Анализ технологий предотвращения фактической естественной убыли мяса и мясопродуктов при холодильной обработки

Значение низких температур сохранения, термическое состояние мяса и мясопродуктов. Технологии холодильной обработки и применяемое оборудование. Структура холодоснабжения предприятия. Экологические аспекты холодильной обработки.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 19.03.2011
Размер файла 2,4 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Содержание

Введение

1. Значение низких температур для сохранения мяса и мясопродуктов

2. Характеристика термического состояния мяса и мясопродуктов

3. Технологии холодильной обработки и применяемое оборудование

4. Причины и методы предотвращения фактической естественной убыли мяса и мясопродуктов при холодильной обработки

5. Структура холодоснабжения предприятия

6. Экологические аспекты холодильной обработки мяса и мясопродуктов

Заключение

Список литературы

Приложение А

Приложение Б

Приложение В

Приложение Г

Приложение Д

Приложение Е

Приложение Ж

Приложение И

Приложение К

Приложение Л

Приложение М

Приложение Н

Приложение П

Приложение Р

Введение

Мясные продукты относятся к числу скоропортящихся пищевых продуктов, поскольку длительное их хранение в обычных условиях без специальной обработки невозможно.

Наряду с различными методами консервирования скоропортящихся пищевых продуктов в настоящее время наиболее эффективными являются методы холодильной обработки и хранения.

Применение методов холодильной технологии при обработке мясных продуктов, в отличие от других способов консервирования, оказывает значительно меньшее воздействие на естественные вкусовые и органолептические свойства мясных продуктов.

В настоящее время холодильная промышленность России переживает трудный период. Для решения основных проблем необходимо объединение усилий всех заинтересованных структур (производителей и потребителей холода, ученых, представителей власти) в разработке долгосрочной научно-технической программы развития холодильной промышленности.

Российским союзом предприятий холодильной промышленности (Россоюзхолодпром) предложено разработать такую программу под названием «Промышленный холод». Однако для этого на первом этапе требуется сформулировать концепцию развития холодильной промышленности в России.

Основными направлениями развития холодильной отрасли в настоящее время являются:

· Возрождение и развитие отечественного, конкурентоспособного холодильного машиностроения.

· Совершенствование технологий холодильной обработки и хранения пищевой продукции.

· Повышение энергетической эффективности холодильных систем и производств, использующих искусственный холод в целом.

· Обеспечение безопасности производства и оборота пищевых продуктов.

· Повышение промышленной и экологической безопасности холодильного оборудования.

· Защита окружающей среды.

· Информирование потребителей о безопасности и качестве продукции, качестве оказываемых услуг (проектирование, поставка оборудования, монтаж и др.).

Именно эти направления могут дополняться, изменяться их порядок в ряду приоритетов, но они актуальны в настоящее время.

холодильная обработка температура мясо

1. Значение низких температур для сохранения мяса и мясопродуктов

Холодильная обработка мяса и субпродуктов и их хранение при соответствующих низких температурах являются одним из наиболее совершенных приемов предупреждения или замедления порчи этих продуктов. При холодильной обработке достигается наиболее полное сохранение первоначальных натуральных свойств мяса и субпродуктов. Хранение на холоде обеспечивает минимальные изменения пищевой ценности и вкуса мяса. Обработка холодом обусловливает подавление жизнедеятельности микроорганизмов, а также замедление химических и биохимических процессов, происходящих в продукте под действием собственных ферментов, кислорода воздуха, тепла и света.

В промышленной практике в основном пользуются следующими способами холодильной обработки и хранения мяса и субпродуктов при температуре:

· на 1--4°С выше точки замерзания тканевой жидкости-- это охлаждение и хранение охлажденного мяса;

· на 1--2°С ниже точки замерзания тканевой жидкости-- это подмораживание и хранение подмороженного мяса;

· значительно ниже точки замерзания тканевой жидкости -- это замораживание и хранение мороженого мяса.

Первоначальные натуральные свойства мяса наиболее полно сохраняются в охлажденном мясе, которое по качеству превосходит замороженное и подмороженное.

Мышцы здоровых животных непосредственно после убоя обычно обсеменены в небольшой степени. Вместе с тем мясо и субпродукты являются хорошей питательной средой для развития микробов, плесеней, дрожжей.

Охлаждение мяса до точки замерзания тканевой жидкости замедляет жизнедеятельность микроорганизмов, а также вносит качественное изменение в состав микрофлоры. Уменьшается доля термофилов и мезофилов до 2--5% от общего количества. При замораживании снижение температуры и отнятие влаги в результате кристаллообразования приводят к прекращению жизнедеятельности микроорганизмов. Психрофильные бактерии теряют способность к размножению при температуре ниже --5°С, психрофильные дрожжи -- при --10°С; при-- 18°С и ниже замороженное мясо не может подвергаться порче в результате развития микроорганизмов. Уже при --10°С рост психрофильных микроорганизмов отсутствует. Однако некоторые микроорганизмы способны развиваться и при отрицательных температурах. Так Achromobacter и Pseudomonas развиваются при -3 …5°С [3].

Различные возбудители порчи, плесневые грибки, дрожжи прекращают свою деятельность при температуре ниже --10°С. Наибольшей устойчивостью к низким температурам обладают плесени, в том числе вызывающие образование слизи на поверхности мяса. Некоторые из них развиваются при температуре --9 и --12°С.

Высокая жизнеспособность микроорганизмов обусловлена тем, что важнейшим фактором их развития является вода, без которой обмен веществ у микроорганизмов невозможен. При замораживании мяса и субпродуктов вода тканевой жидкости превращается в лед. Полное вымерзание воды происходит в мясе при --55…65°С. При недостаточно низкой температуре замораживания вода в мясе остается, а, следовательно, остаются главнейшие условия для жизнедеятельности микроорганизмов.

При замораживании продуктов наряду с замедлением или прекращением жизнедеятельности микроорганизмов происходит и их отмирание. Гибель микроорганизмов при замораживании вызывается существенным нарушением обмена веществ вследствие вымерзания влаги и существенным повреждением структуры клетки. Максимальная степень повреждения микробных клеток отмечается при медленном замораживании до температур от -- 6єС до -- 12°С. При очень быстром замораживании около 10% клеток остаются живыми. Это объясняется образованием при быстром замораживании большого количества мельчайших кристаллов льда и вследствие этого меньшим повреждением структуры клетки. Однако процессы холодильной обработки мяса и субпродуктов следует вести ускоренно, так как чем быстрее понижается температура продукта, тем скорее подавляется жизнедеятельность микроорганизмов и активность ферментов и тем меньше структурные и химические изменения в продукте. При медленном снижении температуры рост микроорганизмов может происходить в течение продолжительного периода времени, что приводит к снижению стойкости продукта.

Мороженое мясо перед употреблением подвергается оттаиванию (дефростации). Процесс оттаивания считается законченным, когда температура в толще мышц достигает 0°С. Размножение микробов на оттаянном мясе происходит быстрее, чем на мясе не подвергавшемся замораживанию [8].

Микроорганизмы, выжившие в процессе хранения мороженого мяса, при его оттаивании начинают размножаться, так как происходят выделение мышечного сока и увлажнение поверхности т. е. создаются благоприятные условия. Интенсивность размножения микроорганизмов во многом зависит от способа замораживания. При медленном неглубоком замораживании в мышечной ткани образуются крупные кристаллы льда, что обусловливает разрыв оболочек большого количества клеток мышечных волокон и выделение значительного количества мышечного сока. В результате быстрого глубокого замораживании в мышечной ткани образуются мелкие кристаллы льда, которые не травмируют оболочек окружающих их клеток ткани. После оттаивания мышечный сок проникает обратно в мышечные волокна и почти не выделяется. На активность размножения микроорганизмов во время размораживания влияет также температура. Если размораживание проводят при повышенной температуре (20-25 °С), то к тому времени, когда оттают глубинные участки мышечной ткани, на поверхности туши происходит интенсивное размножение микробов. При медленном размораживании (низкой плюсовой температуре 1-8 °С и относительной влажности 75-90%) микроорганизмы размножаются на поверхности мясных туш менее активно.

Холодильная обработка может производиться в воздушной и жидкой среде. При обработке в жидкой охлаждающей среде мясо и субпродукты теряют часть ценных солерастворимых белков, обесцвечиваются и слегка просаливаются. Отрицательное влияние на мясо жидкой охлаждающей среды можно исключить посредством изолирования продукта в металлических формах или путем создания искусственной оболочки. Этот метод нашел широкое применение при замораживании мяса в блоках в скороморозильных аппаратах различных конструкций. При холодильной обработке продуктов в воздушной среде происходит подсушивание их поверхности; кислород воздуха вызывает изменение цвета мяса и окисление жиров. Воздушная среда в меньшей степени, чем жидкая, вызывает нежелательные изменения в мясе.

2. Характеристика термического состояния мяса и мясопродуктов

Выделяют следующие виды термического состояния мяса: парное, остывшее, охлажденное, подмороженное, замороженное, размороженное.

Парным называют мясо, полученное непосредственно после убоя, с температурой в толще мышц не ниже 35°С. Температура мяса измеряется в толще мышц на глубине не менее 6 см от поверхности бедра. Измерение температуры мяса производят электрическими полупроводниковыми термометрами, дистанционными термометрами сопротивления или же при помощи обычных термометров марки СП-7 вмонтированных в металлические оправы. В этом состоянии белки актомиозинового комплекса максимально диссоциированы. Мясо способно в наибольших количествах связывать воду, имеет высокие значения рН, ярко выраженную окраску и минимальную микробную обсемененность. Указанные свойства обусловливают возможность получения из такого мяса изделий наиболее высокого качества. Парное мясо охлаждают одно- или двухстаднйным методами в специально оборудованных камерах или туннелях. Существенным недостатком парного мяса является его быстрый (через 2...3 ч) переход в состояние окоченения. Биохимические процессы в мышечной ткани в стадии окоченения характеризуются в первую очередь распадом гликогена и АТФ. К 12-24 часам хранения говядины и баранины при температурах, близких к нулю указанные величины достигают соответственно своего максимума, образующаяся молочная кислота снижает рН мяса до 5,6-5,8, далее происходит созревание мяса [8].

Проблема использования парного мяса сводится, во-первых, к задаче стабилизации его свойств путем определенных воздействий (прижизненная адренализация, посол, электростимуляция и др.), во-вторых, к задаче сокращения длительности и числа операций по его обработке перед стабилизацией, что осо-бенно важно для надлежащей организации производственного потока. Сырьевые цеха, где производят операции разделки, обвалки, жиловки, должны находиться в непосредственной близости к цеху убоя скота и разделки туш.

Остывшим считают мясо после разделки туш, охлажденное до температуры не выше 12 °С, на его поверхности появляется корочка подсыхания.

Охлажденным является мясо после разделки туш, температура которого доведена до 0--4 єС, оно характеризуется упругостью мышц, неувлажненной поверхностью и покрыто корочкой подсыхания.

При охлаждении в мясе происходят различные процессы: окислительные, микробиологические, автолитические изменения под действием ферментов, тепло- и влагообмен с окружающей средой. Характер и глубина изменений при охлаждении и последующем хранении зависят от вида и качества сырья, а также условий и режима холодильной обработки.

При охлаждении и последующем хранении происходят обесцвечивание мяса и мясопродуктов в результате окисления пигментов мышечной ткани -- миоглобина и крови -- гемоглобина. Миоглобин с кислородом воздуха образует оксимиоглобин, придающий мясу яркую окраску.

Процесс дальнейшего окисления связан с изменениями валентности железа, входящего в пигменты. При этом миоглобин превращается в метмиоглобин и мясо темнеет.

Жир подвергается также гидролизу и окислению с накоплением низкомолекулярных жирных кислот, пероксидов, альдегидов и ряда других веществ.

Для увеличения сроков хранения охлажденного мяса, мясопродуктов применяют различные упаковки с регулируемыми газовыми средами, ультрафиолетовое и ионизирующее излучения, упаковывание под вакуумом, а также электростимуляцию.

Использование полиэтиленовых, сарановых и вискозиновых полимерных пленочных покрытий предохраняет продукт от внешних воздействий, что улучшает санитарное состояние мяса, а также снижает потери массы, бактериальную обсемененность, способствует сохранению окраски и предотвращает окисление жиров. Разработаны способы хранения мяса в упаковке под вакуумом; этот способ связан с тем, что при понижении парциального давления кислорода мясо меньше окисляется. Электростимуляцию применяют в основном при холодильном хранении мяса для предотвращения так называемой холодной контрактации (сокращения).

Перспективным является хранение мяса в газовых средах с регулируемым составом. Так, срок хранения мяса в среде, содержащей 10% СО, при температуре -1…1,5°С и относительной влажности 90--95% увеличивается в 2 раза по сравнению с хранением в обычной атмосфере, а в смеси азота (70 %), диоксида углерода (25 %) и кислорода (5 %) срок хранения увеличивается в 2,5--3 раза. Положительно оценивается введение в состав газовой смеси оксида углерода, поскольку диоксид и оксид углерода оказывают не только угнетающее, но и губительное действие на микроорганизмы. Правильное соотношение компонентов регулируемых газовых сред также обеспечивает стабильность окраски и тормозит развитие окислительной порчи жира [8].

Для увеличения срока хранения охлажденной говядины предлагается проводить озонирование: первые 4 сут по 4 ч ежедневно при концентрации озона 10--20 мг/м, затем по 3 ч через каждые 2 сут при концентрации озона 4--6 мг/м . Однако при использовании озона следует иметь в виду возможность конденсации между белковыми компонентами клеточных мембран и продуктами распада мальозонида, а также окисления тиоловых групп ферментов, в результате которых образуются токсичные вещества. Применение озона не получило распространения при хранении охлажденного мяса.

Увеличить сроки хранения охлажденного мяса можно при использовании ионизирующего излучения, под влиянием которого развитие микроорганизмов подавляется. При интенсивности облучения 3--5 кГр срок хранения охлажденного мяса при -1…5єС увеличивается до 2 мес. При более высоких дозах облучения происходит большая гибель микроорганизмов, однако в продуктах появляется посторонний запах.

На срок хранения охлажденного мяса влияют способ охлаждения и относительная влажность воздуха.

Подмороженным называется мясо после холодильной обработки температура в толще бедра на глубине 1 см -3…5єС, на глубине 6 см 0--2 °С. В процессе хранения температура подмороженного мяса (туши, полутуши, четвертины) по всему объему должна быть -2…3єС.

В подмороженном мясе автолитические процессы замедляются, но не останавливаются. В первые сутки хранения при -2єС в мясе интенсивно протекают биохимические процессы вследствие изменения концентрации солей, вызванного частичным вымораживанием воды. В дальнейшем основное влияние оказывает понижение температуры, в результате чего в мышечной ткани протекают те же автолитические изменения, что и при хранении охлажденного мяса, но несколько медленнее. Состояние окоченения при 0єС вместо 24 ч отодвигается на 10--12 сут, а созревает мясо через 15--20 сут. При хранении подмороженного мяса значительно снижается его микробиальная порча и первые признаки ослизнения поверхности появляются через 35--40 сут [8].

В процессе хранения при -2єС в течение 10--12 сут сорбционная способность мяса снижается и наблюдаемое в этот период понижение сорбционной способности совпадает с наступлением окоченения. После окончания окоченения сорбционная способность возрастает и через 12--14 сут хранения увеличивается на протяжении всего срока дальнейшего хранения.

При хранении в подмороженном мясе происходит интенсивное накопление свободных аминокислот, и суммарное содержание свободных аминокислот через 12 сут хранения мяса при -2°С достигает примерно такого же уровня, как и в мясе, хранившемся при 2 °С в течение 7 сут. Помимо свободных аминокислот образуются летучие ароматические вещества (высшие спирты, неолы, сульфиты, альдегиды, кетоны, эфиры, жирные кислоты, амины и сложные смеси этих веществ). Однако изменение ароматических веществ при -2єС происходит с меньшей скоростью, чем при 2 °С. При хранении мяса в условиях низких положительных температур наибольшее содержание летучих ароматических веществ наблюдается через 6--7 сут, а при температуре, близкой к криоскопической через 14--16 сут. Состав ароматических веществ в охлажденном и подмороженном мясе одинаков.

Электростимуляция мяса перед подмораживанием позволяет значительно сократить сроки созревания и использования мяса в производстве. Электростимуляция приводит к быстрому снижению рН мяса, что вызывает более быстрое наступление окоченения. После электростимуляции максимальное посмертное окоченение мяса наблюдается через 24 ч. Гистологические исследования мышечных волокон мяса, подверженного электростимуляции в разные периоды автолиза, показали, что такая обработка ускоряет созревание мяса.

В мясе птицы биохимические процессы происходят с большей интенсивностью и ферментация заканчивается быстрее. Процесс посмертного окоченения в подмороженном мясе птицы наступает на 2--3-и сутки хранения; а при температуре 0-2єС водоудерживающая способность становится минимальной через 2-3 сут. По окончании окоченения водоудерживающая способность увеличивается и достигает максимума через 10-15 сут.

Замороженное мясо имеет температуру в толще мышц не выше -8 °С.

После прекращения жизни животного в мясе происходит сложный комплекс изменений под воздействием ферментов -- автолиз. Замораживание мяса приводит к изменению его физико-химических и морфологических свойств, а также гибели микроорганизмов. Особенности изменения мясных систем при замораживании определяются фазовым переходов воды в лед и повышением концентрации веществ, растворенных в жидкой фазе. В отличие от чистой воды температура начала замерзания (т. е. криоскопическая точка) такого раствора должна быть ниже 0°С, что соответствует его ионной и молекулярной концентрации. Мясной сок начинает замерзать при температуре -0,6…1,2єС. При температуре замерзания в водном растворе начинается кристаллизация воды, и по мере вымораживания воды остаточная концентрация раствора возрастает и температура замерзания еще больше понижается. Понижение температуры замерзания растворов происходит в соответствии с законом Рауля, согласно которому снижение температура замерзания жидких растворов по отношению к чистой воде пропорционально концентрации растворенною в ней вещества.

Ввиду того что замерзание сопровождается уменьшением количества воды в растворе, концентрация остаточного раствора постоянно растет, пока не достигнет концентрации самой низкой температурной точки -- так называемой эвтектической точки замерзания. Эвтектическая точка мышечной ткани лежит в интервале -59…64єС. У продуктов, обладающих тканевой структурой, содержание растворенных веществ во влаге межклеточного пространства обычно ниже, чем в клеточной влаге. В связи с этим при замораживании кристаллики льда начинают образовываться в межклеточном пространстве и концентрация раствора в межклеточном пространстве возрастает. Если замораживание происходит медленно, то благодаря разнице концентраций внутри и вне клеток вода из клеток частично диффундирует в межклеточное пространство. Поскольку размеры образовавшихся в межклеточном пространстве кристалликов льда увеличиваются за счет уменьшения массовой доли влаги, клетки высыхают. Этому способствует также то, что во время замерзания объем воды увеличивается примерно на 10 % и образовавшиеся в межклеточном пространстве кристаллики оказывают на клетки механическое давление.

Во время быстрого замораживания кристаллизация также начинается в межклеточном пространстве, но отвод теплоты совершается быстрее, чем диффузия влаги из клеток. И прежде чем начинается диффузия молекул воды через стенки клеток, происходит замерзание внутри клеток. Именно поэтому из медленно замороженных животных тканей после их оттаивания уходит много клеточной влаги. При быстром замораживании потери капиллярной влаги минимальны [8].

Раньше считали, что преобладающая часть потерь сока связана с механическим разрушением клеток под давлением больших кристалликов льда, которые образуются при медленном замораживании мяса. На самом деле большая часть потерь сока происходит не из-за механического разрушения клеток, а из-за диффузии клеточной влаги в межклеточное пространство при медленном замораживании клеток.

При быстром замораживании наиболее существенно, чтобы температура продукта как можно быстрее проходила через область так называемого максимального кристаллообразования (-1…5°С), когда вымерзает основная часть имеющейся воды.

Изменение структуры тканей при замораживании заключается в следующем.

Мышечная ткань обладает наибольшей пищевой ценностью. Влияние скорости замораживания на мышечную ткань проявляется не только в изменении гистологии ткани. От нее зависит также протекание процесса при оттаивании замороженного мяса.

При этом наиболее важной задачей является уменьшение вытекания сока, который содержит белки, пептиды, аминокислоты, молочную кислоту, витамины и минеральные вещества. Количество вытекающего сока зависит в первую очередь от того, медленно или быстро проводится замораживание. При медленном замораживании количество вытекшего сока больше, так как вследствие дегидратации клеток возрастает ионная концентрация, и белки повреждаются. Способность к набуханию и удерживанию воды в денатурированных белках понижена, поэтому после оттаивания мышечные волокна не могут адсорбировать освободившуюся жидкость.

Количество вытекающего сока зависит не только от скорости замораживания. Так, различные мышцы теряют разное количество сока, а в пределах мышц одной группы потери сока тем меньше, чем больше рН. Кроме того, длительное холодильное хранение мяса перед замораживанием препятствует вытеканию из него сока. При этом в процессе созревания мяса высвобождаются новые ионы кальция и натрия, которые адсорбируются миофибриллярными белками. Количество вытекающего сока сильно зависит от того, наступило ли окоченение мышц перед замораживанием.

От скорости замораживания зависит также водоудерживающая способность мяса после оттаивания: при медленном замораживании эта способность намного меньше.

Могут произойти изменения структуры ткани. При испарении концентрация раствора в поверхностном слое может увеличиться до такой степени, что произойдут необратимые процессы денатурации белков, усадки клеток, образования корочки на поверхности. Вследствие выделения воды наблюдаются агрегация и дезагрегация белковых частиц, что приводит к снижению водосвязывающей способности белковых веществ и изменению консистенции и вязкости.

Изменения, вызываемые перераспределением воды при замораживании, носят преимущественно физический характер, и их интенсивность зависит в решающей степени от скорости охлаждения. Если скорость низкая, то в продуктах животного происхождения сначала кристаллизуется внутриклеточный тканевый сок, концентрация которого относительно невысока. Кристаллы льда группируются вокруг клеток, где находится клеточный сок высокой концентрации, имеющий низкую точку замерзания.

Повышенное давление пара в переохлажденной, но еще незастывшей жидкости внутри клетки вызывает диффузию водяного пара через стенки клеток. При небольшой скорости замораживания количество диффундирующей воды оказывается достаточным для образования льда внутри клетки. Этот процесс заканчивается тогда, когда после достижения криогидратной точки клеточный сок полностью затвердевает и через некоторое время после прекращения замораживания парциальное давление водяного пара внутри клетки и в межклеточном пространстве уравнивается. Усадка клетки является следствием процесса замораживания. Она вызвана увеличением концентрации клеточного сока, что, в свою очередь, способствует химическим изменениям. Кроме того, в межклеточных пространствах образуются крупные кристаллы льда, которые деформируют и разрушают ткань. Чем выше скорость замораживания, тем меньше повреждения клеток и ткани.

Замороженное мясо хранят в камерах, оборудованных, как правило, батареями непосредственного испарения аммиака. При продолжительном хранении вследствие высыхания поверхности мяса мышечная ткань вдавливается и консистенция мяса уплотняется. Жир приобретает зернистую структуру и крошится. При увеличении продолжительности хранения мясо становится более темным в результате высушивания, увеличения концентрации кровяных пигментов и перехода гемоглобина в метгемоглобин. По мере увеличения длительности хранения изменяется мышечная ткань вплоть до исчезновения поперечной полосатости мышц.

Конец хранения устанавливает ветеринарно-санитарная экспертиза в зависимости от степени высыхания поверхности, внешнего вида, потери характерных для мяса запаха и вкуса, прогоркания жира и плесневения мяса.

У размороженного мяса температура в толще мышц повышается до 1 °С и более в зависимости от условий размораживания и предполагаемого использования.

При размораживании температуру в толще мяса доводят до близкой к криоскопической или выше ее в зависимости от дальнейшего использования мяса. Размораживание мяса применяют при производстве колбас, соленых изделий, консервов и полуфабрикатов.

На качество размороженных пищевых продуктов влияют их свойства до замораживания, скорость замораживания, а также условия и продолжительность хранения.

Лучшими качественными показателями обладает мясо, размороженное при 20°С и относительной влажности воздуха 95 %. Поверхность мяса после размораживания влажная, цвет розовый, консистенция удовлетворительная, запах свежий. Скорость размораживания при высоком качестве продукта можно повысить, используя специальные установки, в которых в соответствии с особенностями объекта размораживания в ходе процесса изменяются температура, относительная влажность и скорость циркуляции воздуха.

3. Технологии холодильной обработки и применяемое оборудование

Мясо и мясопродукты охлаждают в воздушной среде или в жидкостях (воде или рассолах). Охлаждение говяжьего и свиного мяса в полутушах в бараньего мяса в тушах производят в помещениях камерного или туннельного типа. Туши и полутуши подвешивают к троллеям подвесных путей, по которым их передвигают вручную или с помощью конвейеров. Камеры (туннели) для холодильной обработки мяса могут быть цикличного или непрерывного действия, в них смонтированы охлаждающие устройства.

Важнейшими регулируемыми параметрами охлаждения продуктов в воздушной среде являются температура, скорость движения воздушной среды и ее влажность. Быстрое охлаждение продукта до температуры, неблагоприятной для развития микрофлоры, обеспечивает повышение его стабильности и экономически выгодно, так как при этом уменьшается усушка и увеличивается коэффициент использования холодильных мощностей. Интенсивность теплоотдачи во внешнюю среду зависит от размеров и конфигурации охлаждаемого объекта.

В настоящее время применяют одно- и двухстадийные методы охлаждения. При одностадийном охлаждении устанавливают температуру, близкую к криоскопическому значению. Интенсификация процесса достигается за счет увеличения скорости движения воздуха от 0,1 до 2,0 м/с и понижения температуры в камере до -3…5°С (таблица 1).

Температура и скорость движения воздуха в холодильных камерах должны быть одинаковы во всех точках. Расстояние между полутушами и тушами на подвесных путях 30--50 мм; нагрузка на 1 погонный метр подвесного пути для говядины составляет 250 кг, для свинины и баранины -- 200 кг [8].

Двухстадийное охлаждение проводят при температуре на первом этапе -4…15єС скорости движения воздуха 1--2 м/с: на втором этапе (период доохлаждения) температура воздуха -1…1,5єС, скорость его движения 0,1--0,2 м/с (таблица 2).

Потери массы при двухстадийном способе охлаждения мясных полутуш сокращаются на 20--30 %.

Во ВНИИМПе разработан метод гидроаэрозольного охлаждения говяжьих и свиных полутуш. Он заключается в том, что полутуши, имеющие температуру в толще бедра 35--37°С и на поверхности 20--25єС, орошаются через форсунки тонкодиспергированной водой при температуре 9єС; скорость подачи воды 1--2 м/с. Через 3 ч охлаждения температура в толще бедра и на поверхности становится соответственно 22--24 и 10--12 °С, после чего мясо доохлаждают в камерах при 0…-1°С в течение 10--13 ч. Общая продолжительность охлаждения не превышает 16 ч. При гидроаэрозольном охлаждении снижаются потери массы, однако происходит увлажнение поверхности, что значительно сокращает срок хранения продукта, а также ухудшаются товарный вид и качество мяса. Для сохранения качества мясо и мясопродукты желательно упаковывать в полимерные материалы, что дает возможность применять контактное охлаждение [9].

Медленное охлаждение парного мяса имеет ряд недостатков. Прежде всего из-за значительных потерь влаги поверхность туш покрывается сплошной толстой корочкой подсыхания, которая в дальнейшем может набухать, что снижает устойчивость мяса к микробиологической порче при хранении.

Быстрое охлаждение обеспечивает хороший товарный вид (цвет) за счет быстрого образования корочки подсыхания, позволяет уменьшить потери массы мяса и увеличить срок хранения. Кроме того, значительно сокращается продолжительность процесса и увеличивается оборачиваемость камер охлаждения. Быстрое охлаждение мяса выгодно и с санитарно-гигиенической точки зрения, так как при быстром снижении температуры поверхности до 0-1єС замедляется или полностью прекращается развитие микрофлоры.

Предложены также трехстадийный способ охлаждения мясных туш и охлаждение по определенной программе. Оба способа предусматривают переменные параметры воздушной среды. При трехстадийном способе температура воздуха на первой стадии охлаждения -10…12°С, на второй -5…7 °С при скорости движения воздуха 1--2 м/с в течение соответственно 1,5 и 2 ч. Третий этап -- доохлаждение -- проводят при температуре около 0°С и скорости движения воздуха не более 0,5 м/с.

Программное охлаждение говяжьих полутуш осуществляют вначале при -4…5єС и скорости движения воздуха 4--5 м/с, затем при 0°С и переменной скорости движения воздуха. Последняя изменяется по определенной программе в пределах от 5 до 0,5 м/с.

В зависимости от условий теплоотвода и конструкции приборов охлаждения различают батарейное, воздушное и смешанное охлаждение.

При батарейном охлаждении в камерах устанавливают батареи, в которые подают жидкий хладагент или теплоноситель. Если охлаждение воздуха происходит вследствие кипения хладагента в батареях, расположенных непосредственно в охлаждаемой камере, то такой способ называют непосредственным охлаждением, а камерные приборы охлаждения -- батареями непосредственного охлаждения.

Воздух может охлаждаться благодаря нагреванию теплоносителя, поступающего в батарею температурой на 8--10°С ниже, чем температура охлаждаемого воздуха. Распространенными теплоносителями являются рассолы -- водные растворы хлоридов натрия и кальция. Такое охлаждение называют рассольным, а камерные приборы охлаждения -- рассольными батареями.

Воздушное охлаждение камер осуществляется воздухом. Холодный воздух из воздухоохладителя нагнетается вентилятором в камеру, соприкасаясь с мясом, отепляется, увлажняется и вновь поступает в воздухоохладитель, при воздушном охлаждении в отличие от батарейного, когда в камерах происходит естественная циркуляция воздуха со скоростью 0,05--0,15 м/с, циркуляция воздуха принудительная со скоростью до 2,5 м/с.

Смешанное охлаждение сочетает батарейное и воздушное охлаждение. Этот вид охлаждения на предприятиях мясной промышленности не нашел распространения.

В настоящее время непосредственное охлаждение применяют чаще, чем рассольное, как более экономичное. Для его реализации не нужны теплоносители и, следовательно, не требуется создания более низкой температуры кипения хладагента, как при рассольном охлаждении, что приводит к увеличению холодопроизводителъности машины и уменьшению удельного расхода электроэнергии. Кроме того, не расходуется электроэнергия на работу насосов и вентиляторов, следовательно, нет дополнительной нагрузки на компрессор; не требуется дополнительного оборудования (испарители, рассольные насосы, вентиляторы). При установке камер непосредственного охлаждения площадь компрессорного цеха уменьшается, сокращается коррозия металла, а сама система охлаждения более долговечна.

Несмотря на эти преимущества, в ряде случаев все же пользуются рассольным охлаждением: во-первых, для кондиционирования воздуха в помещениях, где по правилам техники безопасности и противопожарной безопасности нельзя применять непосредственное охлаждение; во-вторых, в установках, в которых трудно обеспечить плотное соединение узлов, а также когда по условиям эксплуатации требуется периодическое разъединение трубопроводов (например, в холодильной установке изотермического поезда); в-третьих, в установках, расположенных на большом расстоянии от компрессорного цеха.

Воздушное охлаждение, несмотря на такие недостатки, как энергозатраты на работу вентиляторов, необходимость установки воздухоохладителей, воздуховодов и вентиляторов, а также большая усушка продукта при длительном хранении без упаковки, находит широкое применение. К преимуществам воздушного охлаждения относятся: более равномерное распределение температуры и влажности воздуха по объему камеры, чем при батарейном охлаждении; интенсификация процессов охлаждения и замораживания; возможность вентилировать камеры и регулировать влажность воздуха благодаря большой скорости движения воздуха, влажность воздуха, что невозможно при батарейном охлаждении. Системы воздушного охлаждения менее металлоемкие, их можно полностью автоматизировать [8].

Поддержание необходимых температуры и скорости движения воздуха в холодильных камерах зависит от правильного размещения оборудования. Различают камеры охлаждения с пристенными и потолочными батареями, когда воздухоохладители размещают соответственно на стенках и под потолком (рис.1). На рис. 2 показана схема размещения воздухоохладителей в камере сверхбыстрого охлаждения мяса (воздухоохладители расположены над подвесным потолком). В помещениях туннельного типа охлаждающий воздух движется в продольном или поперечном направлении. В камерах с бесканальной системой воздухораспределения и ложным потолком применяют напольные, подвесные и потолочные воздухоохладители.

Равномерные условия охлаждения полутуш могут быть обеспечены при системе воздушного душирования, когда струйная подача воздуха сверху вниз создает наиболее низкие температуры и высокие скорости движения воздуха в зоне бедренной части полутуш.

Усушку и продолжительность процесса охлаждения мяса можно снизить, если использовать воздух, перенасыщенный влагой и циркулирующий с большой скоростью (около 30 м/с). Однако из-за высокой стоимости оборудования широкого распространения данный метод не нашел.

Субпродукты охлаждают в отдельных камерах, в тазиках слоем толщиной не более 10 см, которые размещают на стеллажах, рамах или этажерках. Длительность охлаждения субпродуктов при 0--1°С составляет 18--24 ч. При использовании рассола температурой -4єС охлаждение субпродуктов сокращается до 10--12 ч; в этом случае субпродукты помещают в металлические формы с крышками.

Птицу охлаждают в аппаратах туннельного типа с поперечным движением воздуха, на многоярусных тележках. При температуре воздуха --8°С и скорости движения 2--3 м/с кур охлаждают до температуры 2--3 °С в течение 4--5 ч, гусей и индеек -- 6--8 ч. Птицу можно охлаждать, погружая ее в льдоводяную смесь. Тушки, снятые с конвейера, попадают в ванну, заполняя равномерно каждую зону, образующуюся между двумя соседними решетками конвейера. Продолжительность хранения охлажденного мяса зависит от температуры, относительной влажности и циркуляции воздуха в камере, так и от начальной бактериальной обсемененности поверхности мяса.

Температура в камере должна быть 0-1°С, относительная влажность воздуха -- 85--90 %, скорость его движения -- 0,1--0,2 м/с.

Туши в камерах холодильного хранения должны быть подвешены так, чтобы они не соприкасались между собой и омывались потоком холодного воздуха. На 1 м площади охлаждающей камеры должно находиться не более 200кг мяса в тушах или полутушах.

Мясо, охлажденное медленным способом, может храниться 15--20 сут при 0-1°С и относительной влажности воздуха 85--90 %, а охлажденное быстрым способом -- до 4 нед при температуре -1°С и относительной влажности воздуха 90--95 %.

Допускается холодильное хранение говядины в корабельных трюмах при температуре воздуха 0…-2єС, содержании СО 10--11% и относительной влажности воздуха 91% в течение 45 сут. Потери массы при этом в среднем 0,14% в сутки.

Подмораживание -- один из способов увеличения сроков хранения мяса. Рекомендуется подмораживать мясо, предназначенное для транспортирования на небольшие расстояния. При подмораживании уменьшается усушка и улучшаются санитарно-гигиенические условия транспортирования. Подмороженное мясо можно хранить и транспортировать в подвешенном состоянии или штабелях при температуре -2…3°С в течение 15--20 сут. Подмораживают в основном парное мясо. Режимы подмораживания мяса различных видов различаются только по продолжительности. Так, при температуре воздуха -30…35°С и скорости его движения 1--2 м/с длительность подмораживания говядины 6--8 ч, свинины 6--10 ч [8].

Замораживание - один из методов низкотемпературного консервирования мяса и мясопродуктов. Способ, условия и технические свойства замораживания определяют, исходя из вида, состава, свойств, формы и размеров продукта. В зависимости от состояния мяса применяют одно- или двухфазное замораживание. Парное мясо, поступающее непосредственно после первичной переработки, замораживают однофазным способом. Преимущества однофазного замораживания -- сокращение продолжительности процесса, уменьшение потерь массы, более высокое качество мяса, сокращение затрат труда и. транспортирования, эффективное использование производственных площадей. В последние годы широкое распространение получило замораживание мяса и субпродуктов в блоках, которые формуют после обвалки мяса.

Мясо и мясопродукты замораживают в воздухе, в растворах солей или некоторых органических соединений, в кипящих хладагентах, при контакте с охлаждаемыми металлическими пластинами. Самый старый способ охлаждения -- с помощью тающего или сухого льда. В холодильных устройствах для замораживания продуктов наиболее часто используют теплоту испарения, необходимую для перехода из жидкого состояния в пар. Если давление над поверхностью жидкости уменьшается, то она начинает испаряться или закипать, а ее температура стремится сравняться с температурой, соответствующей давлению пара. Необходимая для испарения теплота отбирается у жидкости и сосуда, в котором она находится, или от окружающей среды. Если пониженное давление над паром будет поддерживаться постоянно, а потеря испаряющейся жидкости -- все время возмещаться, то жидкость будет кипеть и непрерывно отбирать теплоту. При этом реализуется так называемый замкнутый холодильный цикл. Часть хладагента непосредственно соприкасается с продуктами. Однако еще чаще хладагент соприкасается не непосредственно с продуктами, а с одной промежуточной средой (твердой, жидкой или газообразной) или с несколькими средами. По этому признаку способы замораживания делят на две группы: основанные на непосредственном соприкосновении продукта с испаряющимся хладагентом и основанные на косвенном контакте хладагента и продукта через промежуточную твердую, жидкую, газообразную среду или их комбинацию [7].

Замораживание продуктов в воздухе. Воздух -- наиболее распространенная и промежуточная среда для отвода теплоты от продукта при замораживании. При замораживании воздухом скорость замерзания зависит от размера продукта, температуры воздуха и скорости его циркуляции. Интенсифицировать процесс замораживания можно путем понижения температуры, повышения скорости движения воздуха и уменьшения толщины продукта.

Экспериментальные исследования показали, что снижать температуру воздуха в туннельных установках ниже --35°С и увеличивать скорость движения воздуха выше б--8 м/с неэкономично и нецелесообразно с точки зрения повышения скорости замораживания. Продолжительность одно- и двухфазного замораживания говяжьих и свиных полутуш, а также бараньих туш приведена в таблице 3.

Потери массы при однофазном замораживании в зависимости от категории упитанности 1,58--2, %, при двухфазном замораживании они увеличиваются на 30--40%. Органолептические показатели мяса, замороженного в парном состоянии, выше, чем замороженного после охлаждения.

Тушки птицы замораживают в воздухе при тех же, режимах, что и мясо животных; продолжительность процесса в зависимости от вида птицы, упитанности тушек и режимов замораживания 24--27 ч.

Замораживание в жидких кипящих средах. Основное требование при реализации этого способа замораживания -- полная индифферентность хладагента и отсутствие каких бы то ни было реакций между ним и компонентами замораживаемых продуктов. В качестве хладагентов используют сжиженные азот, диоксид углерода и фреон. С помощью данного способа осуществляют охлаждение тушек птицы и упакованных кусков мяса. Сжатый газ после компрессора холодильной установки подается в конденсатор, а из него в жидком виде через специальный регулировочный клапан поступает в морозильную камеру, где орошает продукт. В последние годы получает распространение замораживание продуктов жидким фреоном, имеющим температуру --30єС.

Данный способ отличается быстротой замораживания продукта, простотой регулирования продолжительности замораживания, возможностью включить установку в линию обработки с нормальной температурой рабочего помещения и отсутствием потерь при замораживании. К его недостатку можно отнести низкую экономичность процесса.

Разрабатывается способ замораживания продуктов с помощью жидкого азота, причем в настоящее время находит применение замораживание продукта путем опрыскивания азотом (рис.3). Продукты укладывают на ленту конвейера и сначала охлаждают холодным газообразным азотом, а затем опрыскивают жидким азотом. Продукты, имеющие начальную температуру 20--21 °С, замораживаются до --18 °С в течение 1--5 мин в зависимости от размеров. На замораживание 1 кг продуктов расходуется 1 --1,5 кг жидкого азота. Продукт, замороженный: в жидком азоте, имеет высокие качества, во время размораживания из него меньше вытекает мясного сока. Однако жидкий азот дорого стоит.

Замораживание в жидких некипящих средах. В качестве жидких охлаждающих сред используют водные растворы хлорида натрия или кальция определенной концентрации, а также смесь воды с пропиленгликолем при температуре не выше --20єС. Для предохранения от воздействия растворов продукт герметично упаковывают в полимерные материалы, плотно прилетающие к поверхности. После замораживания растворы удаляют водой. Средняя продолжительность замораживания тушек птицы в растворе хлорида кальция при -26…30єС составляет 20--30 мин. Быстрый теплоотвод позволяет получить высокое качество продукта [8].

Замораживание между металлическими плитами. Контактное взаимодействие продукта с низкотемпературной поверхностью обеспечивает сокращение процесса по сравнению с процессом замораживания в воздухе в 1,5--2,0 раза. Наиболее распространено замораживание мясных блоков между металлическими пластинами. Сформированные блоки направляют в плиточный морозильный: аппарат. Продолжительность замораживания блока бескостного мяса массой 25 кг при --35єС до температуры в толще --8°С составляет 4--5 ч. Этот способ позволяет при быстром замораживании лучше сохранить исходные качества продукта и снизить потери массы.

Для замораживания мяса в блоках и птицы используют различные упаковочные материалы, в частности синтетические полимерные пленки с низкой газо- и паропроницаемостыо, устойчивые к действию хладагента и компонентов пищевых продуктов (воды а жира), обладающие необходимой механической прочностью в широком диапазоне температур. Для упаковывания продукта сложной формы применяют усадочные пленки, обеспечивающие плотное облегание продукта.

При замораживании вторых блюд используют алюминиевую фольгу в комбинации с полимерными материалами, из которой делают емкости различной формы. В настоящее время широко применяют картонные подложки, покрытые пластическим материалом, устойчивые к воздействию высоких и низких температур.

Мясо и мясопродукты хранят при --18 °С и относительной влажности воздуха 92--98 %. Продолжительность хранения мяса зависит от его вида, температуры и наличия упаковки.

Замороженное мясо, сортированное по видам и упитанности, хранят в плотносформированных штабелях на напольных решетках или в стоячных поддонах, которые устанавливают в 2--4 яруса с помощью электропогрузчика. Загрузка 1м грузового объема камеры замороженным мясом для говядины в четвертинах 400 кг, в полутушах -- 300, для свинины в полутушах -- 450, для баранины -- 300 кг. Потери массы (усушка) при хранении мороженого мяса зависят от упитанности сырья, этажности и емкости холодильников, географической зоны и времени года; они составляют 0,05--0,3% за один месяц. Для снижения потерь мясо упаковывают в полиэтиленовые и другие материалы. В этом случае усушка сокращается в 5--8 раз. При температуре ниже --18єС продолжительность хранения всех видов мяса увеличивается до 18--24 мес.

Замороженное мясо хранят в камерах, оборудованных, как правило, батареями непосредственного испарения аммиака. При продолжительном хранении вследствие высыхания поверхности мяса мышечная ткань вдавливается и консистенция мяса уплотняется.

Мясо и мясопродукты замораживают в помещениях камерного и туннельного типа, а также в морозильных аппаратах. Камеры оборудованы пристенными или потолочными батареями, в которых циркулирует хладагент. Серьезными недостатками камер являются большая продолжительность процесса, неравномерность замораживания и высокая усушка мяса. Интенсифицировать процесс можно в туннелях быстрого замораживания, где батареи охлаждения размещены между рядами подвесных путей. Скорость замораживания регулируется за счет принудительной циркуляции воздуха.

В НПО «Агрохолодпром» разработаны универсальные морозильные камеры для сверхбыстрого охлаждения или быстрого замораживаний парного мяса, в которых можно регулировать температуру от --10 до --35 °С. Между колоннами здания устроены четыре туннеля, вдоль каждого туннеля установлены пристенные батареи непосредственного испарения аммиака. Температура в туннеле --35єС, скорость движения воздуха до 3 м/с; продолжительность замораживания мясных полутуш 14--16 ч.

В камерах туннельного типа можно реализовать непрерывный технологический процесс, осуществить его автоматизацию и программирование. Использование туннелей для замораживания свиных и говяжьих полутуш, а также бараньих туш позволяет уменьшить усушку мяса на 40--50%.

Блочное мясо, субпродукты, полуфабрикаты, готовые блюда, эндокринно-ферментное сырье можно замораживать в морозильных аппаратах. Продукты помещают на ленточный транспортер (рис. 4) тележки или на этажерки, движущиеся по рельсу. На установке быстрого замораживания можно замораживать пельмени, кнели, котлеты и другие полуфабрикаты.

В морозильном аппарате для замораживания штучных изделий ленточно-спирального типа (рис. 5) вокруг вращающегося цилиндра смонтирована спираль, по которой перемещается ленточный конвейер. Продукт с помощью загрузочного устройства попадает на ленту и перемещается по спирали вверх к разгрузочному устройству. Поток холодного воздуха направлен сверху вниз, перпендикулярно к ленте, т. е. движется противоточно по отношению к продукту, что обеспечивает повышение скорости замораживания и уменьшение усушки. Аппарат оборудован автоматическим устройством для мойки и сушки ленты.

Наряду с воздушными морозильными аппаратами используют плиточные аппараты, в которых замораживают мясо в блоках, субпродукты, фарши и эндокринно-ферментное сырье. Замороженные в этих аппаратах продукты имеют правильную форму, что облегчает их упаковывание и дает возможность эффективно использовать объем камер хранения. В плиточных аппаратах продукт размещают между подвижными морозильными плитами. В результате перемещения плит происходит подпрессовывание продукта, что обеспечивает хороший контакт с охлаждаемой поверхностью и способствует интенсификации теплообмена.

Горизонтально-плиточные аппараты в большинстве случаев являются устройствами периодического действия: загрузка и выгрузка продукта может быть ручная или механизированная [3].

К вертикально-плиточным относятся мембранные морозильные аппараты, в которых происходит формирование и замораживание блоков. Они представляют собой прямоугольную емкость с подвижным дном, в которой установлены вертикальные морозильные плиты, состоящие из двух стальных мембран. Аппарат загружают с помощью питателя, из которого мясо в упаковке поступает в формы. После загрузки в пространство между мембранами подается хладоноситель, под давлением которого стальные пластины раздвигаются и плотно прижимаются к продукту. После окончания замораживания хладоноситель отключается, и за счет разности давлений стальные мембраны отходят от блоков. Замороженные блоки после открывания подвижного дна выгружаются из аппарата на ленточный конвейер и направляются в камеры хранения. В модернизированных аппаратах мембранные камеры заменены на цельнометаллические перемещающиеся морозильные плиты [8].

Рядом преимуществ обладают роторные морозильные аппараты пульсирующего действия с заданным циклом. Температура замораживания в них -30…49єС. Ротор состоит из радиально расположенных секций, укрепленных на пустотелом валу, через который хладагент поступает в морозильные плиты. Загрузка и выгрузка продуктов механизированы. В этих аппаратах замораживают упакованные жилованное мясо, субпродукты. В роторных морозильных аппаратах сокращена продолжительность замораживания в 1,5--2 раза по сравнению с воздушными морозильными аппаратами, обеспечиваются непрерывность процесса, механизация загрузки и выгрузки, возможность автоматического регу-лирования режима работы, хорошие санитарно-гигиенические условия.


Подобные документы

  • Назначение и классификация оборудования для охлаждения и замораживания. Камера холодильной обработки мяса с системой увлажнения воздуха. Расчет теплоизоляции пола камеры замораживания. Монтаж и испытание холодильного оборудования и трубопровода.

    курсовая работа [5,5 M], добавлен 03.01.2010

  • Обработка холодом, хранение мяса и мясопродуктов при низких температурах. Способы замораживания мясных туш убойных животных. Сроки хранения продуктов. Разработка и внедрение новых технологий повышающих ефективность холодильников и сокращающих усушку мяса.

    контрольная работа [20,4 K], добавлен 26.02.2009

  • Характеристика предприятия ОАО "Гомельский мясокомбинат". Подготовка холодильника и его оборудования к холодильной обработке и хранению мяса и мясопродуктов. Сырьевое и машинно-шприцовочное отделение. Основные правила посола. Экспедиция и лаборатория.

    отчет по практике [87,4 K], добавлен 27.10.2012

  • Расчет теплопритоков в охлаждаемое помещение и необходимой производительности судовой холодильной установки. Построение рабочего цикла холодильной машины, ее тепловой расчет и подбор компрессора. Последовательность настройки приборов автоматики.

    курсовая работа [1,4 M], добавлен 25.12.2014

  • Использование в холодильной технике летучих жидкостей. Наиболее употребительные хладагенты. Простой паровой цикл механической холодильной машины. Единицы измерения холода. Термоэлектрическое охлаждение. Схема компрессионной холодильной установки.

    реферат [705,8 K], добавлен 01.02.2012

  • Расчет холодильной установки, камер охлаждения и хранения мяса, камер хранения жиров и субпродуктов в замороженном виде, их изоляции. Выбор температурных режимов работы холодильной установки, определение потребной холодопроизводительности компрессоров.

    дипломная работа [1,2 M], добавлен 05.11.2013

  • Проект парокомпрессорной холодильной установки для склада готовой продукции мясокомбината. Описание конструктивных особенностей холодильной установки, назначение основных узлов и деталей. Расчет цикла паровой компрессионной холодильной установки.

    курсовая работа [271,2 K], добавлен 09.08.2012

  • Тепловая нагрузка при термообработке продуктов. Расчет толщины слоя теплоизоляции. Выбор холодильной машины и испарителей. Расчет эксплуатационных теплопритоков. Подбор и распределение воздухоохладителей. Выбор расчетного режима и холодильной машины.

    контрольная работа [1,4 M], добавлен 19.04.2013

  • Характеристика системы холодоснабжения. Функции и задачи автоматики. Разработка структурной и принципиальной схем автоматизации холодильной установки. Устройство и принцип работы электромагнитного (соленоидного) клапана, его монтаж и правила эксплуатации.

    курсовая работа [1,1 M], добавлен 05.10.2013

  • Обзор развития холодильной техники. Условия хранения пищевых продуктов. Расчет строительных площадей камер хранения. Разработка планировки камер. Особенности подбора и расчета тепловой изоляции. Описание схемы холодильной установки, подбор оборудования.

    курсовая работа [314,7 K], добавлен 17.04.2012

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.