Основы робототехники
Автоматическая машина, состоящая из манипулятора и устройства программного управления его движением. Назначение и применение промышленного робота. Структурная схема антропоморфного манипулятора. Задачи механики манипуляторов и ее кинематический анализ.
Рубрика | Производство и технологии |
Вид | реферат |
Язык | русский |
Дата добавления | 09.12.2010 |
Размер файла | 179,3 K |
Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже
Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.
Промышленный робот - автоматическая машина, состоящая из манипулятора и устройства программного управления его движением, предназначенная для замены человека при выполнении основных и вспомогательных операций в производственных процессах.
Манипулятор - совокупность пространственного рычажного механизма и системы приводов, осуществляющая под управлением программируемого автоматического устройства или человека-оператора действия (манипуляции), аналогичные действиям руки человека.
Назначение и область применения
Промышленные роботы предназначены для замены человека при выполнении основных и вспомогательных технологических операций в процессе промышленного производства. При этом решается важная социальная задача - освобождения человека от работ, связанных с опасностями для здоровья или с тяжелым физическим трудом, а также от простых монотонных операций, не требующих высокой квалификации. Гибкие автоматизированные производства, создаваемые на базе промышленных роботов, позволяют решать задачи автоматизации на предприятиях с широкой номенклатурой продукции при мелкосерийном и штучном производстве. Копирующие манипуляторы, управляемые человеком-оператором, необходимы при выполнении различных работ с радиоактивными материалами. Кроме того, эти устройства незаменимы при выполнении работ в космосе, под водой, в химически активных средах. Таким образом, промышленные роботы и копирующие манипуляторы являются важными составными частями современного промышленного производства. Также они используются в лесной промышленности для погрузки и разгрузки пачек деревьев.
Основные понятия и определения. Структура манипуляторов
Формула строения - математическая запись структурной схемы манипулятора, содержащая информацию о числе его подвижностей, виде кинематических пар и их ориентации относительно осей базовой системы координат (системы, связанной с неподвижным звеном).
Движения, которые обеспечиваются манипулятором, делятся на:
· глобальные (для роботов с подвижным основанием) - движения стойки манипулятора, которые существенно превышают размеры механизма;
· региональные (транспортные) - движения, обеспечиваемые первыми тремя звеньями манипулятора или его "рукой", величина которых сопоставима с размерами механизма;
· локальные (ориентирующие) - движения, обеспечиваемые звеньями манипулятора, которые образуют его "кисть", величина которых значительно меньше размеров механизма.
В соответствии с этой классификацией движений, в манипуляторе можно выделить два участка кинематической цепи с различными функциями: механизм руки и механизм кисти. Под "рукой" понимают ту часть манипулятора, которая обеспечивает перемещение центра захвата - точки М (региональные движения захвата); под "кистью" - те звенья и пары, которые обеспечивают ориентацию захвата (локальные движения захвата).
Рассмотрим структурную схему антропоморфного манипулятора, то есть схему которая в первом приближении соответствует механизму руки человека (рис.1)
Рисунок 1. Схема манипулятора.
Этот механизм состоит из трех подвижных звеньев и трех кинематических пар: двух трехподвижных сферических А3сф и С3сф и одной одноподвижной вращательной В1в.
Рабочее пространство манипулятора - часть пространства, ограниченная поверхностями огибающими к множеству возможных положений его звеньев.
Зона обслуживания манипулятора - часть пространства соответствующая множеству возможных положений центра схвата манипулятора. Зона обслуживания является важной характеристикой манипулятора. Она определяется структурой и системой координат руки манипулятора, а также конструктивными ограничениями наложенными относительные перемещения звеньев в КП.
Подвижность манипулятора W - число независимых обобщенных координат однозначно определяющее положение захвата в пространстве:
или для незамкнутых кинематических цепей:
Маневренность манипулятора М - подвижность манипулятора при зафиксированном (неподвижном) захвате:
Структура кинематической цепи манипулятора должна обеспечивать требуемое перемещение объекта в пространстве с заданной ориентацией. Для этого необходимо, чтобы схват манипулятора имел возможность выпонять движения минимум по шести координатам: трем линейным и трем угловым. Рассмотрим на объекте манипулирования точку М, которая совпадает с центром схвата. Положение объекта в неподвижной (базовой) системе координат 0x0y0z0 определяется радиусом-вектором точки М и ориентацией единичного вектора с началом в этой точке. В математике положение точки в пространстве задается в одной из трех систем координат:
· прямоугольной декартовой с координатами xM, yM, zM;
· цилиндрической с координатами rsM, j M, zM;
· сферической с координатами rM, j M, q M.
Ориентация объекта в пространстве задается углами a, b и g, которые вектор ориентации образует с осями базовой системы координат. На рис. 2 дана схема шести подвижного манипулятора с вращательными кинематическими парами с координатами объекта манипулирования.
Рисунок 2. Схема шести подвижного манипулятора с вращательными кинематическими парами с координатами объекта манипулирования.
При структурном синтезе механизма манипулятора необходимо учитывать следующее:
· кинематические пары манипуляторов снабжаются приводами, включающими двигатели и тормозные устройства, поэтому в схемах манипуляторов обычно используются одноподвижные кинематические пары: вращательные или поступательные;
· необходимо обеспечить не только заданную подвижность свата манипулятора, но и такую ориентацию осей кинематических пар, которая обеспечивала необходимую форму зоны обслуживания, а также простоту и удобство программирования его движений;
· при выборе ориентации кинематических пар необходимо учитывать расположение приводов (на основании или на подвижных звеньях), а также способ уравновешивания сил веса звеньев.
Задачи механики манипуляторов
К основным задачам механики манипуляторов можно отнести:
· разработку методов синтеза и анализа исполнительных механизмов (включая механизмы приводов);
· программирование движения манипулятора;
· расчет управляющих усилий и реакций в КП;
· уравновешивание механизмов манипуляторов;
· другие задачи.
Эти задачи решаются на базе общих методов исследования структуры, геометрии, кинематики и динамики систем с пространственными многоподвижными механизмами. Каждая из рассматриваемых задач может быть сформулирована как прямая (задача анализа) или как обратная (задача синтеза). При определении функций положения механизма, в прямой задаче находят закон изменения абсолютных координат выходного звена по заданным законам изменения относительных или абсолютных координат звеньев. В обратной - по заданному закону движения схвата находят законы изменения координат звеньев, обычно, линейных или угловых перемещений в приводах. Решение обратной задачи или задачи синтеза более сложно, так как часто она имеет множество допустимых решений, из которых необходимо выбрать оптимальное. В обратной задаче кинематики по требуемому закону изменения скоростей и ускорений выходного звена определяются соответствующие законы изменения скоростей и ускорений в приводах манипулятора. Обратная задача динамики заключается в определении закона изменения управляющих сил и моментов в приводах, обеспечивающих заданный закон движения выходного звена.
Кинематический анализ механизма манипулятора
Первая и основная задача кинематики - определение функции положения. Для пространственных механизмов наиболее эффективными методами решения этой задачи являются векторный метод и метод преобразования координат. При решении прямой задачи о положении захвата манипулятора обычно используют метод преобразования координат. Из множества методов преобразования координат [ 1, 2 ] , которые отличаются друг от друга правилами выбора осей локальных систем координат, для манипуляторов обычно используется метод Денавита и Хартенберга.
Опишем два вида матриц:
· матрицы М, определяющие отношение между системами координат соседних звеньев;
· матрицы Т, определяющие положение и ориентацию каждого звена механизма в неподвижной или базовой системе координат.
Воспользуемся однородными координатами трехмерного проективного пространства РR3, в которых движение евклидова пространства R3 можно представить линейным преобразованием:
где: Мij - матрица 4x4 вида
Это преобразование эквивалентно преобразованию в эвклидовом пространстве где .То есть преобра-зованию, которое включает поворот, определяемый матрицей Uij размерностью 3х3, и параллельный перенос, задаваемый вектором размерностью 3. В однородном пространстве положение точки будут определять не три x, y и z, а четыре величины x', y', z' и t', которые удовлетворяют следующим соотношениям:
x = x'/t', y = y'/t', z = z'/t'.
Обычно принимают t'=1. У матрицы поворота Uij элементами uij являются направляющие косинусы углов между новой осью i и старой осью j. Вектор
- трехмерный вектор, определяющий положение начала новой системы координат i в старой системе j. Выбор расположения осей должен соответствовать решаемой задаче. При решении задачи о положениях необходимо: в прямой задаче определить положение выходного звена как функцию перемещений в приводах, в обратной - заданное положение выходного звена представить как функцию перемещений в приводах. Выбор расположения и ориентации локальных систем координат должен обеспечивать выполнение этих задач. При использовании метода Денавита и Хартенберга оси координат располагаются по следующим правилам:
1. Для звена i ось zi направляется по оси кинематической пары, образуемой им со звеном (i+1). Начало координат размещают в геометрическом центре этой пары.
2. Ось xi направляется по общему перпендикуляру к осям zi-1 и zi с направлением от zi-1 к zi. Если оси zi-1 и zi совпадают, то xi перпендикулярна к ним и направлена произвольно. Если они пересекаются в центре кинематической пары, то начало координат располагается в точке пересечения, а ось xi направляется по правилу векторного произведения (кратчайший поворот оси zi до совмещения с zi-1 при наблюдении с конца xi должен происходить против часовой стрелки).
3. Ось yi направляется так, чтобы система координат была правой.
В прямой задаче необходимо определить положение схвата манипулятора и связанной с ним системы координат Mxnynzn по отношению к неподвижной или базовой системе координат Kx0y0z0. Это осуществляется последовательными переходами из системы координат звена i в систему координат звена i-1. Согласно принятому методу, каждый переход включает в себя последовательность четырех движений: двух поворотов и двух параллельных переносов, осуществляемых в указанной последовательности (рис. 3):
· поворот i-ой системы вокруг оси xi на угол -qi до параллельности осей zi и zi-1 (положительное направление поворота при наблюдении с конца вектора xi против часовой стрелки);
· перенос вдоль оси xi на величину -ai до совмещения начала системы координат Oi с точкой пересечения осей xi и zi-1 (отсчет по оси xi от точки пересечения оси xi и оси zi-1);
Рисунок 3. Схема манипулятора перехода из звена i в i-1.
· перенос вдоль оси zi-1 на величину -si, после которого начало системы координат Oi оказывается в начале координат Oi-1 системы (i-1) (отсчитывается по оси zi-1 от ее начала координат Oi-1 до точки ее пересечения с осью xi);
· поворот вокруг оси zi-1 на угол -ji, до тех пор пока ось xi не станет параллельной оси xi-1 (положительное направление поворота при наблюдении с конца вектора zi-1 против часовой стрелки).
Необходимо отметить, что знак угла поворота не имеет значения, так как в матрицах перехода используются направляющие косинусы (четные функции). Целесообразно рассматривать угол, обеспечивающий кратчайший поворот оси старой системы i до совмещения (параллельности) с соответствующей осью новой (i-1). Перемещения начала координат определяются как координаты начала старой системы Oi в новой Oi-1.
В манипуляторах обычно используются одноподвижные кинематические пары или вращательные, или поступательные. Оба относительных движения как вращательное, так и поступательное, реализуются в цилиндрических парах. Поэтому при общем представлении механизма используются (рис. 3) цилиндрические пары.
Матрицы перехода их системы Oi в систему Oi-1 можно записать так:
где:
- матрица поворота вокруг
оси xi на угол -qi,
-матрица переноса вдоль оси xi на -ai,
-матрица переноса вдоль оси zi-1 на -si,
- матрица поворота вокруг оси zi-1 на уг угол -ji.
В этих матрицах переменные si и ji соответствуют относительным перемещениям звеньев в кинематических парах и являются обобщенными координатами манипулятора, определяющими конфигурацию механизма в рассматриваемом положении. Переменные ai и qi определяются конструктивным исполнением звеньев манипулятора, в процессе движения они остаются неизменными.
Положение некоторой произвольной точки М в системе координат звена i определяется вектором rMi, а в системе координат звена (i-1) - вектором rMi-1. Эти радиусы связаны между собой через матрицу преобразования координат Мi следующим уравнением:
где:
Mi - матрица перехода из i-ой системы координат в (i - 1)-ю.
Точность манипуляторов ПР
Точность манипуляторов определяется погрешностями позиционирования характеристической точки захвата (точка М) и погрешностями угловой ориентации захвата. Погрешности позиционирования определяются технологическими отклонениями размеров звеньев манипулятора, зазорами в кинематических парах манипулятора и механизмов приводов, деформациями (упругими и температурными) звеньев, а также погрешностями системы управления и датчиков обратной связи. В паспортных данных манипуляторов указывается максимально допустимое отклонение центра захвата манипулятора точки М от ее номинального расположения на множестве возможных конфигураций механизма. В результате погрешностей точка М описывает в пространстве некоторый эллипсоид, который называется эллипсоидом отклонений (рис. 4).
Рисунок 4. Схема манипулятора в пространстве.
Подобные документы
Структурная схема механизма робота-манипулятора в пространстве. Определение степени подвижности механизма робота-манипулятора. Анализ движения механизма робота-манипулятора и определения время цикла его работы. Определение и построение зоны обслуживания.
курсовая работа [287,4 K], добавлен 06.04.2012- Анализ конструкции манипулятора с двумя вращательными и двумя поступательными кинематическими парами
Структурный, кинематический и динамический анализ манипулятора. Расчет параметров зоны обслуживания устройства, скоростей и ускорений. Определение геометрических характеристик поперечного сечения звеньев манипулятора с учетом характера и вида нагружения.
курсовая работа [908,4 K], добавлен 19.06.2012 Использование промышленных роботов в процессе производства с опасными условиями труда. Разработка манипулятора: структурная схема механизма: определение уравнений движения, скорости и ускорения; расчёты параметров робота, построение зоны обслуживания.
курсовая работа [541,9 K], добавлен 06.04.2012Организация надзора за безопасной эксплуатацией грузоподъемных кранов-манипуляторов. Признаки и нормы браковки стальных канатов. Назначение, допуск к самостоятельному выполнению работ в качестве оператора крана-манипулятора. Оказание первой помощи.
шпаргалка [155,1 K], добавлен 22.11.2011Технические характеристики манипулятора. Структура технического оборудования. Функциональная и электрическая схемы. Характеристика применяемых датчиков. Словесный алгоритм технологического цикла. Блок-схема алгоритма программы управления манипулятором.
курсовая работа [1,8 M], добавлен 20.12.2012Манипулятор - механизм для управления пространственным положением орудий и объектов труда, характеристика его оснащения. Расчёт параметров механической системы манипулятора типа ВПП. Процесс работы манипулятора, его кинематическая система и мощность.
курсовая работа [48,4 K], добавлен 27.08.2012Описание конструкции и принципа действия манипулятора. Разработка гидропривода подвода захвата манипулятора. Определение потерь давления в аппаратах на этапе перемещения комплектов. Разработка технологического процесса изготовления приводной шестерни.
дипломная работа [483,5 K], добавлен 22.03.2018Описание схемы и расчет дифференциальных уравнений движения манипулятора с двумя степенями свободы. Кинематический анализ схемы и решение уравнений движения звеньев и угловых скоростей механизма. Реакции связей звеньев и мощность двигателя управления.
курсовая работа [3,2 M], добавлен 06.08.2013Кинематическая схема исполнительного механизма. Расчет сил трения и силового заклинивания в направляющих поступательного движения исполнительного механизма и выбор двигателя. Динамический расчет приводной системы. Наладка модуля фазового управления.
курсовая работа [1,1 M], добавлен 07.06.2014Служебное назначение и особенность конструкции. Основные характеристики промышленного робота, параметры движения осей. Классификация по техническим характеристикам. Строение и структурный анализ. Основные параметры структурной схемы манипулятора.
курсовая работа [1,9 M], добавлен 20.06.2014