Разработка технологии концентрирования серной кислоты
Аналитический обзор технологии концентрирования серной кислоты. Модернизация концентрационной колонны, т. е увеличение числа абсорбционных ступеней и частичная автоматизация процесса. Материальные и тепловые расчеты. Экологическое обоснование проекта.
Рубрика | Производство и технологии |
Вид | дипломная работа |
Язык | русский |
Дата добавления | 12.03.2011 |
Размер файла | 212,9 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Размещено на http://www.allbest.ru/
32
СЛАБАЯ АЗОТНАЯ КИСЛОТА, КОНЦЕНТРИРОВАННАЯ СЕРНАЯ КИСЛОТА, РЕКУПЕРИРОВАННЫЕ И УЛОВЛЕННЫЕ КИСЛОТЫ, ОТРАБОТАННАЯ СЕРНАЯ КИСЛОТА, ТЕХНОЛОГИЯ, ПРОЕКТИРОВАНИЕ, КОНЦЕНТРАЦИОННАЯ КОЛОННА ТИПА БМКСХ, АВТОМАТИЧЕСКОЕ УПРАВЛЕНИЕ, ОХРАНА ТРУДА, ЭКОНОМИКА, НЕЙТРАЛИЗАЦИЯ ВЫБРОСОВ.
технология концентрирование серная кислота
Объектом проектирования является цех по регенерации отработанной серной кислоты.
Цель проектирования: разработка технологии концентрирования серной кислоты.
В процессе работы проводился аналитический обзор по разрабатываемой теме, выбран оптимальный метод производства. Предложена модернизация концентрационной колонны типа БМКСХ, т. е увеличение числа абсорбционных ступеней, и частичная автоматизация процесса. Представлены материальные и тепловые расчеты, расчеты основного аппарата - колонна типа БМКСХ; экономическое и экологическое обоснование нововведений и проекта в целом. Рассмотрены вопросы автоматизации и охраны труда. Показана возможность уменьшения себестоимости при усовершенствовании основного аппарата и автоматизации технологического процесса.
Проектные предложения рекомендованы к внедрению на ФКП КГКПЗ.
СОДЕРЖАНИЕ
Введение
1Технологическая часть
2.1 Теоретические основы процессов
2.2 Характеристика исходного сырья и готовой продукции
2.3 Операционное описание технологического процесса
2.3.1 Принцип действия и назначение основного оборудования
3 Расчетная часть
3.1.1 Материальные расчеты отделения денитрации и концентрирования азотной кислоты
3.1.2 Материальные расчеты отделения концентрирования серной кислоты
3.2 Тепловые расчеты
3.2.1 Тепловые расчеты отделения денитрации и концентрирования азотной кислоты
3.2.2 Тепловые расчеты отделения концентрирования серной кислоты
4 Производственный контроль
4.1 Порядок допуска материалов в производство
4.2 Прием кислот со стороны
4.3 Технологический контроль
5 Автоматизация и автоматизированные системы управления
5.1 Краткое описание технологического процесса
6 Строительно - монтажная часть
7 Работа предприятия в чрезвычайных ситуациях
7.1 Противопожарные мероприятия
7.2 Предохранительные мероприятия
7.3 Правила при утечке СДЯВ
7.4 Связь и сигнализация
7.5 Меры оказания первой помощи
8 Стандартизация
9 Безопасность и экологичность проекта
9.1 Общая характеристика участка
9.2 Характеристика веществ, применяемых на участке
9.3 Безопасность ведения процесса
9.4 Средства индивидуальной защиты
9.5 Шум и вибрация
9.6 Вентиляция
9.7 Микроклимат
9.8 Пожарная профилактика средства пожаротушения
9.9 Освещение
9.10 Электробезопасность и статическое электричество
9.11 Молниезащита
9.12 Экологичность проекта
10. Экономическое обоснование проекта
10.1 Режим работы проектируемого производства
10.2 Расчет годового выпуска продукции
Заключение
Список использованной литературы
Приложения
ВВЕДЕНИЕ
Казанский пороховой завод выпускает пироксилиновые пороха и заряды практически ко всем видам вооружения, лаковые коллоксилины, пластифицированную нитроцеллюлозу, порошковую нитроцеллюлозу, охотничьи и спортивные пороха, лакокрасочные материалы, пиротехническую продукцию, ферросилидовое литье и нестандартное оборудование. Предприятие разрабатывает, изготавливает и монтирует вихревые колонны для рекуперации кислот с характеристиками на уровне лучших мировых аналогов.
Завод является разработчиком и ведущим производителем изделий из высококремнистого чугуна (ферросилида) марок ЧС - 15, ЧС - 17. Предприятие выпускает следующие изделия из ферросилида: трубы, насосы для перекачки агрессивных сред, коррозийно-стойкую запорную арматуру, фасонные изделия, ферросилидовый анод.
На сегодняшний день 10-15 % регенерированной серной кислоты /1/ используется для получения взрывчатых веществ и синтетических красителей, 75-80 % - для получения сульфатов и сложных минеральных удобрений. Значительное количество концентрированной серной кислоты применяется для очистки продуктов перегонки нефти, в текстильной промышленности.
В настоящее время развитие производств, применяющих смесь азотной и серной кислот в качестве нитрующего агента, привело к получению огромных количеств отработанных кислотных смесей. Эти смеси с экономической точки зрения необходимо регенерировать и в необходимых расчетных концентрациях возвращать обратно в производственный цикл, тем самым удешевляя единицу себестоимости готовой продукции. Цех № 3 ФКП КП КПЗ выпускает сырье для производства взрывчатых веществ и лакокрасочной продукции, для чего использует нитрующую смесь, поэтому цех № 2, ранее выпускающий азотную и серную кислоты, сегодня регенерирует возвратные кислотные смеси, так как при этом себестоимость продукта резко снижается, а значит и затраты предприятия.
Состав отработанных кислот, поступающих на регенерацию, колеблется в довольно широких пределах. В одних случаях они представляют сильно разбавленные кислотные смеси с содержанием азотной кислоты 5 - 10%, в других случаях отработанные кислоты содержат 1 - 2% азотной кислоты и 65 - 70% серной кислоты, в которой растворены окислы азота N2O3, образующие нитрозилсерную кислоту HNSO5. Регенерация таких смесей представляет собой определенные трудности и требует изыскания все новых и новых способов, обеспечивающие нормальное ведение процесса разгонки отработанных кислот, а также получение азотной и серной кислот, которые по своим качествам и техническим характеристикам не уступают свежим кислотам применяемым для нитрации.
Начальной ступенью регенерации отработанных кислот является их денитрация. Этот процесс заключается в выделении их кислотной смеси азотной кислоты и окислов азота, содержащихся в смеси. В результате проведения процесса денитрации получается 68 - 70% серная кислота, которая поступает на концентрирование, после чего направляется на производство нитроцеллюлозы или в случае необходимости, может быть снова направлена непосредственно в цикл нитрации.
2 ТЕХНОЛОГИЧЕСКАЯ ЧАСТЬ
2.1 ТЕОРЕТИЧЕСКИЕ ОСНОВЫ ПРОЦЕССОВ
При установившемся в денитрационной колонне ГБХ (поз.1) равновесном процессе, HNO3 из смеси кислот, поступающей в колонну (поз.1) на тарелку испарения, частично уходит на нижележащие тарелки, откуда снова отгоняется на тарелку испарения. В процессе дистилляции, то есть отгонки HNO3 из тройной смеси, поднимающиеся вверх пары обогащаются более летучим компонентом - HNO3, а в движущуюся вниз жидкость переходит менее летучий компонент - вода.
Процесс испарения HNO3 происходит /3/ главным образом в средней части колонны (поз.1). Серная кислота, пройдя эту зону, содержит в себе растворенные окислы азота, переходящие из тройной смеси. Даже если в тройной смеси не было бы растворенных окислов азота, то при частичном разложении HNO3 происходит выделение окислов, которые взаимодействуя с H2SO4, образуют нитрозилсерную кислоту:
2H2SO4 + N2O3 = 2HNSO5 + H2O + 86250 Дж (2.1)
Диоксид или четырехоксид азота, реагируя с концентрированной H2SO4, образует нитрозилсерную кислоту и азотную кислоту:
2NO2 + H2SO4 = HNSO5 + HNO3 (2.2)
Процесс разложения нитрозилсерной кислоты с выделением окислов азота характеризуется как процесс денитрации. Однако термин "денитрация" служит для обозначения процесса, обратного этерификации. В данном случае более правильно процесс разложения нитрозилсерной кислоты называть процессом гидролиза:
2HNSO5 + 2H2O = 2H2SO4 + 2HNO2 (2.3)
2HNO2 = H2O + N2O3 (жид) (2.4)
N2O3 (жид) = N2O3 (газ) (2.5)
N2O3 (газ) = NO (газ) + NO2 (газ) (2.6)
Азотистая кислота (HNO2), образующаяся при гидролизе по реакции (2.3) неустойчива и распадается:
2HNO2 = H2O + HNO3 + 2NO (2.7)
Нитрозилсерная кислота является довольно стойким соединением, которое при концентрациях H2SO4 выше 70% не разлагается полностью даже при температуре кипения. При разбавлении H2SO4 водой происходит гидролиз нитрозилсерной кислоты, степень которой увеличивается с понижением концентрации H2SO4 и повышением температуры.
Таблица 2.1 - Зависимость степени разложения HNSO5 от концентрации H2SO4 при 15-20 єС
Концентрация H2SO4, % |
Степень разложения HNSO5 , % |
Концентрация H2SO4, % |
Степень разложения HNSO5 , % |
|
98 95 92 90 |
1,1 4,0 7,3 12,4 |
81 80 70 57,5 |
19,4 27,7 49,8 100,0 |
Как видно из зависимости, начиная с концентрации 57,5% серной кислоты, нитрозилсерная кислота совершенно отсутствует. Отработанная серная кислота, выходящая из колонны (поз.1), должна содержать минимально возможное количество окислов азота. Это необходимо не только для исключения потерь N2O3, но и устранения нитрозилсерной кислоты, обладающей сильно разрушающими свойствами.
Поэтому гидролиз нитрозилсерной кислоы в колонне ГБХ (поз.1) /1/ является важной стадией процесса. С увеличением температуры, степень гидролиза нитрозилсерной кислоты увеличивается. Образующийся при разложении азотистой кислоты монооксид азота незначительно растворяется в разбавленной серной кислоте. Гидролиз нитрозилсерной кислоты ведут с помощью перегретого до 250 єС водяного пара, который подается с таким расчетом, чтобы разбавление кислоты конденсатом соответствовало массовой доли H2SO4 68 - 70 %. В отработанной серной кислоте содержится до 0,03% азотной кислоты и растворенных окислов азота. Последние образуют с серной кислотой до 0,01 % нитрозилсерной кислоты.
После стадии денитрации разбавленная серная кислота отправляется на стадию концентрирования /3/. В процессе концентрирования разбавленной серной кислоты, имеющиеся в ней примеси, в частности, продукты неполного сгорания топлива (когда концентрирование ведется непосредственным соприкосновением упариваемой кислоты с топочными газами), вызывают разложение серной кислоты вследствие ее восстановления до SO2. Восстановление в основном идет за счет углерода, содержащегося в примесях и в топливе по реакции:
2H2SO4 + С = СО2 + 2SO2 + 2 H2O (2.8)
За счет этого происходят некоторые потери кислоты при ее упаривании. В процессе разгонки тройной смеси в колонне образуются нитрозные газы, которые поступают на поглощение в абсорбер (поз.4). Наиболее распространенный способ поглощения нитрозных газов - водой с образованием слабой HNO3. На поглощение поступают нитрозные газы различной степени окисления. Окислы азота, содержащиеся в нитрозных газах NO2, N2O4, N2O3 реагируют с водой
2NO2 + H2O = HNO3 + HNO2 + 116 кДж (2.9)
N2O4 + H2O = HNO3 + HNO2 + 59,2 кДж (2.10)
N2O3 + H2O = 2HNO3 + 55,6 кДж (2.11)
Процесс поглощения нитрозных газов водой связан с растворением в ней диоксида азота, четырехоксида и трикосида азота с образованием HNO3 и азотистой кислоты.
В газовой среде вследствие взаимодействия паров воды с нитрозными газами, также получается HNO3 и азотистая кислота. Образовавшаяся при помощи нитрозных газов азотистая кислота - малоустойчивое соединение, которое разлагается по реакции:
2HNO2 = HNO3 + 2NO + H2O - 75,8 кДж (2.12)
Суммарная реакция образования HNO3:
2NO2 + H2O = HNO2 + HNO3 (2.13)
3HNO2 = HNO3 + 2NO + 2H2O (2.14)
____________________________________
3NO2 + H2O = 2HNO3 + NO (2.15)
N2O3 + H2O = 2HNO2 (2.16)
3HNO2 = HNO3 + H2O + 2NO (2.17)
______________________
3N2O3 + H2O = 2HNO3 + 4NO (2.18)
Так как в нитрозных газах содержится незначительное количество триоксида азота, обычно технологические расчеты производят по NO2. Как видно из реакций (2.12) - (2.18) 2/3 поглощенного диоксида азота идет на образование HNO3, 1/3 его выделяется в виде монооксида азота.
Отсюда следует, что при поглощении водой нитрозных газов невозможно все количество NO2 превратить в HNO3, так как в каждом цикле всегда 1/3 NO х будет выделяться в газовую фазу.
Однако указанные поглощения не являются совершенными и нитрозные газы перед выбросом в атмосферу следует дополнительно очистить от окислов азота.
Отсюда следует, что в последнем абсорбере орошение ведется не водой, а азотной кислотой с массовой долей 5 %, которая до 0,003% поглощает окислы азоты. Выбрасываемые в атмосферу газы при этом соответствуют санитарным нормам, т.е. не превышают установленных ПДК.
2.2 ХАРАКТЕРИСТИКА СЫРЬЯ И ГОТОВОЙ ПРОДУКЦИИ
2. Чистая безводная азотная кислота малоустойчива /1/ и разлагается при обычных температурах.
Молекула HNO3 имеет следующее строение:
атом кислорода
атом водорода
атом азота
Рисунок 2.1 - Строение молекулы азотной кислоты
В газовой фазе молекула HNO3 является плоской. Температура кристаллизации HNO3 равна - 41.58 єС. При этой температуре кристаллы имеют белоснежный вид. Элементарная ячейка кристаллической решетки азотной кислоты содержит 16 молекул HNO3. плотность кристаллической HNO3 1895 кг / м3.
Плотность жидкой HNO3 увеличивается с повышением давления. При 20 єС и давлении 1, 102 и 340 атм она составляет соответственно 1512.6; 1526.4; 1547 кг / м3 /2/.
Температура кипения чистой азотной кислоты при атмосферном давлении составляет 82.6 єС.
2. Серная кислота - бесцветная едкая тяжелая маслообразная жидкость /4/ без запаха, плотность 1.84 г / м3, смешивается с водой в любых соотношениях. Безводная серная кислота растворяет до 70% оксида серы (VI). При обычной температуре она не летуча и не имеет запаха. При нагревании отщепляет SO3 до тех пор, пока не образуется раствор, содержащий 98,3 % H2SO4. Безводная H2SO4 почти не проводит электрический ток. Кипит и разлагается при 340 єС, образуя триоксид серы и водяной пар:
H2SO4 (Ж) > SO3 (Г) + H2O (2.20)
Высокая температура кипения и большая вязкость серной кислоты обусловлены наличием водородных связей между атомами кислорода соседних молекул. В таблице 2.3 представлены основные характеристики /3/ основных материалов и в таблице 2.4 основные характеристики готовой продукции.
Таблица 2.2 - Характеристика исходного сырья
Наименование сырья и материалов |
Нормативный документ |
Показатели, обязательные для проверки |
Регламентируемые показатели с допуском |
|
1 |
2 |
3 |
4 |
|
1.Слабая азотная кислота |
Массовая доля HNO3, % не менее |
50 |
||
2.Регенериро- ванная серная кислота |
ГОСТ 2184 - 77 |
Массовая доля (H2SO4), %, не менее |
91 |
|
Массовая доля железа (Fe), %, не более Массовая доля остатка после прокаливания, %, не более Массовая доля оксида азота (N2O3), %, не более |
0,2 0,4 0,01 |
|||
Массовая доля нитросоединений, %, не более. |
0,2 |
|||
3. Техническая вода |
pH, не менее Жесткость, мг- экв/кг, не менее |
7 20 |
||
4. Пар перегретый |
Температура на входе, єС, не менее Давление на входе, атм., не менее |
120 1 |
||
5. Отработанная кислота |
Массовая доля HNO3, %, не |
16 |
||
6. Природный газ |
ГОСТ 5542 - 78 |
менее Массовая доля H2SO4, %, не менее - |
40 - |
Таблица 2.3 - Характеристика готовой продукции
Наименование продукта |
Нормативный документ |
Показатели, обязательные для проверки |
Регламентируемые показатели с допуском |
||
Марка А |
Марка Б |
||||
1 |
2 |
3 |
4 |
5 |
|
1. Концентриро-ванная азотная кислота |
ГОСТ 701-89 |
Массовая доля HNO3, % не менее |
98,6 |
97,5 |
|
Массовая доля моногидрата (H2SO4), %, не менее. |
0,05 |
0,06 |
|||
Массовая доля оксида азота (N2O3), %, не вболее. Массовая |
0.2 0.014 |
0.3 0.025 |
|||
2. Концент-рированная серная кислота |
2184 - 77 |
доля остатка после прокаливания, %, не более. 0,3 Массовая доля (H2SO4), %, не менее Массовая доля железа (Fe), %, не более Массовая доля остатка после прокаливания, %, не более Массовая доля оксида азота (N2O3), %, не более |
91 0,2 0,01 0.2 |
Примечание: 1. Для азотной кислоты марки Б, получаемой методом регенерирования отработанных кислот, допускается норма по показателю 1 не менее 97,0 %.
Норма по показателям 1, 3 установлены на момент отгрузки.
2.3 ОПЕРАЦИОННОЕ ОПИСАНИЕ ТЕХНОЛОГИЧЕСКОГО ПРОЦЕССА
Технологический процесс получения /3/ концентрированной серной кислоты и денитрации рекуперированных и уловленных кислот состоит из следующих операций:
- концентрирование слабой азотной кислоты;
-денитрация рекуперированных и уловленных кислот;
- абсорбция окислов азота и азотной кислоты;
- концентрирование серной кислоты;
Цех по регенерации отработанной серной кислоты предназначен для получения концентрированной серной кислоты концентрации не менее 92%.
1. Концентрирование слабой азотной кислоты.
Слабая азотная кислота /3/ концентрации не менее 48%; отработанная кислота, которая состоит из 16% HNO3, 40% H2SO4, 44% H2O; серная кислота концентрации не менее 92% при температуре 20 єС из напорных баков (поз.5) самотеком через щелевые расходомеры поступают в концентрационную колонну ГБХ (поз.1).
Уровень кислот в напорных баках (поз.5) поддерживается постоянным с помощью щелевых расходомеров.
Концентрированная серная кислота поступает на 4 - 6 царги колонны (поз.1), слабая азотная кислота в 8 - 9 царги, отработанная кислота поступает в десятую царгу колонны (поз.1).
Одновременно с подачей кислот в дно колонны (поз.1), в противоток стекающей смеси кислот для отгонки азотной кислоты из отработанной серной кислоты, подается через форсунку водяной пар. Пар, нагретый до температуры 250 °С и сжатый до 2,45 МПа, поступает из 7 цеха. При этом в колонне (поз.1) образуется тройная смесь. Серная кислота присоединяет к себе воду, понижая парциальное давление водяных паров в смеси. В нижней части колонны
происходит концентрирование серной кислоты за счет испарения азотной кислоты.
Перегретый пар /1/ подается в нижнюю часть колонны (поз.1) и при прохождении до 13-11 тарелки отдает тепло перегрева, на вышележащих тарелках передается тепло конденсации.
2. Денитрация рекуперированных и уловленных кислот.
Для денитрации отработанной серной кислоты ее нагревают паром с таким расчетом, чтобы тепло, вводимое с паром, было достаточным для нагревания смеси до 150 - 160 єС. Поэтому перегретый пар подают в колонну ГБХ (поз.1) с начальной температурой 250 єС и поддерживают концентрацию отработанной серной кислоты 68 - 70 %. При этом содержание нитрозилсерной кислоты составляет не более 0,05 - 0,1 %, что значительно меньше содержания нитрозилсерной кислоты, если смесь нагревать глухим паром. В этом случае ее содержание составляет 1 - 2 %.
Азотная кислота, освобожденная от воды, но с большой массовой долей окислов азота, в парообразном виде поднимается в верхние царги колонны (поз.1) 6, 7, где, барботируя через слой серной кислоты, окончательно теряет влагу, затем проходит через царги № 4, 5, которые служат брызгоуловителями серной кислоты.
В колонне ГБХ (поз.1) постоянно поддерживается разрежение 1,27 МПа и температура 135 єС во избежание взрыва, так как процесс идет с выделением большого количества тепла.
Освобожденные от влаги пары азотной кислоты поступают в верхние две царги колонны (поз.1), образующие дефлегматор, где за счет продувки паров азотной кислоты через стекающую противотоком из конденсатора в жидком виде азотную кислоту происходит отдувка окислов азота. Отработанная серная кислота концентрации не более 70% поступает в отделение концентрирования отработанной серной кислоты.
3. Абсорбция окислов азота и азотной кислоты.
Окислы азота, образовавшиеся в колонне ГБХ (поз.1), поступают в холодильник - конденсатор (поз.2), где за счет охлаждения происходит конденсация азотной кислоты из парообразного состояния в жидкое. Процесс охлаждения идет за счет подачи воды с начальной температурой 5 єС, на выходе ее температура равна 30 єС.
Сконденсированная азотная кислота стекает в общий коллектор конденсатора и пройдя холодильник (поз.2), с температурой 30 єС поступает в склад готовой продукции.
Из склада готовой продукции концентрированная азотная кислота передается на нитрование целлюлозы.
Серная кислота постепенно, насыщаясь водой, стекает по царгам вниз и перекачивается в отделение концентрирования серной кислоты.
Несконденсировавшиеся пары азотной кислоты и окислы азота поступают в холодильник - конденсатор (поз.3) для отделения от брызг азотной кислоты и далее поступают в абсорбер (поз.4), куда на орошение подается вода. При этом протекают реакции:
2NO2 + H2O = HNO3 + HNO2 + 116.1 кДж (2.20)
N2O4 + H2O = HNO3 + HNO2 + 59.2 кДж (2.21)
N2O3 + H2O = 2 HNO2 +55.4 кДж (2.22)
Процесс образования разбавленной азотной кислоты включает следующие стадии:
- диффузия оксидов азота из газовой в жидкую фазу;
- взаимодействие оксидов азота с водой и образование азотной и азотистой кислот;
- разложение азотистой кислоты до азотной кислоты и оксида азота (II).
Азотистая кислота, образующаяся при абсорбции окислов азота водой в абсорбционной башне (поз.9), малоустойчива и разлагается.
Суммарная реакция разложения азотистой кислоты связана с образованием окиси азота и азотной кислоты:
3HNO2 = HNO3 + 2NO + H2O - 75.87 кДж (2.23)
С повышением температуры скорость этой реакции резко увеличивается, однако и при обычной температуре скорость разложения азотистой кислоты довольно велика.
Суммарная реакция образования азотной кислоты описывается уравнениями:
2NO2 + H2O = HNO2 + HNO3 (2.24)
3HNO = HNO + 2NO + HO (2.25)
__________________________________________
3NO2 + H2O = 2HNO3 + NO + 136.2 кДж (2.26)
и
N2O3 + H2O = 2HNO2 (2.27)
3HNO2 = HNO3 + 2NO + H2O (2.28)
____________________________________________
3N2O3 + H2O = 2 HNO3 + 4 NO (2.29)
В обычных условиях поглощения двуокиси азота (0,3 - 10 % NO + NO2 в газе, 25 - 40°С, 0,001 - 0,008 МПа) скорость процесса абсорбции определяется скоростью диффузионного процесса. В первой (кинетической) области при малом содержании NO2 в газе (до 0,3 %) скорость абсорбции пропорционально концентрации двуокиси азота и не зависит от линейной скорости газа; во второй (диффузионной) области при высоком содержании NO2 в газе скорость абсорбции зависит и от линейной скорости газа.
Главными факторами, определяющими большую скорость образования азотной кислоты из окиси азота, являются проведение процесса абсорбции под давлением при пониженных температурах с применением богатых по содержанию окислов азота нитрозных газов и создание условий для более полного соприкосновения газа с жидкостью.
Далее идет процесс абсорбции, который протекает в абсорбционной башне (поз.9), которая имеет колосниковую решетку, на которой уложены кольца Рашига для увеличения поверхности контакта фаз.
Полученная в процессе абсорбции 5% - ая азотная кислота идет на подпитку для получения более концентрированной кислоты. В результате процесса абсорбции образуется 40%-ая азотная кислота, которая поступает в сборный бак (поз. 7), откуда с помощью центробежных насосов возвращается в цикл.
Перед пуском агрегата колонну разогревают паро - воздушной смесью. Затем включают выхлопной вентилятор, создают в колонне вакуум порядка 15-20 мм рт.ст и через нижний штуцер подают пар низкого давления и атмосферный воздух. Начальная температура такой паро - воздушной смеси не превышает 50єС. Дальнейшее повышение температуры смеси проводится равномерно, без скачков, со скоростью 10єС за 15 мин. Через 2-3 часа нагревания в верхней царге достигается температура 80-90єС, при этом температура паро - воздушной смеси около 150єС. Затем уменьшают подсос воздуха и повышают температуру смеси. В колонну для промывки парового конденсата подают концентрированную серную кислоту. Тепло, выделяющееся при разбавлении H2SO4 конденсатом, а также физическое тепло пара расходуется на поддержание в верхней части колонны температуры не ниже 80єС.
В разогретую колонну постепенно подают разбавленную азотную кислоту, доводя нагрузку агрегата до нормальной. Период пуска агрегата до установления полной нагрузки и нормального режима составляет до 10 часов. Такой длительный пусковой период обусловлен хрупкостью ферросилида и большой чувствительностью его к изменениям температуры.
При остановке агрегата прекращают подачу азотной кислоты и уменьшают подачу серной кислоты. Через полчаса прекращают ввод пара в колонну. За это время азотная кислота будет полностью удалена из колонны, после чего прекращают подачу серной кислоты.
4. Концентрирование серной кислоты.
Процесс концентрирования серной кислоты производят в аппаратах - концентраторах вихревого типа (БМСКХ). Концентрирование серной кислоты осуществляется в концентраторах вихревого типа, представляющий собой вихревую ферросилидовую колонну. Процесс концентрирования осуществляется топочными газами при температуре от 600 до 900єС. Горячие газы подаются в первую ступень вихревой колонны концентрирования серной кислоты.
Вихревая колонна состоит из пяти рабочих ступеней и одной брызгоуловительной ступени. Первая по ходу газового потока ступень выполнена в виде цилиндрической емкости, футерованной изнутри кислотоупорным кирпичом. Горячий газовый поток, нагретый в топке, при температуре 900єС подается в днище колонны (первую ступень по ходу газового потока ступень концентратора) тангенциально через футерованный канал. Воздух в топку нагнетается воздуходувкой, а расход его регулируется задвижкой.
Вторая, третья, четвертая, пятая рабочие, абсорбционные и брызгоуло-вительная ступени выполнены конструктивно одинаковыми и изготовленными из высоко - кремнистого чугуна - ферросилида марки ЧС - 15. Отработанная (70 % - ная) серная кислота при температуре от 150 єС до 170 єС из колонны денитрации (поз.1) по трубопроводу 6.1 подается на шестую ступень концентратора (вихревой колонны) (поз.13). Расход ее устанавливается по щелевому расходомеру.
Контактирование горячих газов /3/ и кислоты осуществляется в колонне в противоточном режиме. Топочные газы, поступающие в первую ступень концентратора, поднимаясь вверх со ступени на ступень, контактирует с кислотой и концентрируют ее на ступенях.
При этом газы насыщаются парами воды и освобождаются от брызг кислоты на брызгоуловительных ступенях. Далее отходящие газы поступают в эжектирующее устройство. В эжектирующем устройстве за счет подсоса холодного воздуха происходит снижение температуры отходящих газов. Далее отходящие газы поступают в аппарат - брызголовушку, где происходит отделение брызг и капель кислоты от газового потока.
Вода подается на верхнюю абсорбционную ступень в количестве 1,0 - 2,0 л / мин. Расход воды регулируется вентилем и устанавливается по ротаметру. Образующаяся при абсорбции слабая (50 - 60 %) серная кислота и уловленные брызги серной кислоты подаются на укрепление на первую ступень колонны. Температура отходящих газов после брызголовушки составляет 110 - 130 єС. Далее отходящие газы поступают в эжектирующее устройство и трубу выброса газов. Эжектирующее устройство /2/ служит для охлаждения газов до 60 - 70 єС. Образующийся при охлаждении газов конденсат направляется в колонну.
Отходящие газы при 40 - 60 єС направляются через трубу выброса газа в атмосферу. Серная кислота перетекает со ступени на ступень вниз, концентрируется и в виде продукционной 91 % серной кислоты с выхода первой ступени поступает в холодильник. Из холодильника серная кислота перетекает в сборник готовой продукции. Режим работы концентратора /3/ представлен в таблице 3.1.
Таблица 2.4 - Режим работы концентратора серной кислоты
Наименование показателя |
Норма |
|
1 |
2 |
|
Массовая доля регенерированной серной кислоты, %, не менее |
92 |
|
Температура топочных газов при входе в концентратор, єС |
900 |
|
Давление природного газа, МПа |
0,1 |
1 |
2 |
|
Давление воздуха перед топкой, МПа |
0,008 - 0,013 |
|
Массовая доля отработанной серной кислоты, %, не более |
70 |
|
Температура отработанной серной кислоты, єС |
160 - 180 |
|
Температура низа колонны, єС |
180 - 200 |
|
Температура верха колонны, єС |
150 - 165 |
При нагревании водных растворов серной кислоты составы паровой и жидкой фаз неодинаковые - паровая фаза содержит больше воды, чем жидкая. При нагревании водных растворов серной кислоты, и, следовательно, массовая доля серной кислоты в растворе повышается.
С повышением массовой доли серной кислоты разность между количеством жидкой и паровой фаз уменьшается (рис. 2.3).
Так, например, если в парах над серной кислотой с массовой долей 80 % содержатся только следы серной кислоты, то над серной кислотой с массовой долей 90 % в парах ее содержится примерно 10 %, а над серной кислотой с массовой долей 98,3 % состав паровой и жидкой фаз неодинаков. Это хорошо видно на диаграмме кипения водных растворов серной кислоты при 0,098 МПа.
С повышением массовой доли растворов /1/ серной кислоты температура ее кипения повышается. Кривая температур кипения растворов серной кислоты имеет экстремум, где обе кривые, определяющие состав жидкой и паровой фаз, сливаются, следовательно, состав их одинаков. Состав газовой фазы над 98,3 % - ной серной кислотой (т. е. моногидратом и олеумом) также отличается от жидкой фазы, в газовой фазе содержится больше серной кислоты или сернистого ангидрида, чем в жидкой.
При упаривании концентрированной серной кислоты и олеума при достижении 98,3 % - ной серной кислоты содержание серной кислоты в растворе остается постоянным
Вследствие образования азеотропной смеси теоретически массовая доля серной кислоты может быть повышена простым выпариванием до 98,3 % - ной практически же ее доводят не более, чем до 96 %.
Рисунок 2.3 - Диаграмма состава пара над жидкой серной кислотой при
температуре кипения и давлении 1атм (0,098 МПа)
При концентрировании серной кислоты протекают 2 основных процесса: испарение воды и передача теплоты.
В данном производстве используется установка с непосредственным обогревом кислоты. В концентраторе вихревого типа с соприкосновением горючих топочных газов и кислоты обеспечивается высокая интенсивность процессов массо - и теплопередачи.
Однако недостатком этого метода является туманообразование /4/ серной кислоты и разложение ее по формуле:
H2SO4 > SO2 + Ѕ О2 + Н2О (2.30)
Данный метод несмотря на свои недостатки нашел широкое применение в производстве нитратов целлюлозы, производимые на территории ФКП КГКПЗ.
Раскисление серной кислоты при ее концентрировании.
Серная кислота, поступающая на концентрирование, обычно содержит примеси тех продуктов, в производстве которых она была применена. Серная кислота, полученная после концентрирования слабой азотной кислоты, содержит до 0,03 % окислов азота и азотной кислоты.
При концентрировании серной кислоты примеси в отдельных случаях вызывают значительное раскисление /4/ серной кислоты до сернистого ангидрида, что приводит к большим потерям серной кислоты при ее упарке.
Раскисление в основном идет за счет углерода по уравнению:
2 H2SO4 + С > СО2 + 2SO2 + 2 Н2О (2.31)
Поэтому даже при концентрировании сравнительно чистых, свободных от органических примесей растворов серной кислоты частицы несгоревшего топлива приводят к значительному разложению серной кислоты. Ракисление при концентрировании серной кислоты в отдельных случаях сопровождается обильным вспениванием кислоты, что осложняет процесс концентрирования.
2.3.1 ПРИНЦИП ДЕЙСТВИЯ И НАЗНАЧЕНИЕ ОСНОВНОГО ОБРУДОВАНИЯ
1. Концентрационная колонна типа ГБХ (поз.1) состоит из отдельных царг, изготовленных из ферросилида. Каждая царга /3/ отливается в месте с днищем (тарелкой), переходящим в центре в горловину. Горловина тарелки закрывается круглым зубчатым колпачком для барботирования паров через слой жидкости. На горловине сделаны приливы. Жидкость перетекает с тарелки на тарелку через переточные трубки, расположенные поочередно с противоположных сторон от центра тарелки.
Некоторые царги отливаются вместе со штуцерами для ввода и вывода азотной и концентрированной серной кислоты. Нижняя царга является одновременно промежуточным сборником отработанной кислоты. В эту же царгу подается острый пар для денитрации разбавленной серной кислоты. Царги колонны собираются на прокладках из асбеста и зажимаются фланцами при помощи длинных болтов.
Колонна состоит из 20 царг. Габаритная высота ее 6925 мм, диаметр 980 мм, высота одной царги 250 мм (кроме нижней и верхней царг, имеющих высоту 600 мм и 645 мм ). Толщина стенки царги 25 мм, диаметр колпака 480 мм.
Перед пуском агрегата колонну разогревают паровоздушной смесью. Затем включают выхлопной вентилятор, создают в колонне вакуум порядка 15-20 мм рт.ст и через нижний штуцер подают пар низкого давления и атмосферный воздух. Начальная температура такой паровоздушной смеси. Начальная температура такой паровоздушной смеси не должна превышать 50єС. Дальнейшее повышение температуры смеси проводится равномерно, без скачков, со скоростью 10єС за 15 мин. Через 2-3 часа нагревания в верхней царге достигается температура 80 - 90єС, при этом температура паровоздушной смеси должна быть около 150єС. Затем уменьшают подсос воздуха и повышают температуру смеси. В колонну для промывки парового конденсата подают концентрированную серную кислоту. Тепло, выделяющееся при разбавлении H2SO4 конденсатом, а также физическое тепло пара расходуется на поддержание в верхней части колонны температуры не ниже 80єС.
В разогретую колонну постепенно подают разбавленную азотную кислоту, доводя нагрузку агрегата до нормальной. Период пуска агрегата до установления полной нагрузки и нормального режима составляет до 10 часов. Такой длительный пусковой период обусловлен хрупкостью ферросилида и большой чувствительностью его к изменениям температуры.
2. Конденсатор (поз.2) предназначен /3/ для конденсации парообразной крепкой азотной кислоты. Он выполнен из ферросилидовых труб в количестве 64 штук с размерами: h = 2000 м, D = 1000 мм.
Тип - оросительный. Имеются кольца Рашига. Размеры холодильника: h = 2780 мм, D = 560 мм, F = 65мм2.
3. Холодильник - конденсатор (поз.3) предназначен для охлаждения и конденсации нитрозных газов. Представляет собой вертикально-установленный стальной цилиндр с двумя трубными решетками, в которых развальцована 121 труба из кислотоупорной стали, концы цилиндра заканчиваются газовыми коробками для прохождения нитрозных газов.
Размеры холодильника: h = 3290 мм, D = 690 мм, F = 50 м2.
4. Абсорбер (поз.4) предназначен для получения слабой азотной кислоты. Колонна представляет собой стальной цилиндр из кислотоупорной стали размерами: h = 6800 мм, D = 700 мм, F = 75м2.
В нижней части колонна имеет колосники и решетку из кислотоупорной стали 12Х18Н10Т. На колосниковой решетке установлено пять рядов колец «Аурги» с размерами 75 х 75 мм, а сверху насыпаны кольца Рашига. Башня закрыта крышкой из кислотоупорной стали, на которой смонтированы оросители разбрызгивающего типа.
5. Напорный [3] бак (поз.5 1 - 3) представляет собой алюминиевый цилиндр с размерами: h = 2700мм, D = 700 и предназначен для приемки отработанной кислоты из 3-его цеха, серной кислоты после ее концентрирования, и готовой азотной кислоты, далее поступающие в производство концентрированной азотной кислоты.
6. Сборный бак (поз.6 1 - 3) представляет собой алюминиевый цилиндр с размерами: h = 2700мм, D = 700 и предназначен для приемки отработанной кислоты из 3-его цеха, серной кислоты после ее концентрирования, и готовой азотной кислоты
7. Абсорбционная башня (поз.9) предназначена для получения слабой азотной кислоты. Башня представляет собой стальной цилиндр из кислотоупорной стали с размерами: h = 11800 мм, d = 3700 мм. В нижней части башня имеет колосники и решетку из кислотоупорной стали 12Х18Н10Т. На колосниковой установлено пять рядов колец «Аурги» с размерами 75 Ч 75 мм, а сверху насыпаны кольца «Рашига». Башня закрыта крышкой из кислотоупорной стали, на которой смонтированы оросители разбрызгивающего типа.
8. Топка (поз.12) предназначена для сжигания топлива, представляющая собой стальной барабан с размерами: диаметр d = 2800 мм, длина L = 6200 мм.
Внутри топка футерована огнеупорным кирпичом. Условно топка разделена на 2 камеры:
а) Камера горения, где происходит сгорание топлива;
б) Камера смешения, где происходит смешение горячих топочных газов с холодным воздухом.
Топка работает под давлением. Спереди установлен стальной короб, в котором вентилятором воздуходувки подается воздух.
Для регулировки подаваемого воздуха и создания вихревого движения при горении в горловине установлен завихритель конструкции Котляренко. - завод «Пластмасс», г. Котовск..
9. Холодильник (поз.18) серной кислоты /3/ предназначен для охлаждения продукционной серной кислоты до температуры 60 - 95 єС.
Техническая характеристика холодильника /3/ продукционной серной кислоты:
1. Производительность по продукционной серной кислоте 80 - 120 т/сут
2. Расход охлаждающей воды в холодильник: 12,5 м3 / ч
3. Поверхность фторопластовых охлаждающих элементов: 24 м2
Размеры холодильника:
Высота - 1515 мм
Диаметр - 3300 мм 2
4. Общий вес холодильника - 6000 кг
5. Материал корпуса холодильника: Ст. 3 и изнутри футерован кислотоупорным кирпичом и кислотоупорной плиткой.
Охлаждающие элементы изготовлены из фторопластовых трубок.
Теплообменник фторопластовый: поверхность - 12 м2
10. Концентратор отработанной серной кислоты вихревого типа (БМСКХ) предназначен для концентрирования серной кислоты, состоящий из пяти рабочих ступеней, трех абсорбционных ступеней и одной брызгоуловительной ступени (поз.13). Работа вихревой колонны концентрирования серной кислоты основана на следующих принципах:
1. Применение прямоточного взаимодействия газовой и жидкой фаз в зоне контакта при сохранении противоточного движения потока по аппарату в целом.
2. Использование вихревого движения /3/ газожидкостного потока в зоне контакта фаз, обеспечивающего максимальную турбулизацию потока, обновление межфазной поверхности, широкий диапазон устойчивости работы контактных ступеней, а также эффективную сепарацию жидкости в поле центробежных сил.
3. Применение восходящего движения фаз в зоне контакта, обеспечивающего минимальный диаметр многоступенчатых аппаратов.
Принцип прямоточного движения газовой и жидкой фаз осуществляется в вихревом контактном устройстве (графическая часть), состоящем из тарелки, на которой установлен завихритель, и контактного патрубка. Завихритель газового потока расположен внутри контактного патрубка и изготовлен в виде глухого цилиндра, имеющего 8 тангенциально расположенных лопаток, образующие между собой тангенциальные щели для прохода жидкости. Завихритель расположен на нижней царге, а контактный патрубок на верхней царге 2 - ой ступени. Подача жидкости на ступень осуществляется в нижнюю царгу, а ее вывод из верхней царги.
Контактируемый газ входит в щель между лопатками завихрителя и приобретает вращательное движение. Серная кислота из вышележащей ступени по линии перетока поступает на нижнюю царгу ступени, протекает через прорези контактного патрубка во внутреннюю полость между завихрителем и внутренней стенкой контактного патрубка. Поток кислоты разделяется на две части. Часть кислоты эжектируется внутрь завихрителя и вылетает из него в виде капель и струй. Основная доля жидкости раскручивается газожидкостным потоком и движется по спирали вверх по внутренней стенке контактного патрубка. При этом жидкостная пленка непрерывно бомбардируется каплями и струями кислоты, вылетающими из завихрителя, и непрерывно многократно обновляет свою поверхность. Выходящий из щели завихрителя свежий газовый поток образует вихри жидкости, которые сливаются и движутся по спирали в восходящем потоке в виде высокотурбулизированного слоя жидкости, основная часть которой затем отсекается от газового потока под вышележащей царгой, служащей отбойником. Часть серной кислоты уносится газовым потоком на вышележащие ступени. Количество уносимой кислоты определяется расходами газовой и жидкой фаз, поступающих на ступень. За счет уноса определенного количества серной кислоты со ступени на ступень осуществляется такое распределение концентраций серной кислоты на ступенях, при котором величины пересыщения паров серной кислоты на ступенях не достигают критических значений и исключаются условия образования тумана серной кислоты. Отсепарированная на верхней царге серная кислота перетекает через внешний гидрозатвор на нижнюю царгу нижележащей ступени.
Серная кислота перетекает со ступени на ступень вниз, концентрируется и поступает в нижнюю часть колонны. На первой ступени кислота подхватывается газовым потоком и в виде капель и струй по тангенциальному каналу поступает в днище колонны, где раскручивается газовым потоком и поднимается в виде высокотурбулизированного слоя жидкости, струй, брызг по внутренней стенке днища колонны вверх, в зону сепарации по трубопроводу в холодильник.
Газовый поток, контактируя на ступенях с кислотой, отдаст ей свое тепло, освобождается от брызг кислоты на брызгоуловительных ступенях, и с содержанием кислых компонентов в пределах санитарных норм выбрасывается через трубу выброса газов в атмосферу.
3 РАСЧЕТНАЯ ЧАСТЬ
3.1 МАТЕРИАЛЬНЫЕ РСЧЕТЫ
3.1.1. МАТЕРИАЛЬНЫЕ РАСЧЕТЫ ОТДЕЛЕНИЯ ДЕНИТРАЦИИ И КОНЦЕНТРИРОВАНИЯ АЗОТНОЙ КИСЛОТЫ
Для расчета примем исходные условия: массовая доля азотной кислоты - 98 %, массовая доля отработанной серной кислоты - 70 %, массовая доля регенерированной серной кислоты - 92 %.
Состав отработанных кислот, поступающих на денитрацию /3/:
а) от нитрации HNO3 - 16 - 26 %
H2SO4 - 46 - 66 %
H2O - 18 - 28 %
б) от абсорбционной установки
HNO3 - 50 %
H2O - 50 %
Расчет составлен на 1 тонну условной отработанной кислоты, поступающей в колонну ГБХ, учитывая, что отработанная кислота составляет 80%, а смесь азотной кислоты и воды - 20 %.
Выбираем средний состав кислот: HNO3 - 27%, H2SO4 - 45%, H2O - 28%.
Принимаем, что в отработанной кислоте содержится 3% азотной кислоты в виде окислов азота связаны в нитрозилсерную кислоту по реакции:
2H2SO4 + N2O3 = 2HNSO5 + H2O (3.1)
В колону поступает:
HNO3 - 24,3 %
H2SO4 - 13,5 %
H2O - 58,3 %
N2O3 - 0,9 %
HNSO5 - 3 %
Всего - 100 %
В процессе разгонки кислотных смесей и гидролиза HNSO5 в колонне протекают следующие реакции:
- разложение HNSO5
2HNSO5 + H2O = 2H2SO4 + NO2 + NO (3.2)
- разложение HNO3
2HNO3 = 2NO2 + H2O + ЅO2 (3.3)
2HNO3 = N2 + H2O + 2 · ЅO2 (3.4)
- разложение N2O3
N2O3 (газ) = NO (газ) + NO2 (газ) (3.5)
В колонну ГБХ поступает:
1. Перерабатываемая кислотная смесь в количестве G ґ = 1000 кг, в том числе:
HNO3 - 243 кг
H2SO4 - 135 кг.
H2O - 583 кг.
N2O3 - 9 кг.
HNSO5 - 30 кг.
2. Регенерированная серная кислота с массовой долей 92 % G ґ = 1900 кг, в том числе воды g 1 = 1900 · 0,08 = 152 кг.
3. Вода в виде перегретого пара g 2 = ? g расх - ? g прих
4. Азотная кислота с массовой долей 98 % G ґ1 = 243 / 0,98 = 248 кг
Принимаем, что 3 % азотной кислоты разлагается на нитрозные газы и 1 % уносится с нитрозными газами.
Тогда из колоны выходит:
1. Азотная кислота с массовой долей 98 %:
G ґ2 = 98 % • G ґ1, (кг) (3.1)
где G ґ1 - количество азотной кислоты, поступающей в колонну.
G ґ2 = 0,98 • 248 = 243 кг
При этом с парами азотной кислоты уносится вода:
g 1 = 2 % · G ґ2 , (кг) (3.2)
где G ґ2 - количество азотной кислоты, выходящей из колонны.
g 1 = 243 · 0,02 = 4,86 кг
2. Нитрозные газы:
а) в колоне Ѕ количества (1,5 %) азотной кислоты разлагается до NO2 по реакции (3.3):
g 2 = 1,5 % · G ґ1 , (кг) (3.3)
g 1 = 0,015 · 248 = 3,72 кг
При этом образуются газообразные вещества,:
NO2 , (кг) (3.4)
где M 1 - молекулярная масса оксида азота (IV), кг/моль; M 4 - молекулярная масса азотной кислоты, кг/моль.
NO2 кг
H2O , (кг) (3.5)
где M 2 - молекулярная масса воды, кг/моль.
H2O кг
O2 , (кг) (3.6)
где M 3 - молекулярная масса кислорода, кг/моль.
O2 кг
б) По реакции (3.4) разлагается Ѕ количества (1,5 %) азотной кислоты до N2:
N2 , (кг) (3.7)
где M 5 - молекулярная масса азота, кг/моль.
N2 кг
H2O , (кг) (3.8)
где M 2 - молекулярная масса воды, кг/моль.
H2O кг
O2 , ( кг) (3.9)
где M 3 - молекулярная масса кислорода, кг/моль.
O2 кг
3. При разложении N2O3 по реакции (3.5):
NO2 , (кг) (3.10)
где M 5 - молекулярная масса оксида азота (IV), кг/моль; M 4 - молекулярная масса оксида азота (VI), кг/моль.
NO2 кг
NO , (кг) (3.11)
где M 7 - молекулярная масса оксида азота (II), кг/моль; M 4 - молекулярная масса оксида азота (VI), кг/моль.
NO кг
4. При разложении нитрозилсерной кислоты по реакции (3.2):
NO2 , (кг) (3.12)
где M 1 - молекулярная масса оксида азота (IV), кг/моль; M 4 - молекулярная масса нитрозилсерной кислоты, кг/моль.
NO2 кг
NO , (кг) (3.13)
где M 7 - молекулярная масса оксида азота (II), кг/моль; M 4 - молекулярная масса оксида азота (VI), кг/моль.
NO кг
Выделившаяся в процессе реакции серная кислота вновь войдет в состав отработанной кислоты и ее количество составит 154 кг.
5. С нитрозными газами уносится 1 % азотной кислоты:
G ґ3 = 1 % · G ґ1 , (кг) (3.14)
где G ґ1 - количество азотной кислоты, поступающей в колону.
G ґ3 = 0,01 · 248 = 2,48 кг
6. Слабая серная кислота с массовой долей 70 %.
В колону поступает с кислотной смесью моногидрата H2SO4 - 154 кг и 1900 кг с массовой долей 92 %. Тогда жидкостная нагрузка по серной кислоте:
G ґ3 = кг
При этом с этой кислотой уносится воды:
g 3 = 30 % · G ґ3 , (кг) (3.15)
G ґ3 - жидкостная нагрузка по серной кислоте, кг.
g 3 = 0,3 · 2720 = 816 кг. Принимаем g 3 = 820 кг.
В результате гидролиза получается следующее количество сухих нитрозных газов (без учета подсоса воздуха):
O2 = NO2 = 2,72 + 5,45 + 5,43 = 13,6 кг
или NO2 = 13,6 • 22,4 / 46 = 6,62 нм
NO = 3,55 + 3,54 = 7,09 кг
или NO = 7,09 · 22,4 / 30 = 5,3 нм
N2 = 0,53 + 0,53 = 1,06 кг
или N2 = 1,06 • 22,4 / 28 = 0,85 нм
O2 = 0,47 + 2,36 = 2,83 кг
или O2 = 2,83 · 22,4 / 32 = 1,981 нм
HNO3 = 2,48 кг
HNO3 = 2,48 · 22,4 / 63 = 0,88 нм
Всего: 24,58 кг или 14,76 нм.
4. Воздух, подсасываемый из помещения:
Принимаем, что подсасываемый воздух поступает при t = 20 єС с относитель-ной влажностью 70%. Подсос воздуха через неплотности соединений царг принимаем равным 100 % объема сухих газов. Тогда V подс = 14,76 нм..
Подобные документы
Основные стадии производственного процесса получения серной кислоты методом двойного контактирования с промежуточной абсорбцией. Автоматизация системы управления производством серной кислоты. Надежность подсистем процесса автоматического управления.
дипломная работа [261,2 K], добавлен 13.11.2011Процесс концентрирования серной кислоты, описание технологической схемы и оборудования. Расчет материального и теплового баланса основного проектируемого аппарата, расчет вспомогательного аппарата. Расчет потребности сырья и численности рабочих.
дипломная работа [206,6 K], добавлен 20.10.2011Технологическая схема производства серной кислоты и ее описание. Предельно-допустимые концентрации газов, паров и пыли в производстве серной кислоты. Отходы производства и способы их утилизации. Конструкция олеумного и моногидратного абсорберов.
реферат [1,0 M], добавлен 23.12.2015Выпаривание как процесс концентрирования растворов нелетучего вещества путем удаления жидкого летучего растворителя в виде пара, варианты реализации данного процесса и его обеспечение. Выбор конструкции аппарата, его критерии. Тепловые нагрузки корпусов.
курсовая работа [760,4 K], добавлен 03.06.2011Технологический процесс получения сернистого ангидрида при производстве серной кислоты. Таблица режимных, рецептурных параметров. Характеристики основного оборудования. Описание функциональной схемы автоматизации. Обоснование выбора средств автоматизации.
курсовая работа [47,2 K], добавлен 18.12.2008Серная кислота: физико-химические свойства и применение. Характеристика исходного сырья. Технологическая схема производства серной кислоты контактным способом. Расчет материального баланса процесса. Тепловой баланс печи обжига колчедана в кипящем слое.
курсовая работа [520,8 K], добавлен 10.06.2015Характеристика производимой продукции предприятия. Характеристика сырья для получения серной кислоты. Материально-тепловой расчет контактного аппарата. Увеличение температуры при окислении двуокиси серы. Расчет контактного аппарата на ветровую нагрузку.
курсовая работа [114,2 K], добавлен 21.10.2013Технологическая схема производства серной кислоты: краткое описание процесса, функциональная и операторная схема. Этапы сернокислого производства. Получение обжигового газа из серы. Контактное окисление диоксида серы. Материальный расчет, показатели.
курсовая работа [1,4 M], добавлен 23.02.2015Технология производства серной кислоты и продуктов на ее основе. Разработка конструкции узлов котла-утилизатора. Механизация обслуживания и ремонтных работ участка котла-утилизатора. Разработка технологического процесса изготовления "барабана канатного".
дипломная работа [774,9 K], добавлен 09.11.2016Виды и характеристика удобрений из отработанной серной кислоты. Эффективность азотных удобрений и пути ее повышения. Особенности фосфорных удобрений. Удобрение из осадков сточных вод. Процесс выделения алюминия и других металлов из зольной пыли.
курсовая работа [179,0 K], добавлен 11.10.2010