Установка колтюбинговая для бурения боковых стволов. Винтовой забойный двигатель Д1-195

Назначение и краткая характеристика колтюбинговой установки для бурения боковых стволов. Монтаж винтовых забойных двигателей. Проверочный расчет вала шпиндельной секции. Правила эксплуатации двигателей. Расчет геометрических и энергетических параметров.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 18.07.2012
Размер файла 2,5 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Размещено на http://www.allbest.ru/

Установка колтюбинговая для бурения боковых стволов. Винтовой забойный двигатель Д1-195

Содержание

колтюбинговый установка бурение двигатель

Введение

1. Назначение, краткая характеристика колтюбинговой установки для бурения боковых стволов.

2. Анализ условий и режима эксплуатации ВЗД Д1-195

3. Анализ отказов и других технических проблем, выявленных в процессе эксплуатации (обслуживание, ремонте) ВЗД Д1-195

4. Монтаж (сборка-разборка, регулировка) ВЗД Д1-195

4.1 Монтаж винтовых забойных двигателей

4.2 Правила эксплуатации двигателей

5. Анализ ремонтопригодности ВЗД Д1-195

6. Проверочные расчёты

6.1 Расчёт геометрических и энергетических параметров двигателя

6.2 Расчёт витков резьбы РКТ - 177 на прочность

6.3 Проверочный расчёт вала шпиндельной секции

6.4 Потери в двигателе Д1 - 195

6.5 Расчёт параметров надёжности

7. Мероприятия по повышению надежности и износостойкости (снижению эксплуатационных затрат) ВЗД Д1-195

8. Технология ремонта (восстановления) рабочих элементов (вала, корпуса) ВЗД Д1-195

Список литературы

Введение

История возникновения данной техники и технологий традиционна для нашей страны. Первым опытом применения непрерывной гибкой металлической трубы для подземного ремонта и добычи пластовой жидкости можно считать использование установки погружного электроцентробежного насоса, разработанной под руководством Н.В. Богданова. Ее отличительной особенностью был спуск и эксплуатация погружного агрегата на колонне гибких стальных труб. Кабель питания погружного двигателя при этом располагался внутри колонны. Это предложение и было основным в идее автора проекта, поскольку исключало контакт кабеля со стенками эксплуатационной скважины при спускоподъемных операциях и эксплуатации. В результате надежность кабеля многократно увеличивалась по сравнению с традиционными схемами. Помимо этого, выполнение подземного ремонта сводилось к наматыванию трубы на барабан без свинчивания и развинчивания резьбовых соединений колонны. Установка была изготовлена и пущена в эксплуатацию, но последующая ее история нам не известна.

Данное техническое решение имеет много положительных сторон, но в контексте рассматриваемого вопроса важно одно - колонна непрерывных металлических труб использовалась для операций подземного ремонта скважин (ПРС). К сожалению, это направление создания нефтепромыслового оборудования не получило дальнейшего развития прежде всего из-за отсутствия на тот момент надежных и дешевых гибких труб.

Приоритет в области конструирования, изготовления и промышленной эксплуатации установок с колонной гибких труб (КГТ) принадлежит фирмам США и Канады.

В 1980-х годах в США была разработана технология подземного ремонта скважин без их глушения, поскольку последнее весьма негативно сказывается на их дебите. Она основана на применении вместо обычных насосно-компрессорных труб с резьбовыми муфтовыми соединениями длинной (миной до 5000 м), гладкой, гибкой, непрерывной стальной трубы диаметром 30 -- 40 мм, наматываемой на барабан. Эта труба подается в скважину и извлекается из нее с помощью инжектора с гидроприводом, выполняющего роль талевой системы и лебедки обычной канатной подъемной установки. Устье скважины герметизируется лубрикатором, допускающим избыточное давление в скважине до 70 МПа. Инжектор удерживает гладкую непрерывную трубу (ГНТ) за счет трения с помощью захватов, плотно обхватывающих ее с двух сторон. Подъем и опускание ГНТ происходит непрерывно с помощью гидромониторов со скоростью до 1,2 м/с. Извлеченная из скважины ГНТ сгибается и равномерно наматывается на барабан.

Эти установки, называемые колтюбинговыми, буквально совершили техническую революцию в капитальном ремонте скважин. При сохранении дебитов скважин они позволили в 3-4 раза повысить производительность труда ремонтных бригад в 2 -- 3 раза снизить затраты на ремонт скважин.

В настоящее время в мире эксплуатируется более 600 установок, причем их число все время возрастает. В нашей стране их количество не превышает 30. И одной из основных целей, преследуемых, является показать преимущество данных установок для дальнейшего расширения их использования.

Основной особенностью описываемого оборудования является работа гибкой трубы при наличии пластических деформаций, что требует создания труб с принципиально иными свойствами, чем изготавливаются в настоящее время. Достаточно интенсивные работы в этом направлении наши специалисты ведут под эгидой ООО "ЛУКОЙЛ-Западная Сибирь" НК "ЛУКОЙЛ".

1 Назначение, КРАТКАЯ ХАРАКТЕРИСТИКА КОЛТЮБИНГОВОЙ УСТАНОВКИ ДЛЯ БУРЕНИЯ БОКОВЫХ СТВОЛОВ

В 1995 г. на основе колтюбинговых установок фирмы "Canadian Francmaster Ltd." была создана комбинированная установка для бурения и заканчивания скважин со спуском эксплуатационной колонны (рисунок 1). Она содержит полный комплект оборудования (2--6) для работы в скважине на ГНТ 1, диаметром 60,3--114 мм и длиной 1400 -- 4500 м, а также вышку 7 высотой 24,5 м с талевой системой и лебедкой 8 для спуска обсадных и лифтовых насосно-компрессорных труб длиной до 13 м, сборки бурильной компоновки. Вся подъемная установка размещена на трейлере 9. Надежная герметизация устья скважины лубрикатором 5 и наличие комплекта противовыбросового оборудования 6 с максимальным рабочим давлением 35 МПа позволяют безопасно вскрывать продуктивные пласты на депрессии.

Рисунок 1 - Комбинированная установка для бурения и заканчивания скважины:

1 -- гибкая непрерывная труба; 2 -- барабан; 3 -- направляющий желоб; 4 -- инжектор; 5 -- лубрикатор; 6 -- противовыбросовое оборудование; 7 -- вышка; 8 -- лебедка; 9 -- трейлер

Эти установки широко применяются и США и Канаде, а в последние годы и в России для вскрытия продуктивных пластов горизонтальным стволом (одним или несколькими) на депрессии. При бурении с использованием традиционных технологий и колтюбинга существенные отличия имеет компоновка низа бурильной колонны.

Первое отличие - в способе вращения долота. Из-за своей конструктивных особенностей колтюбинговая установка не имеет возможности вращать буровую колонну. Для вращения долота при бурении колтюбингом используют винтовой забойный двигатель.

Второе отличие - способ ориентации долота. При горизонтальном бурении и обычные и колтюбинговые установки используют винтовой забойный двигатель с регулируемым искривленным переводником для измерения траектории бурения. При изменении направления скважины искривленный переводник и долото ориентируются в желаемом направлении. Для ориентации переводника в состав КНБК включается ориентатор, который поворачивает КНБК и долото на необходимый угол.

Применяемая при этом компоновка низа бурильной колонны приведена на рисунке 2.

Направление действия и угол искривления кривого переводника регулируются с поверхности в процессе бурения с помощью гидравлического привода. В приборном модуле расположены инклинометр, каротажные приборы и датчики давления в скважине. Поверхностные приборы и органы управления связаны с забойными датчиками и исполнительными механизмами электрическим кабелем и гидравлическими трубками, расположенными внутри ГНТ.

Рисунок 2 - Компоновка низа бурильной колонны для бурения с применением гибкой непрерывной трубы:

1 -- гидравлические трубки; 2 -- электрический кабель; 3 -- соединительная муфта для гибкой непрерывной трубы; 4 -- направляющий инструмент; 5 -- предохранительный разъединитель; 6, 7 -- немагнитные переводники; 8 -- измерительный прибор с источником гамма-излучения; 9 -- немагнитные УБТ; 10 -- немагнитный двойной переводник с обратным клапаном; 11 -- винтовой забойный двигатель с регулируемым кривым переводником; 12 -- долото.

Промывка скважины производится смесью дизельного топлива и азота. Это позволяет плавно регулировать депрессию на пласт, а также исключает образование взрывоопасной смеси с углеводородными газами, поступающими из нефтегазонасыщенных пластов. Азот хранится в жидком виде в изотермической емкости и в жидком же виде подается насосом в циркуляционную систему установки. Выходящая из скважины смесь дизельного топлива, азота, шлама и пластового флюида направляется в сепаратор, где она разделяется: шлам оседает в сепараторе, дизельное топливо с пластовой жидкостью возвращается в циркуляционную систему, а смесь азота с углеводородными газами направляется на факел. В Канаде на ГНТ диаметром 75 мм с помощью описанной установки на глубине 1742 м был пробурен горизонтальный ствол длиной 758 м диаметром 120,7 мм со скоростью 12--15 м/ч в конце бурения.

В целом, бурение на ГНТ с депрессией на пласт чрезвычайно перспективно, поскольку оно обладает следующими достоинствами:

1. Предупреждается загрязнение продуктивного пласта в процессе его первичного вскрытия.

2. Исключаются такие часто встречающиеся осложнения процесса бурения, как поглощения и прихваты.

3. Увеличивается в 2 -- 3 раза механическая скорость бурения и проходка на долото.

4. Обеспечивается высокая точность проводки ствола скважины по проектной траектории.

5. По мере вскрытия пластов сразу можно получить ин формацию об их литологии, насыщенности, продуктивности.

Безмуфтовая гибкая труба может использоваться для бурения новых скважин и повторного вскрытия пласта, но наибольшую техническую и экономическую эффективность технология имеет при бурении вторичных наклонных или горизонтальных стволов из существующих скважин. Целесообразность применения колтюбинга для этих операций объясняется высокой эффективностью и безопасностью проведения операций.

Сегодня основными производителями и поставщиками оборудования и услуг по бурению скважин гибкими трубами являются такие фирмы, как Hydra Rig, Stewart and Stevenson, Baker Huges, Shlumberger, Halliburton, Arco и др.

В странах СНГ аналогичную технику производит группа российских и белорусских предприятий под руководством Белорусского Фонда развития и поддержки изобретательства и рационализации (ФИД).

Бурное развитие техники и технологии с использованием колонны гибких труб обусловлено следующими их преимуществами:

* при исследовании скважин:

обеспечение возможности доставки приборов в любую точку горизонтальной скважины;

высокая надежность линии связи со спускаемыми приборами;

* при выполнении подземных ремонтов:

отсутствует необходимость в глушении скважины и, как одно из следствий, не ухудшаются коллекторские свойства призабойной зоны продуктивного пласта;

сокращается время проведения спускоподъемных операций за счет исключения свинчивания (развинчивания) резьбовых соединений колонны труб;

уменьшается период подготовительных и заключительных операций при развертывании и свертывании агрегата;

исключается загрязнение окружающей среды технологической и пластовой жидкостями;

* при проведении буровых работ:

- исключается возникновение ситуаций, связанных с внезапными выбросами, открытым фонтанированием;

- обеспечивается возможность бурения с использованием в качестве бурового раствора нефти или продуктов ее переработки. Это позволяет осуществлять вскрытие продуктивно го пласта оптимальным образом и совмещать процесс бурения с отбором пластовой жидкости;

становится возможным выполнять разрушение породы в условиях депрессии;

обеспечивается эффективное бурение горизонтальных участков скважин;

становится возможным применять устройства, информирующие бурильщика о режимах бурения и оперативного управления процессом проводки скважины. При работе с подобным оборудованием реализуется "эффект присутствия" оператора установки на забое скважины.

Весьма важным при проведении любых работ в скважине является решение социальной задачи - исключается значительный объем операций, выполняемых под открытым небом в любое время года при любой погоде.

Хотя наиболее трудоемкие операции по свинчиванию и развинчиванию труб в настоящее время механизированы, объем ручного труда остается значительным. К ним относятся управление ключом, выброс труб на мостки и т.д.

В ряде случаев это касается, прежде всего, работ в горизонтальных скважинах, применение КГТ является необходимым условием проведения операций. К таким случаям относится выполнение любых работ в горизонтальных участках большой длины. При разбуривании и эксплуатации морских месторождений использование КГТ особенно эффективно.

Следует отметить и недостатки, присущие рассматриваемой технике. К ним, в частности, относятся:

самопроизвольное и неконтролируемое скручивание КГТ;

невозможность принудительного проворота КГТ;

ограниченная длина труб, намотанных на барабан;

сложность ремонта КГТ в промысловых условиях.

В нашей стране до сих пор не сформировалась и не устоялась терминология этой новой области нефтепромысловой техники и технологии. Основным применяемым термином у нас для обозначения этого направления является русифицированная транскрипция "coiled tubing" - колтюбинг, что означает трубу, наматываемую на катушку. Это происходит по простой и традиционной для нас причине - новое оборудование поступает в основном из США и Канады. При этом автоматически переносятся и импортные названия технологий, узлов и деталей.

Буровые работы с использованием колонны гибких труб

Особенности проведения буровых работ

Колонны гибких труб при бурении применяют для:

бурения новых неглубоких скважин до 1800 м с диаметром ствола до 216 мм;

забуривания второго или нескольких стволов, которые могут быть вертикальными.

Однако наибольший эффект достигается при бурении наклонно-направленных и горизонтальных отводов от основного ствола. Колонна гибких труб обеспечивает набор кривизны до 10°/10 м. Проходимость с помощью КГТ горизонтальных участков в 1993 - 1995 гг. превышала 300 м при диаметре колонны 50,8 мм, а к настоящему времени она увеличена до 500 - 600 м при диаметрах 60,3 и 73 мм и в перспективе будет доведена до 1000 м;

повторного вскрытия пластов при углублении скважины;

бурения части ствола скважины с обеспечением режима депрессии на забое.

Все указанные операции можно выполнять без глушения скважины, через ствол которой ведутся работы, даже в режиме депрессии на забое. Достигается это при минимальном ухудшении коллекторских свойств продуктивного пласта. Причем вскрытие последнего и бурение в нем скважины совместимы с процессом добычи. Это позволяет исключать проведение каких-либо работ по вызову притока и освоение скважины. Отсутствие необходимости в выполнении этих операций повышает эффективность работ не только в инженерном, но и в экономическом плане.

В процессе бурения пластов с высокой проницаемостью и низким пластовым давлением уменьшается количество случаев поглощения промывочной жидкости, потерь циркуляции и проявления других особенностей, поскольку

процесс бурения с использованием КГТ ведется при минимально возможном давлении.

Промышленное применение гибких труб в бурении началось в 90-е годы. Если в 1991 г. в США было пробурено всего 3 скважины, то к 1994 - уже 150, а к настоящему времени их общее число приблизилось к 200. В Канаде за этот же период было пробурено 39 скважин.

Буровое оборудование, использующее КГТ, достаточно компактно, буровая вышка в большинстве случаев отсутствует. По существу, агрегаты, входящие в комплекс оборудования для бурения, представляют собой масштабно увеличенные агрегаты, применяемые для подземного ремонта. Кроме того, в комплекс входят передвижные установки, обеспечивающие подготовку и очистку бурового раствора. В качестве промывочной можно использовать жидкость на углеводородной основе, в простейшем случае отфильтрованную и отсепарированную нефть. В связи с этим снижаются расходы на приготовление и очистку бурового раствора. Кроме того, отпадают проблемы, связанные с утилизацией отработанного раствора. Для размещения комплекса достаточно иметь площадь в 800 м2, вместо 1500 м2 для малогабаритных буровых установок традиционной конструкции.

Помимо этого, при применении КГТ экономится время засчет ускорения процесса спуска и подъема колонны для смены долота.

Аварийные ситуации при наращивании труб во время проходки скважины не возникают, поскольку эти операции отсутствуют. Снижению опасности проведения всех буровых работ способствует непрерывный контроль за процессом бурения, как на поверхности, так и непосредственно на забое с помощью специального оборудования.

Так же как и при проведении подземного ремонта скважин, применение КГТ сокращает случаи травматизма и обеспечивает выполнение жестких требований по охране окружающей среды.

Для специализированных буровых работ используют гибкие трубы с наружным диаметром не менее 60,3 мм. Хотя достаточно широко применяют и трубы с наружным диаметром 38,1» 44,5, 50,8 мм. Оптимальными диаметрами труб являются 89 и 114 мм.

Вращение породоразрушающего инструмента обеспечивается забойным двигателем, который установлен на гибкой трубе и имеет свои особенности, обусловленные малой жесткостью КГТ при работе на кручение, изгиб и сжатие. Кроме того, при использовании колонны гибких труб отсутствует возможность применения утяжеленных бурильных труб. Это накладывает ограничения и на выбор оборудования, и на режимы бурения из-за:

* малой нагрузки на породоразрушающий инструмент;

* незначительного крутящего момента, который должен развивать двигатель;

* высоких оборотов двигателя, так как в противном случае мощность, подводимая к породоразрушающему инструменту, будет низкой.

Сказанное выше указывает на недостатки при использовании КГТ в бурении. К ним относятся более низкая скорость проводки, необходимость уменьшения диаметров скважин, незначительные сроки службы и долот, и забойных двигателей малого диаметра. Однако эти отрицательные моменты при проведении дополнительных работ можно либо полностью, либо в достаточной степени устранить.

Важно иметь в виду, что экономический эффект от использования КГТ в бурении весьма высок. Например, стоимость бурения одной горизонтальной скважины на Аляске при бурении обычными установками составляет 2200 тыс. дол., а при использовании в аналогичных условиях установки с КГТ - 500 тыс. дол.

Перечисленные ограничения обусловливают и выбор режимов работы, например, использование забойного двигателя большой мощности, может привести к скручиванию колонны гибких труб, при этом ее угловые деформации могут достигать 6-7 полных оборотов нижнего сечения относительно верхнего на каждые 1000 м длины. При уменьшении нагрузки на долото, например, при подъеме труб, бывают случаи самопроизвольного раскручивания колонны в противоположную сторону, что вызывает самоотворот резьбового соединения забойного двигателя.

В зависимости от применяемого диаметра КГТ и класса буровой установки забойное оборудование может быть достаточно простым и содержать соединительную муфту, стабилизатор, забойный двигатель и породоразрушающий инструмент. Подобный комплект инструментов используют при трубах диаметром 33 - 55 мм. При применении труб с диаметром 60,3 мм и выше в компоновку входят соединительная муфта, обеспечивающая переход от КГТ к забойной установке, направляющий инструмент (в виде одной трубы с увеличенной толщиной стенки), предохранительный разъединитель, немагнитный переводник, измерительный прибор с источником гамма-излучения, немагнитная утяжеленная бурильная труба (УБТ), буровой забойный двигатель объемного типа с регулируемым отклонителем и долото.

При работе с КГТ обязательным элементом внутрискважинной компоновки является стабилизатор. Он воспринимает часть радиальных усилий, возникающих в процессе работы, позволяет уменьшать амплитуду колебаний и в итоге снижает величины циклических напряжений, действующих на участке гибкой трубы, расположенной непосредственно над двигателем.

Для исключения аварийного усталостного разрушения трубы периодически следует отрезать ее участок в нижней части, так как здесь материал устает в наибольшей степени.

Оборудование, применяемое при бурении

Буровые установки

В настоящее время применяют два типа буровых установок - снабженные вышкой и без нее.

Буровая установка фирмы "Canadian Francmaster Ltd." состоит из четырех блоков - пульта управления, расположенного на отдельной транспортной базе,

блока с барабаном гибкой трубы, смонтированного на трейлере, блока, включающего основание, транспортер и П-образную мачту, блока мостков, размещенных на отдельном трейлере.

По существу буровая установка с использованием КГТ аналогична агрегату, предназначенному для работы с КГТ малых диаметров. Однако в данном случае увеличение массы комплектующего оборудования, габаритов, усилий, действующих в процессе функционирования установки, приводит к ее разрастанию. В результате весь комплект перевозят на четырех транспортных единицах, сюда не входят блок для приготовления бурового раствора, насосные агрегаты для последнего и закачки азота, а также емкость для его хранения.

Рассматриваемое оборудование имеет следующие конструктивные особенности.

Колонна гибких труб снабжена каротажным кабелем и двумя трубопроводами малого диаметра для подачи жидкости гидропривода к забойному оборудованию.

Последнее включает управляемый с поверхности отклонитель долота, обеспечивающий оперативный выбор направления бурения. Кроме того, в забойном оборудовании размещается блок ориентации, позволяющий определять фактическое направление бурения скважины и передавать соответствующую информацию на пульт управления. Оно содержит также комплект датчиков, регистрирующих и передающих в виде электрических сигналов на пульт управления информацию о величине забойного давления, результатах гамма-каротажа, расходе жидкости, текущей по внутренней полости КГТ и кольцевому пространству.

С помощью кабельной телеметрии осуществляется передача всех сведений в режиме реального времени на пульт управления.

Пульт управления оборудован комплексом обычных приборов, регистрирующих режим бурения, закачки жидкости и протекания всех других процессов, а также бортовой ЭВМ, в которую закладывают программу бурения.

При выполнении работ ведут непрерывный контроль за положением долота, направлением проводки скважины, физическими свойствами разбуриваемой породы, изменением расходов бурового раствора и жидкости, поступающей из пласта. Все эти данные отражаются на экране дисплея оператора. Режим работы бурового агрегата, в частности, направление бурения ствола скважины могут задаваться оперативно, например, с помощью "мыши" ЭВМ.

Все это создает эффект присутствия оператора в скважине и представления им места в разбуриваемом пространстве пласта. Постоянно поступающая информация о состоянии окружающей среды позволяет принимать достаточно быстро обоснованные решения по управлению процессом бурения. Создание подобного оборудования по важности решаемых проблем и уровню их решения превосходит некоторые космические программы, реализованные к настоящему времени.

Буровой агрегат подобной конструкции позволяет работать с КГТ диаметром 60,3 или 73 мм. Грузоподъемность мачты с талевой системой - 680 кН.

Использование подобной буровой предполагается после проводки вертикального участка скважины с использованием традиционных технологий. Его бурят на глубину, практически достигающую кровли пласта, без вскрытия последнего. Затем выполняют весь комплекс работ по обсаживанию, цементированию, оборудованию устья скважины колонной головкой. Диаметр эксплуатационной колонны составляет 144 -168 мм.

Для вскрытия пласта наклонными ответвлениями или горизонтально расположенными стволами на устье пробуренной скважины монтируют описываемый буровой агрегат. На трубной головке закрепляют блок превенторов, содержащий (снизу вверх) секцию с глухими срезающими плашками, секцию с фланцами для подвода жидкости глушения, секцию с трубными плашками, секцию с удерживающими плашками, универсальный превентор с эластичным уплотняющим элементом, лубрикатор и уплотнитель КГТ. Эта сборка имеет высоту порядка 6 м. На блоке превенторов монтируют транспортер, конструкция которого содержит два ряда цепей с плашками, захватывающими трубу. Над ней располагают отклонитель.

Помимо описанной буровой установки существуют более компактные, предназначенные для работы с меньшими диаметрами труб. Их характерной особенностью является отсутствие мачты. Все оборудование таких установок размещается на одной транспортной единице (кроме блока подготовки и обработки бурового раствора). Основным отличием этих установок от агрегатов, предназначенных для проведения подземного ремонта, является более высокая установка транспортера, обусловленная необходимостью наличия шлюза достаточно большой длины, обеспечивающего спуск в скважину инструментов, входящих в состав буровой головки. Это, в свою очередь, требует грузоподъемного устройства, удерживающего транспортер во время работы с большей высотой подъема.

Группой предприятий ФИД разработан ряд относительно недорогих колтюбинговых агрегатов для ремонта и бурения скважин с гибкими трубами диаметром от 19 до190 мм для работы в скважинах глубиной до 5000 метров. Начиная с 1999 года разработано 8 модификаций колтюбинговых агрегатов. Например, установка М40 (рисунок 3) с максимальным тяговым усилием инжектора 40 тонн, гибкой трубой диаметром 60,3 мм и длиной до 3500 м или диаметром 73 мм и длиной до 2200 м. В комплект установки входит устьевое сборное основание под инжектор с самоподъемной вышкой и комплект противовыбросового оборудования с шлюз-лубрикатором. Вышка и шлюз-лубрикатор предназначены для производства работ по спуску-подъёму компоновки низа бурильной колонны (КНБК) в скважину под давлением.

Рисунок 3 - Установка М40.

Породоразрушающий инструмент

Выбор долота при бурении с использованием гибких труб обусловлен режимом работы забойного двигателя - малая осевая нагрузка и большая частота вращения. В этом случае шарошечные долота малоэффективны и поэтому не применяются, тем более что срок их службы в подобном режиме работы чрезвычайно низок. Для разбуривания цемента и породы лучше всего подходят долота истирающего типа, армированные алмазами или вставками из карбида вольфрама. К основным характеристикам долота относятся его марка, диаметр, перепад давления на нем.

Забойный двигатель

Винтовой двигатель - это разновидность забойной гидравлической машины, в которой для преобразования энергии потока промывочной жидкости в механическую энергию вращательного движения использован винтовой механизм.

При выполнении буровых работ и удалении пробок применяют забойные двигатели двух типов - объемного и динамического действия. К первым относятся винтовые и аксиально-поршневые двигатели, ко вторым - турбобуры. Наиболее целесообразно использовать забойные двигатели объемного действия, а из них предпочтительнее винтовые, поскольку последние обладают более приемлемой характеристикой для условий работы с КГТ. Кроме того, для их привода необходим меньший расход технологической жидкости, что важно для обеспечения прочности колонны.

Опыт работы в различных районах страны показал, что винтовой двигатель может работать с использованием промывочных жидкостей любой плотности от аэрированных растворов плотностью меньше 1г/см 3 до утяжелённых плотностью более 2г/см 3 и вязкостью до 90 с по СПВ - 5.

Он проще по конструкции, имеет значительно меньшую длину и массу по сравнению с турбобуром. Небольшая длина двигателя очень выгодна для бурения наклонных и особенно горизонтальных скважин, поскольку можно до минимума снизить радиус искривления ствола и соответственно его длину.

При бурении ВЗД в твердых породах проходка на долото увеличивается более чем в 2 раза, а в мягких - на 20-30% по сравнению с турбобуром, механическая же скорость бурения в обоих случаях ниже на 20-50%.

Основной особенностью ВЗД по сравнению с турбобуром является то, что он обладает относительно жёсткой рабочей характеристикой. Как показали стендовые и промысловые испытания, при работе в области, близкой к области максимальной мощности, частота вращения двигателя снижается на 20-28% по сравнению с разгонной в режиме холостого хода.

Учитывая, что ВЗД используются при бурении нижних интервалов скважин, там где механическая и особенно рейсовая скорость бурения существенно ниже чем в верхних интервалах бурения, можно оценить затраты времени и средств на бурение при использовании ВЗД не менее, чем

50% от всех затрат на бурение скважины. Кроме того, наиболее сложные и дорогостоящие работы, такие как бурение участков наклонно-направленных и горизонтальных скважин с большой интенсивностью искривления, бурение горизонтальных участков скважины, проводятся только с применением ВЗД. При восстановлении скважин методом бурения дополнительных стволов также в основном используются ВЗД. В капитальном ремонте с применением двигателей выполняется свыше 90% всех операций, связанных с бурением.

К особенностям принципа действия следует отнести:

- отсутствие быстроизнашивающихся распределительных устройств, поскольку распределение жидкости по шлюзам рабочих органов осуществляется автоматически за счёт соотношения числа зубьев и шагов винтовых поверхностей ротора и статора;

- кинематику рабочих органов, в движении которых сочетается качение со скольжением при относительно невысоких скоростях последнего, что

снижает износ рабочей пары;

- непрерывное изменение положения контактной линии (геометрического места точек качения ротора и статора) в пространстве, в результате чего механические примеси, находящиеся в перекачиваемой жидкости, имеют возможность выноситься потоком из рабочих органов.

Характеристики наиболее типичных забойных двигателей приведены ниже в таблице 2.1.

Таблица 2.1 - Характеристики наиболее типичных забойных двигателей

Марка двигателя

Д-42

Д-48

Д1-54

ДГ-60

Д-85

Д1-195

Диаметр наружный, мм

42

48

54

60

85

195

Диаметр долот, мм

59

59-76

59-76

76-98,4

98,4-120,6

187,3-190,5

Расход рабочей жидкости, л/с

0,3-0,5

1,2-2,6

1-2,5

1-2

4,8

25-35

Перепад давления на

двигателе, МПа

2-4

4-5

4,5-5,5

4,5-5,5

5,5

4,0-5,0

Двигатель состоит из трёх основных узлов: секции двигательной, секции шпинделя и переливного клапана (рисунок 4).

Статор 1 имеет десять внутренних винтовых зубьев левого направления, выполненных на обкладке из эластомера, привулканизированной к расточке корпуса.

Ротор 2, на наружной поверхности которого нарезаны девять винтовых зубьев левого направления, выполняется из коррозионностойкой стали или конструкционной стали с хромированием зубьев.

Верхний конец полого ротора 2 закрыт пробкой и свободен, а к нижнему присоединено двухшарнирное соединение 3, преобразующее планетарное движение ротора в соосное вращение вала шпинделя.

Опора 6 предназначена для восприятия осевых нагрузок действующих на вал шпиндельной секции и на ротор двигателя. Осевая нагрузка на ротор двигателя сопоставима по величине с осевыми нагрузками на долото и может оказывать существенное влияние на работоспособность двухшарнирного соединения и на радиальные подшипники 7.

Рисунок 4 - Забойный винтовой двигатель в продольном и поперечном разрезах:

1-статор; 2-ротор; 3-двухшарнирное соединение; 4,5,11-верх-ний, средний и нижний переводники; 6-многорядная упорная шаровая опора; 7-радиальный подшипник; 8-вал шпинделя; 9-корпус шпинделя; 10-муфта соединительная; 12-ниппель; 13-распорное кольцо

Двухшарнирное соединение 3 (рисунок 5) разработано на базе двойной зубчатой муфты. Вращающий момент передаётся через боковые поверхности зубьев полумуфт и венца. Осевая нагрузка от ротора на вал передаётся через центральный шар, расположенный в сферических расточках полумуфт. Угловая подвижность шарнира обеспечивается радиальными и боковыми зазорами в эвольвентном зацеплении, а равномерность передачи момента через зубья шарнира улучшается выполнением зубьев полумуфт бочкообразными. Внутренняя полость шарнира заполнена консистентной смазкой и уплотнена массивными резиновыми кольцами, деформированными в осевом направлении затяжкой гаек для обеспечения радиального натяга по шейкам полумуфт. Для уменьшения угла перекоса шарниры разнесены по длине и соединены между собой с помощью промежуточной трубы по конусным поверхностям. В качестве радиальных опор применены резинометаллические подшипники 7, обладающие достаточной износостойкостью в среде промывочной жидкости.

4 5 3 6 7 2 1

Рисунок 5 - Двухшарнирное соединение забойного двигателя:

1-шарнир в сборе; 2-труба; 1-шарнир в сборе; 2-труба; 3-корпус шарнира; 4-полу муфта; 5-шар; 6-уплотнительное кольцо;7-гайка

В данном курсовом проекте будет рассматриваться ремонт элемента КНБК колтюбинговой установки - винтового забойного двигателя Д1-195.

Отличительными особенностями двигателя Д1-195 являются:

-изменённая геометрия рабочих органов, обеспечивающая высокую надёжность двигателя, в частности при запусках;

-увеличенный рабочий объём двигателя, позволяющий в 1,3-1,5 раза снизить частоту вращения выходного вала;

-выполнение ротора из коррозионно-стойкой стали с последующим полированием рабочей поверхности, что позволяет повысить долговечность рабочих органов;

-усовершенствованная система уплотнения внутренних полостей шарнирных соединений, способствующая значительному повышению

долговечности и надёжности этого ответственного узла;

-упрощённая конструкция упорного подшипника.

Перечисленные конструктивные отличия обеспечили повышение эксплуатационных качеств двигателей и дальнейшее улучшение технико-экономических показателей бурения.

Техническая характеристика винтового забойного двигателя Д1-195 представлена в таблице 2.2.

Таблица 2.2 - Техническая характеристика двигателя Д1-195

Длина,

мм

Диаметр

мм

Заходность ротора на статор

Расход бурового раствора

л/с

Частота вращения вала шпинделя

Об/мин

Перепад давления МПа

Момент силы на валу

кН м

Д1- 195

6200

195

9:10

25-35

80-100

4,0-5,0

6,5-8,0

2. Анализ условий и режима эксплуатации ВЗД Д1-195

Для того чтобы избежать частых поломок двигателей необходимо соблюдение следующих правил эксплуатации.

При спуске двигателя в скважину за 10-15 м до забоя включают буровой насос и промывают призабойную зону скважины при работающем двигателе. Незапуск двигателя фиксируется по резкому подъёму давления на выкиде насосов. В этом случае следует запускать двигатель с вращением бурильной колонны ротором при одновременном прокачивании жидкости. Запуск двигателя ударами о забой не допускается.

Во избежание левого вращения инструмента под действием реактивного момента двигателя ведущую трубу фиксируют от проворачивания в роторе с помощью клиньев.

По своим энергетическим характеристикам винтовые двигатели позволяют создавать на долоте высокие осевые нагрузки, однако приработку нового долота в течении 10-15 минут необходимо вести при пониженных осевых нагрузках.

При выборе типа долота предпочтение следует отдавать низкооборотным долотам с маслонаполненной опорой, а также гидромониторным долотам, так как сниженный по сравнению с турбобурами перепад давления в винтовом двигателе создаёт резерв мощности на выкиде насосов. Тип вооружения долота выбирают в соответствии с твёрдостью и абразивностью проходимых пород.

При выборе рациональных параметров режима бурения винтовым забойным двигателем необходимо учитывать особенности его характеристик:

-пропорциональность частоты вращения расходу промывочной жидкости;

-сравнительно «жёсткую» скоростную характеристику под нагрузкой

(в зоне устойчивой работы двигателя от режима холостого хода до режима максимальной мощности частота вращения падает на 15-20%);

-линейную зависимость перепада давления на двигателе от момента на долоте.

Низкие частоты вращения долота обеспечивают преимущественно объёмный характер разрушения горных пород, поэтому с увеличением осевой нагрузки механическая скорость бурения винтовыми двигателями возрастает. Проходка на долото с ростом нагрузки увеличивается до определённого значения нагрузки, а затем начинает снижаться вследствие ухудшения условий очистки забоя и ограниченной прочности опор и вооружения долота.

Давление на стояке насосов может использоваться бурильщиком для контроля за процессом бурения.

При чрезмерном увеличении осевой нагрузки или в случае перехода в пласт, представленный вязкими породами, возможна остановка винтового забойного двигателя; при этом резко повышается давление в нагнетательной линии. Буровой инструмент следует немедленно приподнять, а затем осторожно дойти до забоя и продолжать бурение при пониженной осевой нагрузке на долото.

При бурении винтовым забойным двигателем буровой инструмент необходимо подавать плавно, без рывков. Периодически инструмент следует проворачивать.

Расход промывочной жидкости при бурении винтовым забойным двигателем выбирают исходя из условий необходимой очистки забоя. По мере износа рабочей пары двигателя для сохранения его рабочей характеристики целесообразно увеличить расход промывочной жидкости на 20-25 % от начальной величины.

Продолжительность работы серийных долот с применением винтовых забойных двигателей обычно в 3 раза и более выше, чем при турбинном бурении. Момент подъёма долота при сработке его вооружения определяют по устойчивому снижению механической скорости по отношению к первоначальной. При сработке опор долота, сопровождающейся заклиниванием шарошек, сигналом для подъёма могут также служить повторяющиеся резкие подъёмы давления в нагнетательной линии, происходящие даже при пониженных осевых нагрузках.

Для предотвращения зашламования двигателя перед наращиванием инструмента или перед подъёмом его для замены долота необходимо промыть скважину в призабойной зоне, затем приподнять инструмент над забоем на 10-12 м и только после этого остановить насосы и открыть пусковую задвижку.

В процессе эксплуатации винтовых двигателей необходимо периодически проверять его пригодность к дальнейшей работе. Двигатель отправляют на ремонт при значительном снижении его приёмистости к осевым нагрузкам, увеличении осевого люфта шпинделя более 4-5 мм, а также при затруднённом запуске или незапуске над устьем скважины или зашламовании двигателя.

3 Анализ отказов и других технических проблем, выявленных в процессе эксплуатации (обслуживании, ремонте) ВЗД Д1-195

Винтовые забойные двигатели отличаются ограниченным количеством деталей и простотой конструкции. При соблюдении основных правил эксплуатации и технического обслуживания они обладают достаточно высокой надежностью в различных условиях бурения. Неудовлетворительная работа винтовых забойных двигателей в большинстве случаев является следствием либо низкого качества изготовления, либо нарушения требований к эксплуатации.

Доставленный на буровую ВЗД перед спуском в работу подвергают наружному осмотру. Особое внимание следует обращать внимание на отсутствие трещин и вмятин на статоре и корпусе шпинделя, на состояние присоединительных резьб к бурильным трубам и к долоту (отсутствие промывов и дефектов резьб), а также на плотность свинчивания промежуточный резьбовых соединений корпусных деталей ВЗД. Винтовые забойные двигатели с дефектами корпусных деталей и резьб к работе не допускаются; в случае неполного свинчивания резьбовые соединения докрепляют машинными ключами.

Перед спуском в скважину каждый ВЗД опробуют над устьем с целью проверки легкости запуска и герметичности резьбовых соединений. ВЗД должен запускаться плавно (при давлении на стояке не более 2,5 МПа) путем медленного закрывания пусковой задвижки. На холостом ходу вращение вала ВЗД должно происходить без рывков и заеданий, а остановка при выключении насосов не должна быть резкой. При опробовании ВЗД одновременно проверяют работоспособность переливного клапана. При подаче промывочной жидкости в ВЗД клапан должен плотно закрываться без утечек жидкости в боковые отверстия корпуса клапана; при выключении циркуляции клапан должен открыться.

В зимнее время запуску ВЗД должен предшествовать его отогрев паром или горячей водой в течении 30-40 мин. Подготовка бурильного инструмента к бурению должна предусматривать выбор необходимой компоновки низа бурильной колонны. Для предотвращения искривления вертикальной скважины должны быть обеспечены соосность вышки и ротора по отношению к оси скважины, горизонтальность стола ротора, а также прямолинейность ведущей трубы, утяжеленных и бурильных труб. Нижняя часть бурильной колонны, включающая центраторы, калибраторы или стабилизаторы, должна иметь необходимую продольную устойчивость, прочность, проходимость в стволе скважины, а также должна обеспечивать удобство и безопасность ее эксплуатации и создавать гидравлические сопротивления, не превышающие допустимые.

Перечень встречающихся или возможных неисправностей, а также способы их устранения, приведены в таблице 3.1

Таблица 3.1 -- Виды неполадок и способ их устранения

Характер

неисправности

Причина

Способ устранения

на буровой

при ремонте

Запуск при повышенном давлении в

нагнетательной линии

Отслоение или

повреждение резиновой обкладки

статора

Неправильная регулировка или заклинивание шпиндельной

секции

Заменить

двигатель

Тоже

Заменить

статор

Проверить регулировку шпиндельной секции, при

необходимости очистить или сменить детали

Повышение давления в нагнетательной линии при работе двигателя в скважине

При отрыве долота от забоя давление не

снижается

Засорение фильтра

Зашламование двигателя

Попадание посторонних предметов в рабочие органы и повреждение

резиновой обкладки статора

Прочистить фильтр заменить двигатель

Заменить двигатель

Разобрать

двигатель,

очистить

от шлама

Убрать

посторонние

предметы

или заменить

рабочие органы

Снижение

механической

скорости

проходки

Двигатель плохо

принимает осевую

нагрузку

Износ рабочих

органов (ротора,

статора)

Износ осевой опоры шпиндельной секции

Увеличить расход на 20-25% или заменить двигатель

Заменить двигатель

Заменить рабочие органы

Заменить осевую опору

Снижение давления в нагнетательной линии

Негерметичность клапана.

Неплотности (промыв) в резьбовых

соединениях бурильной колонны

Сменить клапан

Заменить

промытые

бурильные

трубы

Заменить изношенные детали клапана

4. Монтаж (сборка-разборка, регулировка) ВЗД Д1-195

4.1 Монтаж винтовых забойных двигателей

Разборку и ремонт двигателей проводят с использованием стандартного оборудования турбинных цехов буровых предприятий.

При отвинчивании резьб статора возможно смятие его корпуса, если кулачки ключа установлены на его поверхности; во избежании этого кулачки ключа следует захватывать одновременно поверхности статора и переводника, как показано на рисунке 4.1. Ротор извлекают из статора вывинчиванием или вытаскивают с помощью лебёдки, как показано на рисунке 4.2.

Рисунок 4.1-Схема отвинчивания переводников от статора

Рисунок 4.2-Схема разборки рабочей пары

Шпиндель двигателя разбирают так же, как шпиндели серийных турбобуров. Особое внимание уделяют разборке осевой опоры: опору следует снимать с вала пакетами, располагая их в порядке установки на валу шпинделя. Не следует допускать перестановку шариков из пакета в пакет или установку новых шариков взамен отработавших. В случае разрушения отдельных шариков или обойм подшипника в 2-3 пакетах можно удалить эти ряды шаров или обоймы с установкой распорных втулок. Отбраковывают и заменяют новыми компенсаторы шпинделя ШШО с деформированными или отслоившимися резиновыми подушками. Изношенные детали и узлы двигателей после их промывки, визуального осмотра и инструментальных замеров отбраковывают.

У статора визуально проверяют целостность резиновой обкладки (отсутствие разрушений зубьев), контролируют диаметр Dе по выступам зубьев с помощью набора гладких калибров-пробок, а по впадинам - с помощью индикаторного нутромера.

Кривизну канала статора проверяют гладким калибром, имеющим длину, равную длине обкладки статора. При этом в зависимости от диаметра Dе, который может колебаться из-за различной величины усадки резины, применяют калибр соответствующего диаметра. Если калибр не заходит на всю длину обкладки, то такой статор бракуют.

У ротора измеряют диаметральный размер (Dер - h) между впадиной и выступом зубьев с помощью микрометра и мерного ролика диаметром 5-8 мм. Измерения проводят в 3-5 сечениях по длине двигателя и берут их среднее значение за истинное.

Определяют диаметральный натяг (зазор) в рабочей паре: d=(Dep- h)-De.

Если зазор в изношенной рабочей паре превышает 1,3 мм, то рабочую пару заменяют новой.

Шарниры карданного вала разбирают для проверки состояния шара, сферических расточек и зубьев полумуфт и венца, контроля уплотнений и заполнения смазкой внутренней полости. Конусные поверхности полумуфт шарнира и соединительной трубы не должны иметь задиров и следов проворачивания.

Контроль и отбраковку остальных деталей двигателей проводят в соответствии с требованиями, предъявляемыми к аналогичным деталям турбобуров.

При сборке двигателей детали смазывают согласно таблицы 4.1.

Таблица 4.1-Смазка деталей винтовых двигателей в процессе сборки

Узел и деталь

Смазочный материал и номер стандарта

Способ

нанесения

Место

нанесения

Вал шпинделя

Масло индустриальное марки И30А или И45А по ГОСТ 20799-75

Покрывается слоем

Посадочная часть

Статор, ротор, опора нижняя, втулка нижней опоры

Масло касторовое техническое по ГОСТ 6757-73

То же

Поверхность резины и поверхность, соприкасающаяся

с резиной

Шарнир

Смазка ЦИАТИМ-201 по ГОСТ 6267-74

Заполняется

Внутренняя полость между полумуфтами и венцом

в шарнирах

Детали крепящиеся в корпусе

Насосная смазка по

МРТУ 12Н98-64

Покрывается слоем

Наружные поверхности деталей

Резьбовые соединения

Смазка Р-113 по

ТУ38-101330-73

То же

Профиль резьбы

При сборке шпиндельной секции определяют размеры колец, регулировочных по валу и корпусу шпинделя, обеспечивающие необходимые усилия затяжки пакета подшипников.

В собранном и отрегулированном шпинделе контролируют осевой люфт, лёгкость и равномерность вращения вала от приложенного момента 100-200 Нм.

Двигатели должны храниться в собранном виде с ввинченными предохранительными пробками на специальных стеллажах под навесом, защищающим от атмосферных осадков и солнечной радиации.

4.2 Правила эксплуатации двигателей

Во избежании частых поломок двигателей необходимо соблюдение правил эксплуатации.

При спуске двигателя в скважину за 10-15 м до забоя включают буровой насос и промывают призабойную зону скважины при работающем двигателе. Незапуск двигателя фиксируется по резкому подъёму давления на выкиде насосов. В этом случае следует запускать двигатель с вращением бурильной колонны ротором при одновременном прокачивании жидкости. Запуск двигателя ударами о забой не допускается.

Во избежании левого вращения инструмента под действием реактивного момента двигателя ведущую трубу фиксируют от проворачивания в роторе с помощью клиньев.

По своим энергетическим характеристикам винтовые двигатели позволяют создавать на долоте высокие осевые нагрузки, однако приработку нового долота в течении 10-15 минут необходимо вести при пониженных осевых нагрузках.

При выборе типа долота предпочтение следует отдавать низкооборотным долотам с маслонаполненной опорой, а также гидромониторным долотам, так как сниженный по сравнению с турбобурами перепад давления в винтовом двигателе создаёт резерв мощности на выкиде насосов. Тип вооружения долота выбирают в соответствии с твёрдостью и абразивностью проходимых пород.

При выборе рациональных параметров режима бурения винтовым забойным двигателем необходимо учитывать особенности его характеристик:

-пропорциональность частоты вращения расходу промывочной жидкости;

-сравнительно «жёсткую» скоростную характеристику под нагрузкой (в зоне устойчивой работы двигателя от режима холостого хода до режима максимальной мощности частота вращения падает на 15-20%);

-линейную зависимость перепада давления на двигателе от момента на долоте.

Низкие частоты вращения долота обеспечивают преимущественно объёмный характер разрушения горных пород, поэтому с увеличением осевой нагрузки механическая скорость бурения винтовыми двигателями возрастает. Проходка на долото с ростом нагрузки увеличивается до определённого значения нагрузки, а затем начинает снижаться вследствие ухудшения условий очистки забоя и ограниченной прочности опор и вооружения долота.

Давление на стояке насосов может использоваться бурильщиком для контроля за процессом бурения.

При чрезмерном увеличении осевой нагрузки или в случае перехода в пласт, представленный вязкими породами, возможна остановка винтового забойного двигателя; при этом резко повышается давление в нагнетательной линии. Буровой инструмент следует немедленно приподнять, а затем осторожно дойти до забоя и продолжать бурение при пониженной осевой нагрузке на долото.

При бурении винтовым забойным двигателем буровой инструмент необходимо подавать плавно, без рывков. Периодически инструмент следует проворачивать.

Расход промывочной жидкости при бурении винтовым забойным двигателем выбирают исходя из условий необходимой очистки забоя. По мере износа рабочей пары двигателя для сохранения его рабочей характеристики целесообразно увеличить расход промывочной жидкости на 20-25 % от начальной величины.

Продолжительность работы серийных долот с применением винтовых забойных двигателей обычно в 3 раза и более выше, чем при турбинном бурении. Момент подъёма долота при сработке его вооружения определяют по устойчивому снижению механической скорости по отношению к первоначальной. При сработке опор долота, сопровождающейся заклиниванием шарошек, сигналом для подъёма могут также служить повторяющиеся резкие подъёмы давления в нагнетательной линии, происходящие даже при пониженных осевых нагрузках.

Для предотвращения зашламования двигателя перед наращиванием инструмента или перед подъёмом его для замены долота необходимо промыть скважину в призабойной зоне, затем приподнять инструмент над забоем на 10-12 м и только после этого остановить насосы и открыть пусковую задвижку.

При эксплуатации винтовых двигателей необходимо периодически проверять его пригодность к дальнейшей работе. Двигатель отправляют на ремонт при значительном снижении его приёмистости к осевым нагрузкам, увеличении осевого люфта шпинделя более 4-5 мм, а также при затруднённом запуске или незапуске над устьем скважины или зашламовании двигателя.

5. Анализ ремонтопригодности ВЗД Д1-195

Винтовые забойные двигатели подлежат следующим видам технического обслуживания: профилактическому осмотру и текущему ремонту.

Профилактическому осмотру подвергаются двигатели, длительно находившиеся на хранении перед началом эксплуатации, а так же двигатели, работавшие в скважине.

Двигатели, работавшие в скважине, после окончания работ должны быть промыты водой, а затем, при вертикальном положении двигателя, запиты индустриальным маслом И-40А или И-50-А в количестве 1.5-2 литров при медленном проворачивании по часовой стрелке выходного вала до выхода масла через подшипниковый узел шпиндельной секции (по наружной поверхности выходного вала).

1. Профилактический осмотр проводится в следующем порядке :

1) произвести наружный осмотр деталей и присоединительных резьб двигателя (вмятины и трещины не допустимы);

2) отсоединить переводник и секцию рабочих органов от секции шпиндельной;

3) извлечь ротор из статора и проверить натяг в зубчатом зацеплении пары ротор-статор;


Подобные документы

  • Проблема сезонности бурения. Специальные буровые установки для кустового строительства скважин, особенности их новых модификаций. Устройство и монтаж буровых установок и циркулирующих систем. Характеристика эшелонной установки бурового оборудования.

    курсовая работа [2,5 M], добавлен 17.02.2015

  • Назначение, устройство основных узлов и агрегатов буровых установок для глубокого бурения нефтегазоносных скважин. Конструкция скважин, техника и технология бурения. Функциональная схема буровой установки. Технические характеристики буровых установок СНГ.

    реферат [2,5 M], добавлен 17.09.2012

  • Физические свойства и химический состав пластовой нефти и газа. Текущее состояние разработки нефтяного месторождения. Анализ состояния фонда скважин. Технология зарезки боковых стволов. Оценка безопасности рабочего места оператора буровой установки.

    дипломная работа [2,4 M], добавлен 07.08.2015

  • Схема колонкового бурения с применением буровой установки. Конструкция, назначение и классификация буровых вышек, буров, труб, долот. Причины аварий при различных способах бурения, способы их ликвидации. Режимы бурения нефтяных и газовых скважин.

    реферат [662,7 K], добавлен 23.02.2009

  • Экономическая эффективность зарезки боковых стволов на нефтегазовом месторождении "Самотлор". Выбор способа и интервала зарезки. Характеристика и анализ фонда скважин месторождения. Устьевое и скважинное оборудование. Состав и свойства нефти и газа.

    дипломная работа [1,3 M], добавлен 21.06.2013

  • Литолого-стратиграфическая характеристика месторождения Башенколь. Состав и основные свойства нефти в поверхностных условиях. Особенности конструкции винтовых электронасосов. Расчет годового экономического эффекта от внедрения усовершенствования.

    дипломная работа [1,2 M], добавлен 01.11.2014

  • Технологический расчет основной нефтеперегонной колонны. Определение геометрических размеров колонны. Расчет теплового баланса. Температурный режим колонны, вывода боковых погонов. Принципиальная схема блока атмосферной перегонки мортымьинской нефти.

    курсовая работа [2,1 M], добавлен 23.08.2015

  • Технические характеристики и режимы испытания двигателя. Характеристика испытательных стендов авиационных газотурбинных двигателей. Выбор и обоснование типа и конструкции испытательного бокса, его аэродинамический расчет. Тепловой расчет двигателя.

    дипломная работа [1,6 M], добавлен 05.12.2010

  • Выбор и описание энергетической установки. Расчет эффективной мощности главных двигателей танкера. Построение индикаторной диаграммы и определение параметров, характеризирующих рабочий цикл. Описание тепловой схемы и основных систем дизельной установки.

    дипломная работа [1,3 M], добавлен 15.03.2020

  • Составление расчетных схем. Определение сил, действующих на гидроцилиндры. Расчет основных параметров гидравлических двигателей. Расчет требуемых расходов рабочей жидкости, полезных перепадов давлений в гидродвигателях. Тепловой расчет гидропривода.

    курсовая работа [1,4 M], добавлен 26.10.2011

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.