет ее математическую модель.

Перейдем к объединению конечных элементов в ансамбль.

Пусть в узлах системы конечных элементов действуют внешние силы, определяемые вектором

(25)

К каждому i-му узлу сети примыкает в общем случае конечных элементов, каждый из которых вносит свой вклад в матрицу жесткости. Поэтому для каждого i-го узла суммарная матрица жесткости будет представлять собой сумму элементов матриц жесткости всех примыкающих к узлу элементов, т.е.

, (26)

в то время, как узловые перемещения для всех этих элементов будут общими в силу совместности перемещений всех элементов, соединенных в i-м узле. Поскольку узлы имеют две степени свободы, вектор перемещения i-го узла будет содержать две компоненты перемещений точно так же, как внешняя сила [см. формулу (25)] имеет две компоненты Pxi, Pyi. Совокупность перемещений всех m неопорных узлов сети конечных элементов определится m-мерным вектором перемещений:

(27)

Общую матрицу жесткости для всей конструкции можно выразить в виде

. (28)

Окончательная зависимость между вектором сил (25) и вектором перемещений (27) будет иметь вид

. (29)

Таким образом, вектор узловых значений искомой функции будет равен

. (30)

Литература:

1. Ильина Н.В. Системный анализ и моделирование процессов в техносфере: Учеб. пособие / Н.В. Ильина, Д.Д. Лапшин, В.И. Федянин. - Ч. 1. Воронеж: ГОУВПО «Воронежский государственный технический университет, 2008. - 206 с.

Лекция 16. Аналитические модели сложных систем

16.1 Основные понятия

Математическое моделирование позволяет устанавливать зависимости выходных (y1, у2, ..., уn) переменных от входных переменных (x1, x2 ,..., хn) при целенаправленном изменении внутренних параметров (h1, h2,..., hn) с учетом в ряде случаев воздействия внешней среды. Наиболее просто эта задача решается, если известна функциональная зависимость между соответствующими многомерными векторами:

(1)

В таком виде математическую модель удается получить только для очень простых ситуаций. В обычных условиях математическое описание процессов в исследуемом объекте задают в форме системы дифференциальных уравнений. Понятно, что ЭВМ не может непосредственно оперировать даже с простейшими зависимостями типа (1), поэтому построение математических моделей подразумевает комплекс преобразований этих зависимостей до уровня, допускающего численное решение, и последующую реализацию такого решения на основе программ анализа в виде элементарных арифметических и логических операций.

В простейших ситуациях исходная задача может быть представлена системой линейных алгебраических уравнений, которая легко сводится к последовательности элементарных операций (ПЭО) на основе стандартных процедур с использованием библиотечных программ. Если модель задана системой нелинейных алгебраических уравнений, то возможны либо непосредственный переход к ПЭО, либо предварительная линеаризация с дальнейшим переходом к ПЭО (рис. 1).

Рис. 1. Преобразования уравнений при построении аналитических моделей

Наиболее типичными являются модели, в которых исследуемый процесс описывается обыкновенными дифференциальными уравнениями или дифференциальными уравнениями в частных производных. Численные решения таких уравнений основаны на дискретизации переменных или алгебраизации задачи. Дискретизация заключается в замене непрерывных переменных конечным множеством их значений в заданных для исследования интервалах, а алгебраизация - в замене производных алгебраическими соотношениями, Если дифференциальные уравнения в частных производных описывают статическое состояние, то дискретизация и алгебраизация преобразуют дифференциальные уравнения в систему алгебраических уравнений, в общем случае нелинейных. Так, если рассматриваются переменные, изменяющиеся в пространстве и во времени, то при решении задачи на первом этапе устраняются производные по пространственным координатам, что позволяет перейти к обыкновенным дифференциальным уравнениям, а затем - производные по времени с переходом к алгебраическим уравнениям. Дальнейшее решение задачи может выполняться на основе метода простых итераций, либо быть сведено к предварительной линеаризации на основе метода Ньютона с переходом к линейным алгебраическим уравнениям. Решение системы таких уравнений выполняется с помощью прямых методов, например, метода Гаусса.

Ниже рассмотрена цепочка последовательных преобразований, которая позволяет однотипными приемами решать различные задачи. За базовое принято численное решение дифференциальных уравнений первого порядка с заданными начальными условиями (задача Коши) и системы таких уравнений. К подобным уравнениям может быть приведено обыкновенное дифференциальное уравнение n-го порядка. Дифференциальное уравнение с заданными граничными условиями может быть представлено как редукция к задаче Коши и тем самым решено аналогичными способами.

16.2 Приближенное решение ОДУ при заданных начальных условиях

Математическое моделирование систем, описываемых обыкновенным дифференциальным уравнением при заданных начальных условиях, осуществляется наиболее просто, если уравнение в явном виде разрешено относительно производной:

От влияния внутренних параметров h и воздействий внешней среды v можно избавиться, повторяя решение заданного уравнения при фиксированных значениях этих параметров h=const, v=const.

Рассмотрим дифференциальное уравнение первого порядка

(2)

Если требуется найти интегральную кривую у=у (х), проходящую через заданную точку М0 (х0, у0), то формулируется задача Коши: найти решение у=у(х) уравнения, удовлетворяющее начальному условию у(х0)=у0.

Существуют различные приемы решений такой задачи: метод последовательных приближений, интегрирование уравнений с помощью степенных рядов, методы Адамса, Крылова, Милна и др. Ниже рассмотрены методы Эйлера и Рунге-Кутта, первый из которых является наиболее наглядным, а второй - наиболее популярным.

16.3 Метод Эйлера и его модификации

Принцип численного решения уравнения (2) при начальном условии у(х0)=у0, основанный на методе Эйлера, чрезвычайно прост. Он непосредственно вытекает из смысла производной. Подставляя заданное начальное значение х0 и у0 в правую часть Исходного уравнения (2), мы определим производную в этой точке: y'(х=х0)=f(х0, у0), т. е. найдем тангенс угла наклона касательной к искомой кривой. Это дает возможность определить приближенное значение функции в соседней точке при x1 =x0 + h (рис. 2). При этом приращение функции будет , а полное значение ординаты при этом составит . Таким образом, получены приближенные координаты соседней точки x1, y1, принимая которые за исходные, мы можем повторить вычисления методом Эйлера и найти следующую точку с координатами х2, у2. Аналогично вычисляются все последующие точки по формулам

(3)

где h - достаточно малый шаг приращений координаты х.

Рис. 2. К решению уравнения методом Эйлера

Для того чтобы назначить величину шага, обеспечивающую необходимую точность вычислений, расчет повторяют при шаге, в два раза меньшем первоначального. Если разница в результатах вычислений превышает требуемую точность, то шаг разбиения уменьшают еще раз и повторяют расчет.

Метод Эйлера приводит к систематическому накоплению ошибок, поэтому в практике расчетов используют модификации этого метода: метод ломаных и метод Эйлера-Коши.

В первом случае сначала вычисляют промежуточные значения

и находят направление поля интегральных кривых в средней точке

, а затем полагают .

Во втором случае грубое приближение

, уточняется следующим образом:

Дальнейшим развитием и уточнением метода Эйлера являются различные схемы метода Рунге-Кутта. Ниже рассмотрена одна из таких схем, получившая наибольшее распространение.

16.4 Метод Рунге-Кутта

Основная схема метода Рунге-Кутта имеет вид:

(4)

где

(5)

(i = 1, 2,…, n).

Для определения правильности выбора шага h выполняют двойной пересчет, как это было отмечено при рассмотрении метода Эйлера.

16.5 Приближенное решение ДУ n-го порядка при заданных начальных условиях

Для дифференциального уравнения n-го порядка

(6)

задача Коши состоит в нахождении решения

удовлетворяющего начальным условиям

; ; …;

где x0, y0, yo' - заданные числа. Такая задача может быть приведена к решению системы дифференциальных уравнений путем подстановок

, , …, (7)

Будем иметь:

(8)

Дальнейшее решение задачи выполняют как указано выше, например, методом Рунге-Кутта.

Для примера найдем приближенное решение нелинейного дифференциального уравнения свободных колебаний маятника в среде, обладающей сопротивлением. Пусть - угол отклонения маятника от положения равновесия, t - время. Полагая, что сопротивление среды пропорционально угловой скорости маятника, имеем для = (t) нелинейное дифференциальное уравнение второго порядка

(9)

где - коэффициент затухания колебаний;

g - ускорение свободного падения;

l - длина маятника.

Принимая =0,2, g/l= 10, приходим к уравнению

(10)

с начальными условиями: угол отклонения , угловая скорость .

Выполняя подстановки типа (9), т.е. полагая , запишем уравнение (10) в виде системы уравнений

,

(11)

Приближенное решение этой системы будем искать методом Рунге-Кутта, используя зависимости (9). При этом роли и в уравнениях (9) будут исполнять их значения:

,

.

Примем: h=0,1; , . При i=0 находим:

;

;

;

;

;

;

;

;

.

Следовательно, при t1=0,1, имеем:

;

Продолжая процесс вычислений для других значений ti, последовательно можем определить все интересующие нас значения .

16.6 Приближенное решение ДУ при заданных граничных условиях (краевых задач)

Рассмотренные выше приемы решений обыкновенных дифференциальных уравнений при заданных начальных условиях в одной точке получены путем последовательного интегрирования уравнения по участкам, на которые может быть разбит весь интервал задания подынтегральной функции. В краевой задаче, когда для дифференциального уравнения заданы граничные условия в различных точках, необходимо получить решение в виде общего интеграла. Для решения таких более сложных задач существуют различные способы. Мы рассмотрим лишь некоторые из них, позволяющие свести решения краевых задач к рассмотренным выше задачам Коши.

16.6.1 Метод начальных параметров

Метод начальных параметров основан на дополнении поставленных для краевой задачи граничных условий в начале участка интегрирования некоторыми параметрами, называемыми начальными. Эти параметры выбирают так, чтобы полученная при этом совокупность начальных условий полностью определяла решение поставленной задачи.

Пусть дана краевая задача для системы n линейных дифференциальных уравнений первого порядка.

(12)

с граничными условиями на концах интервала [0, l]

;

(13)

где - вектор неизвестных у1(х), y2(х),..., уn(х);

А(х) - матрица коэффициентов при неизвестных;

- вектор свободных членов;

- векторы постоянных интегрирования.

Общий интеграл системы уравнений (3.40) запишем в следующем виде:

(14)

где - частное решение матричного уравнения (12), удовлетворяющее всем нулевым начальным условиям ;

- частное решение соответствующего уравнению (12) однородного уравнения , удовлетворяющее начальным условиям , где все элементы равны нулю, кроме i-гo, который равен единице; ci - постоянные интегрирования.

Подстановкой полученного по (12) решения в условия (13) получают систему n алгебраических уравнений для определения ci. Найденные постоянные подставляют в (14), откуда находят решение исходной краевой задачи.

16.6.2 Редукция к задаче Коши для линейного ДУ второго порядка

Найдем решение линейного дифференциального уравнения

(15)

удовлетворяющего краевым условиям

;

(16)

где p(x), q(x), f(x) -- непрерывные функции; -- заданные постоянные, причем , .

Из курса высшей математики известно, что если u=u(x) -- частное решение соответствующего однородного уравнения

(17)

то произведение cu, где c - произвольная постоянная, есть общее решение этого уравнения. Тогда общее решение исходного неоднородного уравнения (3.42) y=y(x) будет, равно сумме общего решения см однородного уравнения (17) и частного решения v=v(x) неоднородного уравнения

(18)

Таким образом, искомое решение запишем в виде комбинации

(19)

Потребуем, чтобы первое краевое условие (17) выполнялось для функции y при любом c. Для этого подставим выражение (19) в это краевое условие, в результате чего будем иметь

Такое условие возможно для произвольного c, если будут выполнены равенства

,

.

Следовательно,

; (20)

где постоянная , при этом

, , если (21)

, , если (22)

Отсюда видно, что u есть решение задачи Коши для однородного уравнения (17), удовлетворяющее начальным условиям (18), а v есть решение задачи Коши для неоднородного уравнения (18), удовлетворяющее начальным условиям (18) или (19). При этом для любого c функция (20) удовлетворяет первому краевому условию (18), т.е. при x=a.

Подберем теперь постоянную c так, чтобы функция (22) удовлетворяла второму краевому условию (20) при x=b. Будем иметь

, откуда

(23)

Литература:

1. Ильина Н.В. Системный анализ и моделирование процессов в техносфере: Учеб. пособие / Н.В. Ильина, Д.Д. Лапшин, В.И. Федянин. - Ч. 1. Воронеж: ГОУВПО «Воронежский государственный технический университет, 2008. - 206 с.

Лекция 17. Модели многосвязных технических систем

17.1 Основные понятия

Многосвязная техническая система может состоять из подсистем разной физической природы. Например, автомобиль включает в себя подсистемы питания, смазки, охлаждения, электроснабжения и др. Все эти подсистемы при функционировании тесно взаимодействуют друг с другом. Моделирование подобных систем удобно осуществлять на макроуровне. Для этой цели разработан универсальный аппарат с мощным программным обеспечением. Мы рассмотрим основные принципы моделирования систем на макроуровне, при этом будем использовать несколько устаревшие, но весьма наглядные условные обозначения элементов.

Каждый элемент технической системы выполняет вполне определенные функции. Математическое описание этой функции в форме аналитического выражения или в виде систем уравнений (алгебраических, дифференциальных, интегральных) образует математическую модель элемента. Переменные, которые фигурируют в математической модели и определяют в конечном итоге состояние или поведение элемента, принято называть переменными состояния или фазовыми переменными, а уравнения, устанавливающие связь между разнородными фазовыми переменными в пределах одного элемента - компонентными уравнениями.

Если обозначить фазовые переменные для i-го элемента через и то компонентное уравнение можно записать в виде

(1)

Для объединения элементов в ансамбль (рис. 1) для каждого узла сопряжения элементов должна быть установлена зависимость между однородными фазовыми переменными

; (2)

(3)

тех элементов i, j, ... системы, которые примыкают к данному узлу.

Рис. 1 Фрагмент системы элементов

В общем случае техническая система может состоять из элементов разной физической природы, поэтому при объединении элементов в ансамбль могут встретиться большие трудности (при попытках установить связь между фазовыми переменными различных элементов). Такие трудности будут устранены, если для всех элементов системы использовать группы однородных фазовых переменных, имеющих одинаковое математическое описание вне зависимости от типа элемента и протекающих в нем процессов. А это значит, что фазовые переменные, входящие в уравнения типа (1), должны отражать фундаментальные закономерности, присущие всем элементам системы. Примером фундаментальных закономерностей являются энергетические принципы, которые мы и будем брать за основу при рассмотрении электрических, механических, тепловых, гидравлических и пневматических подсистем.

В каждой такой подсистеме энергия может быть представлена в форме совокупностей потенциальной V и потоковой J дуальных переменных, а все многообразие элементов может быть сведено к простейшим элементам трех типов: С, L, R. На элементах С и L происходит накопление потенциальной (кинетической) энергии, а на элементе типа R - рассеивание (диссипация) энергии.

Моделирующий элемент может представлять собой (замешать) физическую единицу системы, либо отражать отдельные свойства такой единицы в форме математических образов. Поэтому при рассмотрении аналогий компонентных уравнений было бы правильно использовать понятие «компоненты», однако, в силу сложившихся традиций, мы будем называть замещающие двухполюсники элементами, имея в виду, что реальный элемент системы иногда может быть замещен двумя и более двухполюсниками.

17.2 Типы элементов

Элемент типа С. Элемент типа С характеризует емкость, инертность и другие подобные свойства моделируемой системы. Графическое изображение такого элемента (двухполюсника) показано на рис. 2, а. Для механических подсистем используют также иное условное обозначение (рис. 2, б), при этом параметру С присваивают символ т.

Компонентное уравнение (1) для элемента типа С имеет вид

(4)

где F и V - соответствующие потоковые и потенциальные фазовые переменные.

В электрических подсистемах элемент типа С определяет электрическую емкость и описывается уравнением

, (4a)

где I и U - соответственно сила тока и падение напряжения.

В механических подсистемах элемент С характеризует массу тела в уравнении второго закона Ньютона:

. (46)

Рис. 2. Элемент типа С

Аналогично для механических вращательных подсистем формулу (4) можно записать в виде

, (4в)

где М- момент силы; I - момент инерции; - угловая скорость.

В тепловых подсистемах С характеризует теплоемкость тела C=dQ/dT, где dQ --изменение количества теплоты в теле при изменении температуры на dТ.

Компонентное уравнение (4) применительно к тепловому потоку Ф и температуре Т имеет вид

(4г)

где - теплоемкость тела, зависящая от удельной теплоемкости с и массы m тела:.

В гидравлических и пневматических подсистемах значения С характеризуют степень сжимаемости жидкости (газа) при плотности ? и объеме V: C=p?V. При этом связь между давлением ? и расходом Qm определяется формулой

. (4д)

Аналогия уравнений типа (4) не является чисто формальной с точки зрения одинакового математического описания. Вероятно, за этой аналогией стоят скрытые закономерности, присущие природе в форме энергетических либо иных взаимных соответствий, тем более, что для всех рассмотренных подсистем между фазовыми переменными F и V существуют также аналогии для элементов типов L и R. Возвращаясь к элементу типа С, мы можем отметить, что С есть мера «емкости» или мера «инертности» при взаимодействии фазовых переменных в формах потока и потенциала, а точнее, при взаимосвязи потока со скоростью изменения потенциала. В механических подсистемах мерой инертности служит масса, в электрических и тепловых - емкость (теплоемкость). Изменение во времени потенциала (скорости движения в механических подсистемах, напряжения в электрической цепи, температуры при нагреве тела) приводит к изменению потока (движущей силы в механических системах, силы тока в электрических цепях, теплового потока при нагреве тел). Мерой взаимного соответствия этих изменений служит величина С. Чем больше емкость конденсатора, масса автомобиля, теплоемкость чайника с водой, тем труднее зарядить конденсатор до напряжения U, разогнать автомобиль до скорости v, нагреть воду до температуры Т.

Элемент типа L. Элемент типа L на эквивалентных схемах электрических и других подсистем изображают как катушку индуктивности (рис. 3, а). Для механических подсистем обычно используют условное обозначение пружины (рис. 3, б).

Компонентное уравнение для элемента типа L записывают в виде

(5)

где V, F - потенциальная и потоковая фазовые переменные.

В электрических подсистемах элемент типа L определяет индуктивность, при этом напряжение U связано с силой тока I зависимостью

. (5 а)

Для механических подсистем компонентное уравнение

(5 6)

может быть получено путем дифференцирования по времени уравнения пружины F= kx, где х - перемещение; k - жесткость пружины. В формуле (5, б) аналог электрической индуктивности L характеризует податливость пружины .

Рис. 3. Элемент типа L

Аналогичное компонентное уравнение можно получить для упругого стержня, используя закон Гука. При растяжении (сжатии) будем иметь

; (5 в)

при изгибе

; (5 г)

при кручении

(5 д)

где Е, G - модули упругости при растяжении и сдвиге; А - площадь поперечного сечения; J, Jk - моменты инерции при изгибе и кручении.

В гидравлических и пневматических подсистемах давление р идеальной жидкости (газа) связано с массовым расходом Q уравнением

(5 е)

где Lp - l/A зависит от длины трубопровода l и площади его поперечного сечения А. Для реальных жидкостей формула (5е) не учитывает массовые силы и гидравлическое сопротивление, которые могут быть учтены дополнительно

Элемент типа R. Условное графическое изображение элемента типа Rпоказано на рис. 4 для электрических (а) и механических (б) подсистем. Общее уравнение такого элемента имеет вид

F= V/R. (6)

В электрических подсистемах этому уравнению соответствует закон Ома

; (6 a)

в механических -- уравнение вязкого трения:

(6 б)

где -- величина, обратная коэффициенту вязкого трения;

в гидравлических -- отмеченное выше гидравлическое сопротивление:

, (6 в)

где - аналог электрического сопротивления (v - кинематическая вязкость; d, l -- диаметр и длина трубопровода);

в тепловых подсистемах:

(6 г)

где тепловой поток Ф и температура Т зависят от конвекционного сопротивления Rk.

Таким образом, во всех рассмотренных подсистемах можно установить аналогии фазовых переменных типа потока и потенциала (табл. 1).

Рис. Элемент типа R

17.3 Источники энергии и преобразователи. Аналоги топологических уравнений

Условное графическое изображение источников энергии типа Е и I показано на рис. 5.

На рис.. 6, а приведена схема трансформатора, имеющего математическую модель

(7)

где Т - коэффициент трансформации.

Рис. 5. Источники энергии

Примерами трансформаторов в механических подсистемах могут служить рычаги энергии и редукторы.

Гиратор (рис. 6, б) имеет модель

(8)

где G - коэффициент гирации.

Примером гиратора может служить гидроцилиндр, в котором давление Р преобразуется в силу F, действующую на поршень.

Рис. 6. Схемы трансформаторной (а) и гираторной (б) связи

Топологические уравнения типа (7), (8) в большинстве физических подсистем базируются на уравнениях равновесия и уравнениях неразрывности. Ниже рассмотрены аналогии топологических уравнений в подсистемах различной физической природы. Условимся снабжать индексом i элементы, примыкающие к данному узлу, а индексом j - входящие в данный контур, при этом в знаках суммы (?) обозначения «» или «», где p, q - соответственно множество ветвей, примыкающих к узлу i и входящих в контур j, будем опускать.

Электрическая подсистема

Уравнения равновесия определяют равенство нулю суммы токов в узлах сопряжения элементов; их находят по первому закону Кирхгофа:

(9)

Уравнения неразрывности соответствуют второму закону Кирхгофа. Они выражают равенство нулю суммы падений напряжений на элементах схемы, образующих контур:

. (10)

Механическая подсистема

Уравнения равновесия отражают принцип Д' Аламбера: сумма сил, действующих на тело, включая инерционные, равна нулю:

(9 а)

Для вращательных подсистем суммируются моменты сил, действующих относительно оси вращения.

Уравнения неразрывности определяются принципом сложения скоростей: абсолютная скорость является суммой относительной и переносных скоростей (которых может быть несколько: с первого тела на второе, со второго на третье и т. д.).

. (10 а)

Для вращательных подсистем следует суммировать угловые скорости.

Гидравлическая (пневматическая) подсистема

Уравнения равновесия определяют равенство нулю потоков Q, подтекающих к узлу или оттекающих от него:

(9 б)

Уравнения неразрывности соответствуют сумме падений давлений при обходе по контуру:

. (10 6)

Тепловая подсистема

Уравнения равновесия определяют равенство нулю суммы тепловых потоков ,подтекающих или оттекающих от узла, т. е.

(9 в)

Уравнения неразрывности соответствуют сумме разности температур Tj на участках, входящих в замкнутый контур:

. (10 в)

Источники энергии типа потока J и разности потенциалов Е делят на независимые и зависимые.

Независимые источники используют для моделирования постоянных воздействий на объект, например, сила тяжести может быть отражена постоянным источником силы F, напряжение питания электрической схемы - источником типа разности потенциалов.

Зависимые источники делят на две группы: источники, зависимые от времени, и источники, зависимые от фазовых переменных. Первые используют для моделирования внешних воздействий, вторые - для отражения нелинейных свойств объекта, а также для отражения взаимосвязей между подсистемами различной физической природы.

Примером взаимной зависимости двух подсистем p и q различной физической природы может служить трансформаторная связь этих подсистем (см. рис. 6). Зависимый источник разности потенциалов в одной подсистеме зависит от разности потенциалов на зависимом источнике потока другой подсистемы, который, в свою очередь, зависит от потока через первый источник.

Эквивалентные схемы технических объектов строят путем объединения в ансамбль всех элементов подсистем (в том числе различной физической природы), образующих данный технический объект. В эквивалентной схеме отражаются элементы и свойства реального объекта, оказывающие существенное влияние на его функционирование.

Двухполюсники (см. рис. 2...6), моделирующие элементы и (или) компоненты подсистем, соединяют между собой в соответствии со структурой подсистемы и с учетом функциональных связей между компонентами. В первую очередь рекомендуется объединять наиболее существенные элементы. Так, при моделировании механических подсистем вначале выделяют компоненты типа массы. Один из полюсов двухполюсника (рис. 2, б) соединяют с базовым узлом, отражающим инерциальную систему отсчета, второй полюс характеризует воздействие этой массы на некоторые элементы объекта, поэтому его следует соединить с полюсами этих элементов. Далее в механической подсистеме выделяют элементы трения и упругости. Элементы трения (рис. 4) включают между контактирующими телами, элементы упругости (рис. 3) - между телами, соединенными упругой связью. Внешние силы отображают включением источника силы между базисным и тем узлом, к которому подключен элемент массы, подверженной действию этой силы.

Построение эквивалентных схем рассмотрим на конкретных примерах.

Муфта сцепления автомобиля (рис. 7) служит для регулирования плавного соединения коленчатого вала двигателя с первичным валом коробки передач.

Рис. 7. Муфта сцепления ) и её эквивалентная схема (б)

Крутящий момент через вал имеющий крутильную жесткость передается на маховик и диск с фрикционной накладкой. Суммарный момент инерции ведущего диска равен . Небольшая часть крутящего момента теряется в подшипнике с коэффициентом трения . Когда диски прижаты друг к другу, крутящий момент через фрикционные накладки передается на ведомый диск и далее через вал , на коробку передач.

Эквивалентная схема полностью отражает механизм передачи крутящего момента от двигателя до коробки передач. Момент моделируется током трение в подшипнике - резистором , гибкость вала - индуктивностью , масса ведущего диска - моментом инерции . Работу фрикционных накладок отражает резистор R. Дальнейшая передача момента от диска до коробки передач аналогична рассмотренной.

Примером механической поступательной системы (рис. 8) служит автомобиль массой , который перевозит груз массой и прицеп массой . В прицепе находится подпружиненный груз массой .

Рис. 8. Поступательная механическая система и её эквивалентная схема:

На рисунке F - тяга автомобиля; и - приведенные коэффициенты трения между грузами и кузовами автомобиля и прицепа; и - упругости сцепления и пружины крепления груза к прицепу

В качестве примера системы, состоящей из электрической, механической и пневматической подсистем, рассмотрим вибронасос (рис. 9). Под воздействием переменного магнитного поля, возникающего в зазоре электромагнита, приходит в движение груз массой т. Этот груз, шарнирно связанный через рычаг с насосом, действует на сильфон S, который, пульсируя, прокачивает воздух через клапаны k.

Рис. 9. Схема вибронасоса

В устройстве можно выделить конструктивно самостоятельные простые подсистемы, доказанные на эквивалентной схеме замещения (рис. 10): обмотку электромагнита 1, электромагнит 2, рычажный механизм 3, сильфон и воздушную магистраль с клапаном Связи этих подсистем осуществляются гираторами для пар 1-2 и 3-4 и трансформатором - для пары 2-3.

Рис.10. Эквивалентная схема замещения вибронасоса

17.4 Метод получения топологических уравнений

Эквивалентная схема технической системы может быть представлена в виде графа, ребра которого изображают двухполюсники, замещающие элементы (компоненты) системы. Пусть задан граф (рис. 11) некоторой технической системы. Топологические уравнения равновесия (типа уравнений первого закона Кирхгофа) могут быть записаны для каждого сечения, которое может включать один или несколько узлов. Для узлов, отмеченных на рис. 11, можем записать (принимая знак минус при направлении ребер к рассматриваемому узлу) следующие уравнения:

сечение 1 ;

сечение 1-5 ;

сечение 2 (11)

сечение 4 .

Топологические уравнения неразрывности (аналоги второго закона Кирхгофа) будут иметь вид:

(12)

Процедура получения уравнений (11), (12) может быть формализована. Для этой цели вводят матрицу контуров и сечений - М-матрицу. Такую матрицу строят с помощью ориентированного графа эквивалентной схемы и выбранного для этого графа дерева. Количество столбцов матрицы соответствует числу ветвей дерева, а количество строк - числу хорд.

Рис.11. Граф эквивалентной схемы

При формировании М-матрицы хорды поочередно включают в дерево с образованием замкнутого контура. При обходе этого контура в направлении включенной хорды формируют строку матрицы. В столбцах матрицы, соответствующих ветвям дерева, ставят +1 при совпадении направления ветви с направлением обхода и -1, если направления противоположны.

Рассмотрим построение М-матрицы (табл. 1) для графа, показанного на рис. 11. Принимая пятый узел за базовый, построим дерево графа (рис. 12). При подключении хорды 1-2 образуется контур 1-2, 2-3, 3-5, 1-5,поэтому в первой строке матрицы будем иметь - 1 (для ветви 1-5), + 1 (для ветвей 2-3, 3-5) и 0 (для ветви 3-4). Аналогично заполняют остальные строки.

Таблица 10.2

Хорды

Ветви дерева

1 - 5

3 - 5

2 - 3

3 - 4

1 - 2

2 - 4

4 - 5

-1

0

0

1

0

-1

1

-1

0

0

-1

1

Топологические уравнения с использованием М-матрицы имеют вид:

(13)

где - векторы переменных типа разности потенциалов на ветвях дерева и хордах;

- векторы переменных типа потока для ветвей дерева и хорд.

Записывая первое уравнение (13) в развернутом виде

вы можете убедиться, что оно совпадает с системой уравнений (12). Аналогично, второе уравнение (13) совпадает с (11). Таким образом, использование М-матрицы позволяет формализовать процедуру получения математической модели. При этом сечения дерева специально выбирать не надо. Выше такие сечения приведены для наглядности.

Рис.12. К построению М-матрицы

Возможна иная формализация процедуры построения математической модели с использованием матрицы инциденций. Будем рассматривать исходный граф (см. рис, 11) как хорды некоторого фиктивного дерева (рис. 13), ветви которого на рисунке изображены пунктирными линиями.

Составим М-матрицу, поочередно включая в фиктивное дерево хорды исходного графа. Так, контур 1-5 состоит из хорды 1-5 и ветви 1-5, направление которой противоположно хорде, поэтому в М-матрице этой ветви будет отвечать значение - 1. В контуре 2-3-5 направление ветви 3-5 совпадает с направлением хорды, а для ветви 2-5 - не совпадает, поэтому будем соответственно иметь +1 и -1. Включая последовательно все хорды, получим М-матрицу (рис. 13), приведенную в табл. 2, или, выделяя содержательную часть М-матрицы.

Рис.13. Граф с фиктивным деревом

(14)

Таблица 10.3

Хорды

Ветви дерева

1 - 5

2 - 5

3 - 5

4 - 5

1 - 5

3 - 5

4 - 5

3 - 4

1 - 2

2 - 4

2 - 3

-1

0

0

0

-1

0

0

0

0

0

0

1

-1

-1

0

-1

0

-1

0

0

1

0

0

-1

1

0

1

0

Рассмотрим второе уравнение системы (13), которое будет справедливо для М-матрицы (14), но с некоторым отличием. Это отличие связано с тем, что было построено фиктивное дерево, поэтому в ветвях его не будет токов и, следовательно, исходное уравнение примет вид . Индекс «х» у вектора J мы опустили, поскольку хордами являются все ребра исходного графа. Обратите внимание, что транспонированная М-матрица представляет собой не что иное, как матрицу инциденций исходного графа (см. рис.), записанную с обратными знаками:

(15)

Все это позволяет записать второе уравнение системы (13) в ином виде: .

Первое уравнение системы (13) изменится следующим образом. Разность потенциалов ветвей дерева Uvd есть разность потенциалов i-й и базовой точек, т. е. потенциал i-й точки . М-матрица будет равна , поэтому первое уравнение системы (13) примет вид .

Все сказанное дает возможность записать систему уравнений (13) в следующей форме:

(16)

Таким образом, возможны два способа формализации процедур построения математической модели для описания эквивалентной схемы технического объекта, в одном из которых используют систему уравнений (13) и М-матрицу, в другом - систему уравнений (16) и матрицу инциденций ориентированного графа.

В качестве примера рассмотрим механическую систему (рис. 14, а), эквивалентная схема (б) и граф (в) которой изображены на рисунке. Матрица инциденций приведена в табл. 3.

Таблица 3

Узлы графа

Дуги графа

F

R1

L1

L2

R2

R3

m1

m2

m3

1

2

3

-1

1

1

-1

1

-1

1

1

1

1

1

Рис. 14. К примеру механической системы

Первое уравнение (16) в развернутой форме имеет вид:

где потоковые переменные JR, JL, Jm=Jc типов R, L, С можно записать в форме приведенных выше зависимостей между фазовыми переменными. В результате будет получена система дифференциальных уравнений. Транспонируя матрицу инциденций и используя второе уравнение системы (16), аналогично можно получить систему дифференциальных уравнений для переменных типа потенциала.

Литература:

1. Ильина Н.В. Системный анализ и моделирование процессов в техносфере: Учеб. пособие / Н.В. Ильина, Д.Д. Лапшин, В.И. Федянин. - Ч. 1. Воронеж: ГОУВПО «Воронежский государственный технический университет, 2008. - 206 с.

Лекция 18. Многокритериальная оптимизация

18.1 Свойства задач принятия решения со многими критериями

В технической практике задачи ПР с учетом нескольких критериев возникают достаточно часто. Сложность подобных задач существенно выше, чем при наличии одного критерия. Если при этом еще учитывать и неоднозначность внешних воздействий, то для получения корректного результата кроме математических знаний необходим также и опыт в соответствующей предметной области.

Теоретически можно представить случай, когда во множестве окажется одна альтернатива, для которой все r критериев (целевых функций) принимают наибольшие значения (в предположении, что все критерии максимизируются). Естественно, что данная альтернатива и будет наилучшей. К сожалению, на практике такие ситуации практически не встречаются, а типичным является случай, представленный на рис. 1, для двух целевых функций.

Рис. 1. Ситуация ПР для двух критериев

При Х* максимума достигает одна целевая функция, а при Х** - другая; нам же предстоит сделать только один выбор. Очевидно, что ППР здесь становится менее прозрачным.

Сформулируем некоторые очевидные положения для подобных ситуаций:


Подобные документы

  • Сущность и виды риска, основные положения его теории. Концепция приемлемого (допустимого) риска. Последовательность изучения опасностей. Цель системного анализа безопасности, принципы ее обеспечения и средства управления ею. Причины отказов оборудования.

    презентация [226,2 K], добавлен 09.02.2014

  • Цели и задачи системного анализа опасности, его этапы и принципы реализации. Исследование и оценка опасных и вредных факторов, возникающих на рабочем месте продавца продовольственных товаров. Производственный шум и вибрация, существующие способы защиты.

    контрольная работа [40,3 K], добавлен 22.12.2015

  • Безопасное использование ядерных технологий. Основные принципы построения системы физической защиты. Этапы проведения анализа уязвимости ядерного объекта. Понятие особо важной зоны. Система контроля управления доступом. Перегрузка ядерного топлива.

    курсовая работа [1,6 M], добавлен 10.11.2014

  • Методы и функции управления охраной труда. Принципы, направления и задачи государственной политики в области охраны труда в Республике Беларусь. Органы управления государственной системой охраны труда. Система управления охраной труда на предприятии.

    реферат [473,1 K], добавлен 25.12.2011

  • Полномочия и основные функции Межрегионального управления № 91 Федерального медико-биологического агентства России. Принципы проведения внеплановой проверки исполнения санитарного законодательства индивидуальными предпринимателями и юридическими лицами.

    отчет по практике [25,6 K], добавлен 10.12.2012

  • Задачи, функции, организационная структура и элементы системы управления охраной труда. Обеспечение производственной безопасности, снижение или исключение риска несчастных случаев и аварий. Этапы и принципы внедрения СУОТ. Нормативно-правовая база.

    презентация [629,0 K], добавлен 07.02.2016

  • Формирование здорового образа жизни путем системного и комплексного подхода к вопросам профилактики. Совершенствование работы по предупреждению дорожно-транспортных происшествий с участием детей и подростков. Программы развития здравоохранения в РБ.

    реферат [687,9 K], добавлен 25.11.2014

  • Понятие управления безопасностью, его сущность и особенности, подходы и методы. Основные мероприятия по обеспечению безопасности населения в чрезвычайных ситуациях, порядок их совершения. Особенности управления безопасностью в медицинских учреждениях.

    реферат [148,8 K], добавлен 16.04.2009

  • Понятие и значение, внутренняя структура и принципы работы системы управления охраной труда в РФ. Классификация производственных факторов, их негативное воздействие, оценка условий труда. Профилактика влияния производственных факторов, способы защиты.

    дипломная работа [886,4 K], добавлен 29.05.2015

  • Основные положения теории риска. Концепция приемлемого риска. Действие техногенных опасностей. Методические подходы к определению риска. Выявление источников опасностей. Системный анализ безопасности. Причины отказов оборудования на предприятиях.

    лекция [75,1 K], добавлен 24.07.2013

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.