Способы производства и методы модификации резиновой смеси для производства сальника реактивной штанги с целью уменьшения себестоимости и увеличения производительности

Разновидности каучука, особенности его применения в промышленности и технологии изготовления. Влияние введения дополнительных ингредиентов и использование вулканизации при изготовлении каучука на конечные свойства продукта. Охрана труда при работах.

Рубрика Производство и технологии
Вид дипломная работа
Язык русский
Дата добавления 20.08.2009
Размер файла 220,4 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

Задачей, сто щей перед изобретением, является расширение ассортимента наполнителей, используемых в резинотехнических смесях, удешевления их, а также утилизация отходов производства феррохрома.

Предложена резиновая смесь, включающая бутадиен-нитрильный каучук, серу, ускоритель вулканизации, оксид цинка, противостаритель, технический углерод, неорганический наполнитель и пластификатор, новым в которой является то, что в качестве неорганического наполнителя она содержит шлак феррохромовый саморассыпающийс (ТУ 14-11-181-95) при следующем соотношении компонентов (мас. ч.): бутадиен-нитрильный каучук - 100, сера - 1,5 - 2,1, ускоритель вулканизации - 0,8 - 1,3, оксид цинка - 3 - 5, противостаритель - 0,9 - 2,0, технический углерод - 60 - 80, шлак феррохромовый саморассыпающийс - 50 - 60, пластификатор - 10 - 30.

Исследования, проведенные Институтом резины и резинотехнических изделий (г. Екатеринбург) на базе своей лаборатории и на базе Уральского завода РТИ, показали, что использование шлака феррохромового саморассыпающегося в качестве наполнителя резиновых смесей вместо мела, талька, каолина не ухудшает качества резинотехнических смесей, сохраняются их пластоэластические, физико-механические показатели. Вулканизационные характеристики оценивали на приборе фирмы Монсанто, резиновые смеси также испытывали на истирание, эластичность по Шобу, сопротивление раздиру, стойкость к старению и другие показатели. Результаты испытаний приведены в таблице.

Поиск, проведенный по источникам научно-технической и патентной информации, не вы вил источников, содержащих совокупность предлагаемых признаков, что позвол ет сделать вывод о «новизне» и «существенных отличиях» предлагаемого изобретения.

Пример.

Смесь готовили традиционным методом, перемешивая следующие компоненты (мас. ч.): бутадиен-нитрильный каучук (СКН-40СМ) - 100, сера техническая - 2,0, ускоритель вулканизации - 2,2, дибензтиазолдисульфид - 1,25, оксид цинка - 5,0, противостаритель - синтетические жирные кислоты C17 - C21 - 1,0, технический углерод (П-803) - 64,75, шлак феррохромовый саморассыпающийся -

55,0, пластификатор - дибутилфталат - 20,0. В состав шлаков феррохромовых саморассыпающихся (ТУ 14-11-181-95, разработано Отделом металлургических шлаков АО «Уралмет») входит оксид кальция - не менее 46%, оксид магния - 7 - 16%, оксид кремни - 24 - 32%, оксид алюминия - 4 - 8%, оксид хрома - 2 - 6% - это отход производства феррохрома. Кроме вышеперечисленных компонентов в состав резиновой смеси могут входить - диафен - 1,0 и ацетонанил - 2,0. Изготовление смеси в услови х Института резин проводили на вальцах ЛБ 320 160/160, а в условиях Уральского завода РТИ на резиносмесителе 250/20.

Предлагаема резиновая смесь по своим свойствам не уступает резиновым смесям, в которых используют мел, каолин, тальк в качестве наполнителя, физико-механические и пластоэластические свойства смеси идентичны гостовским, технологическое поведение резиновой смеси при изготовлении на вальцах и резиносмесителе хорошие, при этом происходит удешевление смеси за счет того, что шлак феррохромовый саморассыпающийс в 5 раз дешевле каолина, в 2-3 раза дешевле мела и т.д. По качеству изделия, изготовленные на смеси, не уступают серийным. Одновременно решается проблема утилизации отходов, а следовательно, экологические проблемы.

Формула изобретения:

1. Резиновая смесь, включающая бутадиен-нитрильный каучук, серу, ускоритель вулканизации, оксид цинка, противостаритель, технический углерод, неорганический наполнитель и пластификатор, отличающаяся тем, что в качестве неорганического наполнителя она содержит шлак феррохромовый саморассыпающийся при следующем соотношении компонентов, мас. ч.:

Бутадиен-нитрильный каучук - 100,0

Сера - 1,5 - 2,1

Ускоритель вулканизации - 0,8 - 1,3

Оксид цинка - 3 - 5

Противостаритель - 0,9 - 2,0

Технический углерод - 60 - 80

Шлак феррохромовый саморассыпающийся - 50 - 60

Пластификатор - 10 - 30

Показатели

ТУ 005-216-75 (мел)

Изобретение ШФС

Известная резиновая смесь

Пластичность

0,3-0,5

0,38 (0,4)

0,33

Условная прочность при растяжении, кгс/см

н/м 80

98 (118)

87

Твердость Шор «А»

60-75

73

65

Температурный предел хрупкости

н/в -450

-24

-35

Относительное удлинение (%)

н/м 300

463 (484)

395

Заявка 2000102509/12 от 01.02.2000 г.

Дата начала действия патента 01.02.2000 г.

Дата публикации 20.08.2001 г.

Изобретатель: Остриков А.Н., Абрамов О.В., Рудометкин А.С.

Патентообладатель: Волжская государственная технологическая академия

Двухшнековый экструдер

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

Реферат:

Изобретение относится к переработке термопластичных материалов и может быть использовано в отраслях промышленности, применяющих экструзию. Двухшнековый экструдер содержит взаимозацепляющиеся вращающиеся шнеки, расположенные в рабочей камере, и матрицу. Рабочая камера включает загрузочное отверстие, зоны сжатия и гомогенизации, разделительные гребни и выходное отверстие. Выходное отверстие выполнено цилиндрическим, расположено в зонах гомогенизации и сжатия и соединено со сквозным каналом. В канале установлен с возможностью перемещения параллельно осям шнеков шток. Рабочий конец штока размещен в зоне гомогенизации под выходным отверстием. По первому варианту цилиндрическое выходное отверстие расположено на нижнем гребне при выполнении шнеков с возможностью вращения навстречу друг другу. По второму варианту канал с выходным отверстием и штоком расположен в верхнем и нижнем разделительных гребнях при выполнении шнеков с возможностью вращения в одном направлении. Изобретение позволяет стабилизировать давление в предматричной зоне экструдера при изменении технологических параметров процесса при экструзии различного исходного сырь.

Изобретение относится к переработке термопластичных материалов и может быть использовано в отраслях промышленности, применяющих экструзию.

Известен двухшнековый экструдер, содержащий два шнека, смонтированных в корпусе с возможностью взаимозацепления и вращения в одном направлении дл подачи исходного материала через первое и второе шнековые отверстия в корпусе, нагревания его, перемешивания и шприцевания, и устройство, регулирующее степень перемешивания [Авторское свидетельство СССР №1741606, кл. В 29 С 47/40, 15.05.92, Бюл. №22].

Недостатком такой конструкции является невозможность регулирования давления в предматричной зоне экструдера.

Наиболее близкой к предложенному является двухчервячная машина (экструдер) для переработки высоковязких полимеров, содержащая материальный цилиндр (рабочую камеру) с разделительными гребнями и загрузочным отверстием, расположенные в материальном цилиндре червяки (шнеки) и фильеру (матрицу), а также выполненный на нижнем разделительном гребне цилиндрический врез (выходное отверстие) [Авторское свидетельство СССР №1608073, кл. В 29 С 47/40, 23.11.90, Бюл. №43].

Недостатком данного устройства является невозможность «автоматического» регулирования величины давления (регулирование зазора между запорными шайбами и торцами шнеков производится регулировочными винтами вручную), что приводит к нестабильности процесса экструзии, и в свою очередь ведет к ухудшению качества получаемого продукта. Кроме того, известная установка является узкоспециализированной, предназначенной только для переработки высоковязких полимеров, что ограничивает область ее применения.

Технической задачей изобретения является стабилизация давления в предматричной зоне экструдера при изменении технологических параметров процесса в ходе экструдирования различного исходного сырь за счет отвода части продукта из предматричной зоны и направления ее в рабочую камеру.

Поставленная задача достигается тем, что в двухшнековом экструдере, содержащем взаимозацепляющиеся вращающиеся шнеки, расположенные в рабочей камере, включающей загрузочное отверстие, зоны сжатия и гомогенизации, разделительные гребни, выходное отверстие и матрицу, по первому варианту новым является то, что выходное отверстие выполнено цилиндрическим, расположено в зонах гомогенизации и сжатия и соединено со сквозным каналом, в котором установлен с возможностью перемещения параллельно ос м шнеков шток, рабочий конец которого размещен в зоне гомогенизации под выходным отверстием, причем цилиндрическое выходное отверстие расположено на нижнем гребне при выполнении шнеков с возможностью вращения навстречу друг другу.

В двухшнековом экструдере, содержащем взаимозацепляющиеся вращающиеся шнеки, расположенные в рабочей камере, включающей загрузочное отверстие, зоны сжатия и гомогенизации, разделительные гребни, выходное отверстие, и матрицу, по второму варианту новым является то, что выходное отверстие выполнено цилиндрическим, расположено в зонах гомогенизации и сжатия и соединено со сквозным каналом, в котором установлен с возможностью перемещения параллельно ос м шнеков шток, рабочий конец которого размещен в зоне гомогенизации, причем канал с выходным отверстием и штоком расположен в верхнем и нижнем разделительных гребнях при выполнении шнеков с возможностью вращения в одном направлении.

При нарушении устойчивого режима работы экструдера (пульсации производительности и давления, например, при наличии недостаточной однородности состава смеси) или изменении режима работы, при смене рецептуры смеси, требуется изменение количества отводимой части продукта из предматричной зоны.

В этом случае в предлагаемом устройстве предусматривается «автоматическое» регулирование проходного сечения выходного отверстия сквозного канала за счет пульсаций давления в предматричной зоне экструдера.

Формула изобретения:

1. Двухшнековый экструдер, содержащий взаимозацепляющиеся вращающиеся шнеки, расположенные в рабочей камере, включающей загрузочное отверстие, зоны сжатия и гомогенизации, разделительные гребни, выходное отверстие, и матрицу, отличающийся тем, что выходное отверстие выполнено цилиндрическим, расположено в зонах гомогенизации и сжатия и соединено со сквозным каналом, в котором установлен с возможностью перемещения параллельно осям шнеков шток, рабочий конец которого размещен в зоне гомогенизации под выходным отверстием, причем цилиндрическое выходное отверстие расположено на нижнем гребне при выполнении шнеков с возможностью вращения навстречу друг другу.

2. Двухшнековый экструдер, содержащий взаимозацепляющиеся вращающиеся шнеки, расположенные в рабочей камере, включающей загрузочное отверстие, зоны сжатия и гомогенизации, разделительные гребни, выходное отверстие, и матрицу, отличающийся тем, что выходное отверстие выполнено цилиндрическим, расположено в зонах гомогенизации и сжатия и соединено со сквозным каналом, в котором установлен с возможностью перемещения параллельно осям шнеков шток, рабочий конец которого размещен в зоне гомогенизации, причем канал с выходным отверстием и штоком расположен в верхнем и нижнем разделительных гребнях при выполнении шнеков с возможностью вращения в одном направлении.

Заявка 2000103592/04 от 14.02.2000 г.

Дата начала действия патента 14.02.2000 г.

Дата публикации 10.08.2002 г.

Изобретатель: Кузнецов А.А., Куликова О.А., Богач Е.В.

Патентообладатель: Волгоградское ОАО «Химпром»

Способ получения тонкой дисперсии полимерной серы в резиновой смеси.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

Реферат:

Изобретение относится к области технологии получения композиционных полимерных материалов. Смешивают резиновую смесь с полимерной серой в метастабильном состоянии, полученной термической полимеризацией серы в присутствии стабилизатора с последующей закалкой. В качестве стабилизатора используют гексахлорпараксилол или хлорциклогексан. Стабилизированную полимерную серу смешивают с предварительно приготовленной маточной резиновой смесью. Термическую полимеризацию проводят при 220-240o С в течение 2 ч, закалку проводят в 0,2-0,5%-ном водном растворе поливинилового спирта при температуре ниже 10o С в течение 1 ч. Способ по изобретению позволяет упростить технологию получения тонкой дисперсии полимерной серы в резиновой смеси.

Изобретение относится к области технологии получения композиционных полимерных материалов, в частности к области получения тонкой дисперсии полимерной серы, находящейся в метастабильном состоянии в резиновых смесях, предназначенных для изготовления изделий в резиновой, преимущественно в шинной промышленности.

Известен способ получения дисперсии полимерной серы в резиновых смесях путем введения высокомолекулярного вулканизующего агента, находящегося в кристаллическом состоянии, в резиновую смесь.

Недостатками данного способа получения дисперсии полимерной серы в резиновой смеси являются применение полимерной серы в виде мелкого порошка, имеющего тенденцию к образованию взрывоопасной пыли и агломератов, затрудняющих равномерное распределение вулканизующего агента.

Наиболее близким по технической сущности является способ получения дисперсии полимерной серы в резиновых смесях на основе натурального и бутадиен-стирольного каучуков. Полимерную серу применяют в метастабильном состоянии после стабилизации бромом, йодом или в виде сополимера с селеном или теллуром и закалки в охлажденной воде. Перед применением предусматривается удаление растворимой серы экстракцией сероуглеродом, хлорированными углеводородами или другими подходящими растворителями (патент США 5475059, кл С 08 F 28/02, 1995 г.).

Недостатками данного способа получения дисперсии серы в резиновых смесях являются сложность технологии, связанная с применением для получения полимерной серы чрезвычайно опасных (теллур) и высокоопасных (бром, йод и селен) веществ, а также необходимостью в ряде случаев экстракции растворимой серы. Полученная этим способом полимерная сера представляет собой бесформенную слипшуюся массу, что затрудняет процессы выделения и дальнейшей переработки.

При создании изобретения ставилась задача упростить технологию получения тонкой дисперсии полимерной серы в резиновых смесях.

Поставленная задача достигается тем, что в качестве стабилизаторов полимерной серы используют гексахлорпараксилол или хлорциклогексан, относящиеся к малоопасным и умеренноопасным веществам, а в качестве закалочной среды применяют 0,2-0,5%-ный водный раствор поливинилового спирта при температуре ниже 10o С. В результате чего получают готовую к применению гранулированную серу, содержащую 45-50% полимерной серы.

Проведение закалки полимерной серы в водном растворе поливинилового спирта, содержащем менее 0,2 мас.% защитного коллоида не позволяет обеспечить устойчивую к слипанию дисперсию, а использование раствора с концентрацией более 0,5% экономически нецелесообразно. Закалка при температуре выше 10o С малоэффективна и требует значительного увеличения продолжительности процесса.

Изобретение поясняется следующими примерами.

Пример 1.

В расплав 200 г. серы при температуре 140-150o С вводят 3 г (1,5% от массы серы) гексахлорпараксилола и нагревают реакционную массу до 220-240o С в течение 2 ч. После этого содержимое реактора давлением инертного газа перегружают в 2000 г. энергично перемешиваемого закалочного раствора при высокой температуре. Закалку проводят в 0,5%-ном водном растворе поливинилового спирта в течение 1 ч. Затем закалочный раствор отфильтровывают и сушат полученные гранулы. Получают 203 г. продукта, содержащего 50% полимерной серы. Полученную таким образом стабилизированную полимерную серу, находящуюся в метастабильном состоянии, направляют на приготовление резиновой смеси.

Смешение проводят в лабораторном смесителе со скоростью вращения роторов 60 об/мин в течение 60±5 с. Выгрузку резиновой смеси проводят при температуре 108±6o С. Получают однородную тонкую дисперсию полимерной серы в резиновой смеси с размером частиц полимерной серы не более 3 микрон.

Пример 2.

По методике, описанной в примере 1

проводят термическую полимеризацию 200 г. серы в присутствии 2 г хлорциклогексана (1% от массы серы). Закладку полимерной серы осуществляют в 0,2%-ном водном растворе поливинилового спирта при температуре 1-10o С. Получают 202 г. продукта, содержащего 45% полимерной серы.

Приготовление резиновой смеси осуществляют по рецептуре примера 1 в тех же условиях. Получают однородную тонкую дисперсию полимерной серы в резиновой смеси. Размер частиц вулканизующего агента не превышает 3 микрон.

Пример 3.

По методике, описанной в примере 1, проводят термическую полимеризацию 200 г. серы в присутствии 2 г гексахлорпараксилола (1% от массы серы). Закалку полимерной серы осуществляют в 0,3%-ном водном растворе поливинилового спирта при температуре 2-8o С. Получают 202 г. продукта, содержащего 48% полимерной серы.

Приготовление резиновой смеси осуществляют по рецептуре примера 1. Получают однородную тонкую дисперсию полимерной серы в резиновой смеси. Размер частиц вулканизующего агента не превышает 3 микрон.

Таким образом, предлагаемый способ позволяет упростить технологию получения тонкой дисперсии полимерной серы в резиновых смесях благодаря использованию в качестве стабилизаторов малоопасных и умеренно опасных хлорорганических соединений, таких как гексахлорпараксилол или хлорциклогексан, а в качестве закалочной среды 0,2-0,5% водного раствора поливинилового спирта, позволяющего избежать слипания частиц продукта в процессе закалки. Кроме этого, исключается необходимость экстракции циклооктасеры из вулканизующего агента.

Формула изобретения:

1. Способ получения тонкой дисперсии полимерной серы в резиновой смеси смешением ее с полимерной серой, находящейся в метастабильном состоянии и полученной термической полимеризацией серы в присутствии стабилизатора с последующей закалкой, отличающийся тем, что в качестве стабилизатора используют гексахлорпараксилол или хлорциклогексан и стабилизированную полимерную серу смешивают с предварительно приготовленной маточной резиновой смесью.

2. Способ по п. 1, отличающийся тем, что термическую полимеризацию серы проводят при температуре 220-240o С в течение 2 ч, а закалку проводят в 0,2-0,5%-ном водном растворе поливинилового спирта при температуре ниже 10o С в течение 1 ч.

Заявка 97111805/04 от 14.12.1995 г.

Дата начала действия патента 14.12.1995 г.

Дата публикации 20.08.2002 г.

Изобретатель: БЕЛЬМОН Джеймс А. (US), РИД Томас Фю (US)

Патентообладатель: КОБОТ КОРПОРЕЙШН (US)

Резиновые композиции на основе каучуков EPDM, HNBR и бутилкаучука, содержащих продукты сажи

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

Реферат:

Изобретение касается использования продуктов сажи в резиновых композициях на основе каучуков EPDM, HNBR и бутилкаучука. Резиновую композицию получают смешением 100 вес. ч. каучука и 10-300 вес. ч. продукта сажи, имеющего присоединенную органическую группу - Ar - (S) n - Ar', где Аr и Аr' - группа арилена и n в пределах 1-8. Дополнительно провод т вулканизацию смеси. Каучук выбран из группы - сополимер этилена, пропилена и диенового мономера (EPDM), частично и гидрированного сополимера нитрила акриловой кислоты и бутадиена (HNBR) и бутилкаучука. Также получают такую же резиновую композицию с продуктом сажи, имеющим присоединенную группу - Аr - (S) n-Аr», где Аr - группа арилена, Аr» - группа арила и n - в пределах 1-8, с дополнительной вулканизацией смеси. Технический результат состоит в увеличении модул резины и получении более связанной резины.

Настоящее изобретение касается использования продуктов сажи в резиновых композициях на основе каучуков EPDM, HNBR и бутилкаучука с целью увеличения модуля резины и получения более связанной резины, а также других ценных свойств.

Описание уровня техники, относящегося к данной области.

Такие резиновые композиции, как резиновые композиции на основе каучуков EPDM, HNBR и бутилкаучука, хорошо известны и применяются в разнообразной промышленной и потребительской продукции. См. McGraw-Hill Encyclopedia of Science & Technology, pp. 761-763 (McGraw-Hill, 1982). EPDM является каучуком на основе сополимера этилена, пропилена и диенового мономеров. HNBR является гидрированным бутадиеновым каучуком, т.е. частично гидрированным сополимером, полученным из сополимеризации нитрила акриловой кислоты и бутадиена. Бутилкаучук является сополимером изобутилена и изопрена.

Резиновые композиции на основе каучуков EPDM, HNBR и бутилкаучука используются в широком диапазоне продуктов. Эти продукты включают, например, детали автомобилей, прокладки, покрытия кабелей и проводов, изделия из технической резины, нащельники для боковых стенок автомобильных покрышек, вкладыши покрышек, предохранительные амортизаторы, прорезиненные ткани, изоляционный материал, шланги и герметики для бассейнов или резервуаров.

Одной отличительной чертой каучуков EPDM, HNBR и бутилкаучука является низкий уровень ненасыщенности. Низкий уровень ненасыщенности этих каучуков ограничивает эффективность армирующих агентов в резиновых композициях из этих каучуков. Это особенно очевидно при сравнении с использованием армирующих агентов в диеновых каучуках, которые имеют высокие степени ненасыщенности. Бутилкаучук, например, это обычно полибутилен, имеющий от 0,5 до 4,5% диолефина, и обычно 3% изопрена. Небольшое количество диолефина в бутилкаучуке обеспечивает ненасыщенность для армирующего агента и образования поперечных связей.

Сажи использовались в качестве красящих веществ, наполнителей и / или армирующих или усиливающих агентов при смешении и приготовлении резиновых композиций. Свойства сажи являются важным фактором, определяющим различные рабочие характеристики резиновой композиции, содержащей сажу. Смотрите, например, патент США 5236992, который введен здесь в качестве ссылочного материала.

Возникает необходимость разработать продукт сажи, который мог бы придать необходимые свойства резиновым композициям на основе каучуков EPDM, HNBR и бутилкаучука, содержащим этот продукт сажи.

Описание изобретения.

В соответствии с этим настоящее изобретение обеспечивает новые резиновые композиции, приготавливаемые процессом, включающим смещение 100 весовых частей каучука, выбранного из каучуков EPDM, HNBR и бутилкаучука и от 10 до 300 весовых частей продукта сажи, имеющего присоединенную органическую группу формулы - Аr-Sn - Аr'-, в которой Аr и Аr' являются группами арилена, и n находится в пределах от 1 до 8, предпочтительно от 2 до 4.

В другом примере реализации изобретение обеспечивает резиновую композицию, приготавливаемую процессом, включающим смешение 100 весовых частей каучука, выбранного из каучуков EPDM, HNBR, бутилкаучука и от 10 до 30 весовых частей продукта сажи, имеющего присоединенную органическую группу формулы Аr-Sn - Аr», в которой Аr является группой арилена, Аr» является группой арила и n находится в пределах от 1 до 8, предпочтительно от 2 до 4.

Резиновые композиции согласно изобретению имеют увеличенный модуль, более связанный каучук по сравнению с резинами, с соответствующими сажами без присоединенных органических групп. Другие признаки настоящего изобретения станут очевидны из следующего подробного описания изобретения и формулы изобретения.

Заявка 98120796/04 от 20.11.1998 г.

Дата начала действия патента 20.11.1998 г.

Дата публикации 20.04.2002 г.

Изобретатель: Румянцева В.М., Сергеева Т.А., Коркодинова Л.А.

Патентообладатель: ОАО «Балаковорезинотехника»

Резиновая смесь.

ОПИСАНИЕ ИЗОБРЕТЕНИЯ К ПАТЕНТУ РОССИЙСКОЙ ФЕДЕРАЦИИ

Реферат:

Изобретение относится к резиновой промышленности, в частности к резиновой смеси на основе бутадиен - стирольного и этиленпропиленового каучуков. Предназначена для изготовления сальников. Резиновая смесь имеет состав: бутадиен-стирольный каучук, этиленпропиленовый каучук; вулканизующая группа - сера техническая, сульфенамид Ц, тиурам Д; активатор - белила цинковые, кислота стеариновая, полиэтиленгликоль-115; противостаритель - ацитонил Р, церезин 80, диафен ФП; пластификатор - Масло ПМ, канифоль сосновая, инден-кумароновая смола, каучук низкомолекулярный полибутодиеновый НМПБ, полиэтилен низкомолекулярный; наполнитель - углерод технический П 701, углерод технический П 324, каолин, мел природный; паста «Кальценафт», выбранная из группы: смесь кальциевых мыл и амидов насыщенных жирных кислот, безводная смесь спиртов жирного ряда и сложных эфиров жирных кислот, смесь жирных кислот, их цинковых солей и оксиэтиленовых продуктов. Технический результат состоит в повышении твердости, технологических свойств, обеспечении эксплуатационных свойств. Сравнительная характеристика:

Таблица 1

Показатели

Известная смесь 1

Предлагаемая смесь

2

3

4

5

6

1. Условная прочность при растяжении, кгс/см2

2. Твердость, JRHД

3. Сопротивление раздиру, кгс/см

4. Вязкость по Муни при 1000С

5. Стоцкость к терм

ическому старению при t 1000С в течен

ии 72 ч.

- изм. прочности при растяжении, %

- изм. твердости, JRHД

105

75

30

55

-4

+8

170

97

43

83

+6

8

142

97

40

78

+10

0

130

95

43

73

+11

+1

166

96

57

86

-1

+2

157

94

48

88

-2

0

Варианты резиновых смесей представлены в таблице №2.

Таблица №2.

Ингредиенты резиновых смесей

Количественные соотношения, мас.%

Известная смесь 1

Предлагаемая смесь

2

3

4

5

6

К-к бутадиен-нитрильный - 18АМН

К-к бктадиен-стирольный с сод. связанного стирола 23-24%

К-к бктадиен-стирольный с сод. связанного стирола 63-64%

К-к этилен-пропиленовый с ЭНБ

Вулканизующая группа:

Сера техническая

Сульфенамид Ц

Тиурам Д

Активатор:

Белила цинковые

Кислота стеариновая

Противостаритель:

Ацетонил Р

Церезин 80

- Диафен ФП

42,68

-

-

-

-

0,64

0,77

2,13

0,64

0,64

2,13

1,07

-

22,30

6,86

5,15

1,20

0,86

0,34

2,40

0,324

1,03

1,03

-

-

22,22

6,84

5,13

1,20

0,85

0,34

1,71

0,34

1,03

1,03

-

-

22,45

6,91

5,18

0,52

0,86

0,34

2,42

0,34

1,04

1,04

-

-

25,74

7,92

5,94

1,39

0,99

0,40

1,98

0,40

1,19

1,19

-

-

26,05

8,02

6,01

0,60

1,00

0,40

2,81

0,40

1,20

1,20

-

Ингредиенты резиновых смесей

Количественные соотношения, мас.%

Известная смесь 1

Предлагаемая смесь

2

3

4

5

6

Пластификатор:

Масло ПМ

Канифоль сосновая

Инден-кумароновая смола

К-к низкомолекулярный полибутадиеновый НМПБ

Полиэтилен низкомолекулярный

Наполнитель:

Углерод технический П 701

Углерод технический П 324

Каолин

Мел природный

Паста кальценафт (ТУ 2123-018-05766923-96)

0,17

-

-

-

-

-

28,11

-

11,10

1,72

0,86

0,34

2,74

-

14,41

21,95

13,72

-

1,72

1,71

0,85

0,34

-

1,37

14,35

21,88

13,68

-

1,71

1,73

0,86

0,34

2,76

-

14,51

22,11

13,82

-

1,73

1,98

0,99

0,40

-

1,58

16,63

25,34

-

-

1,98

2,00

1,00

0,40

3,21

-

16,84

25,66

-

-

2,00

Формула изобретения

Резиновая смесь на основе бутадиен-стирольного каучука и этиленпропиленового каучука, включающая вулканизующую группу, активатор, противостаритель, пластификатор, включающий парафиновое масло, наполнитель, пасту «Кальцинафт», отличающаяся тем, что в качестве бутадиен-стирольного каучука она содержит комбинацию бутадиен-стирольного каучука с содержанием 23-24% связанного стирола и бутадиен-стирольного каучука с содержанием 63-64% связанного стирола, в качестве этиленпропиленового каучука - этиленпропиленовый каучук с содержанием в качестве третьего мономера этилиденнорборнена, в качестве пластификатора, включающего парафинонафтеновое масло - пластификатор с уменьшенным до 2 мас.% содержанием парафинонафтенового масла и дополнительно - технологическую добавку, выбранную из группы, включающей смесь кальциевых мыл и амидов насыщенных жирных кислот, безводную смесь спиртов жирного ряда и сложных эфиров жирных кислот, смесь жирных кислот, их цинковых солей и оксиэтилированных продуктов при следующем соотношении компонентов, мас.%:

Бутадиен-стирольный каучук с содержанием

связанного стирола 23-24% 22,22-26,05

Бутадиен-стирольный каучук с содержанием

связанного стирола 63-64% 6,84-8,02

Этиленпропиленовый каучук с содержанием

в качестве третьего мономера этилиденнорборнен 5,13-6,01

Вулканизующая группа 1,72-2,78

Активатор 2,05-3,21

Противостаритель 2,06-2,40

Указанный пластификатор 4,27-6,61

Наполнитель 41,97-50,44

Паста «Кальценафт» 1,71-2,00

Технологическая добавка, выбранную из группы,

включающей смесь кальциевых мыл и амидов

насыщенных жирных кислот, безводную смесь

спиртов жирного ряда и сложных эфиров

жирных кислот, смесь жирных кислот, их

цинковых солей и оксиэтилированных продуктов 1,03-1,98

1.1.4 Способы формования и способы усовершенствования технологии производства сальников реактивной штанги

По способу изготовления, комплектующие резиновые детали подразделяются на формовые и неформовые. Формовые называют изделия, вулканизацию которых проводят в замкнутых пресс - формах под давлением, т.е. при их изготовлении процессы формования и вулканизации совмещены. Вследствие вулканизации под давлением такие изделия характеризуются высокой плотностью, а использование правильно рассчитанных пресс-форм с тщательно обработанными внутренними стенками придает изделиям точные размеры и гладкую внешнюю поверхность. При получении неформовых изделий их формование осуществляется методами экструзии, каландрования и т.п., а при вулканизации пресс-формы не применяют.

В промышленности формовые изделия изготавливают компрессионным методом, литьем под давлением, комбинированным методом, заключающимся в формовании и предварительной вулканизации изделий в пресс-формах с последующей окончательной довулканизацией в вулканизаторах. И способом штамповки с дальнейшей вулканизацией в термостате, причем каждый из перечисленных методов имеет много разновидностей. [2,3,7,13]

Независимо от способа изготовления в основе производства многочисленных РТИ заложена единая технологическая схема:

Изготовление полуфабрикатов Выполнение заготовок

Вулканизация Отделка изделий.

Процессы изготовления полуфабрикатов могут включать одинаковые операции для различных изделий, например составление и обработка резиновых смесей. Выполнение заготовок, вулканизация и отделка различна для каждого вида изделий.

Подготовка сырья на резиносмесителях.

Для приготовления резиновой смеси используют резиносмеситель.

Резиносмеситель является машиной закрытого типа. Он предоставляет собой камеру, состоящую из двух цилиндрических половин, внутри которых навстречу друг другу вращаются два ротора, имеющих сложную конфигурацию в продольном и поперечном сечении. Камера с торцов закрыта боковыми стенками, через которые проходят роторы своими цилиндрическими шейками. Сверху камера имеет загрузочное окно, закрываемое затвором, который способен перемещаться в вертикальном направлении и открывать или закрывать доступ в камеру. В нижней части камеры имеется загрузочное окно, закрываемое нижним затвором.

Исходные компоненты резиновой смеси (каучук, наполнители, пластификаторы, вулканизующие агенты и др.) загружаются в определенном порядке или все вместе в камеру резиносмесителя через верхнее окно.

Перемешивание сопровождается деформацией и разделением частиц компонентов. В отличие от вальцов эти процессы совершаются не только в зазоре между роторами (валками), но и во всем остальном пространстве смесительной камеры: между роторами, между роторами и стенкой камеры, между роторами и гребнем нижнего затвора, между роторами и боковыми стенками.

В результате перемешивания исходные компоненты распределяются в массе каучука, и готовая резиновая смесь в виде достаточно однородной бесформенной массы выгружается из резиносмесителя через нижнее окно.

Резиносмеситель работает по периодическому циклу, складывающемуся в основном из трех операций: загрузки компонентов, собственно смешения и выгрузки готовой резиновой смеси. Продолжительность цикла смешения определяется составом резиновой смеси, свойствами исходных компонентов и целым рядом других факторов. [2; 3; 12]

Подготовка сырья на вальцах.

Резиновая смесь загружают на вальцы и многократно пропускают через зазор между вращающимися валками. Резиновая смесь втягивается в зазор под действием силы трения и в результате возникающего сцепления (адгезии) между резиновой смесью и поверхностью вращающихся валков. При этом зона деформации и степень захвата резины валками определяются углом альфа, который, колеблется в пределах от 10 до 45 градусов.

Многократное пропускание резиновой смеси через зазор между валками обеспечивает равномерный разогрев и перемешивание, чему способствует подрезка (в ручную или с помощью механического ножа) образующегося на валке слоя. [2,12,13]

Подготовка сырья на каландрах.

Разогретую резиновую смесь пропускают в зазоре между горизонтальными валками, вращающимися навстречу друг другу, при этом образуется бесконечная лента определенной ширины и толщины.

При каландровании полимерных материалов проходит через зазор только один раз. Поэтому для получения листа с гладкой поверхностью очень часто используют трех- или четырехвалковый каландры, имеющие листы с точностью по толщине до + 0,02 мм. Ширина листа определяется рабочей длинной валка.

При каландровании проводят различные технологические операции:

формование резиновой смеси и получение гладких или профильных листов;

дублирование листов;

обкладка и промазка текстиля резиновой смесью.

Под действием упругих сил деформируемого материала, проходящего через зазор, между валками каландра возникают распорные усилия, величина которых зависит от зазора между валками, запаса смеси между ними, вязкоупругих свойств смеси, скорости обработки и других факторов. Наибольшее распорные усилия возникают между первым и вторым валками каландра, на которых находится наибольший запас смеси. (2; 5; 12)

В зависимости от выполняемых процессов каландры подразделяют на:

листовые - для изготовления резиновых смесей в виде гладких листов;

профильные - для выпуска резиновых смесей с более сложным профилем сечения или с нанесением на лист рисунка (подошвенные и др.);

обкладочные - для наложения резиновой смеси тонким слоем на ткань при одинаковых окружных скоростях валков в выпускающем зазоре;

промазочные - для втирания резиновых смесей в нити ткани и переплетения между ними. [2; 5; 12]

Изготовление заготовок на предформователе «Барвелл».

Подогретую резиновую смесь загружают в камеру предформователя фирмы «Барвелл». Станок состоит из инжекционного цилиндра с поршнем, гидроцилиндра, поворотной головки со сменной профилирующей шайбой, плоского отрезного ножа с приводом и отборочным транспортером, гидропривода, системы термостатирования инжекционного цилиндра, вакуум-насоса, осуществляющего вакуумирование смеси перед профилирующей головкой.

Под действием поршня из инжекционного цилиндра через профилирующую шайбу выдавливается резиновая смесь, приобретая необходимую форму. После выхода из шайбы резиновый профиль срезается ножом.

Полученная заготовка попадает в ванну для охлаждения и обработки антиадгезивным раствором, или в воде, или мыльном растворе (что оговаривается технологической картой), для предотвращения слипания заготовок во время хранения. Во избежания деформации заготовок производят их сортировку. [2; 5; 12]

На червячных машинах.

В результате взаимодействия с рабочими органами машины резиновая смесь подвергается интенсивным деформациям, главным образом сдвигового характера, нагревается и размягчается до пластичного состояния. Червяк создает давление в перерабатываемом материале, достаточное для преодоления сопротивления головки и профилирующего инструмента. Пластичная резиновая смесь продавливается через профилирующий инструмент, приобретая форму и очертания, близкие профилю выходного отверстия.

Червячные машины относятся к классу машин непрерывного действия. Непрерывная подача материала в загрузочную воронку обеспечивает получение профильных заготовок любой длины.

В процессе переработки резиновой смеси на червячных машинах одновременно протекают явления перемешивания, пластификации, нагнетания и формообразования. [2; 12; 13]

Компрессионный способ вулканизации.

При компрессионном способе в гнезда одной из полу форм пресс - формы закладываются заготовки из резиновой смеси, близкие по форме и объему к формуемому изделию. После этого полу формы совмещают и помещают в пресс. Под действием усилия прессования в резиновой смеси возникают напряжения деформации, приводящие к течению смеси, в результате которого резиновая смесь приобретает конфигурацию гнезда формы. Компрессионное формование осуществляется на прессах, развивающих давление на площадь нагревательной плиты 5 -10 МПа

Температура вулканизации на прессах 140-160 оС. Продолжительность зависит от температуры вулканизации (температуры теплоносителя), размера изделий и рецептуры применяемых резиновых смесей. Практически продолжительность вулканизации принимается от 6 -10 до 60 - 90 мин.

Период текучести резиновой смеси определяется длинной каналов, по которым проходит смесь, ее вязкостью и другими условиями. Усадка для мягких резиновых смесей составляет в среднем 0,02% от диаметра изделия. [2; 5; 12]

Вулканизация в литьевых прессах.

Нагретая резиновая смесь загружается в напорную камеру плунжерного устройства, которая обогревается паром или электричеством и имеет цилиндрическую форму. Замкнутая форма перемещается на подвижной стол так, чтобы отверстие литника совпадало с отверстием системы литников в самой форме. Затем с помощью подвижного стола форма поджимается к литнику и начинается совместное движение стола, формы и напорной камеры вверх. При этом в движении плунжер входит в напорную камеру и вытесняет резиновую смесь в полость формы. После заполнения формы резиновой смесью движение вверх прекращается, стол с формой опускается вниз и форма удаляется на вулканизацию изделий.

Машины для литья под давлением резиновых смесей классифицируются по объему отливки, по принципу действия инжекционного механизма (плунжерные, червячно-плунжерные, червячные с предварительной пластикацией и без нее), по компоновке инжекционной и прессовой части (горизонтальные, вертикальные, угловые), по числу прессовых узлов (одно- и многопозиционные) и по другим признакам. (1,2,12)]

Преимущества литья под давлением перед компрессионным.

Замена компрессионного формования на литье под давлением имеет ряд преимуществ. При способе формования в прессе, как правило, из вальцованных лент нарезаются заготовки. Для литья под давлением достаточно сделать заготовки для определенных типов поршневых и червячных машин или стержни для шнековых литьевых прессов.

При способе литья отпадает необходимость в транспортировке и промежуточном хранении нарезных заготовок; образующиеся отходы, однако, не выбрасываются, и как правило, должны опять вальцеваться или заново шприцеваться. Отпадает операция закладывания заготовок в форму. При этом надо иметь в виду, что неправильная закладка при формовке часто повышает процент брака.

Значительно более короткое время вулканизации при литье под давлением приводит к равномерному разогреву массы. В зависимости от формы, состава смеси и выбранной машины время вулканизации можно сократить на 70 - 90%. При литье нет необходимости в однократном или многократном открывании формы для удаления воздуха, требующемся, как правило, при формовке в прессе.

Выемка из формы готовых изделий осуществляется, как правило, быстрее и производится без применения тяжелой ручной работы, необходимой при способе прессования, особенно для плоских форм в многополочных прессах.

При литье очистка готовых деталей от заусенцев исключается совсем или в значительной степени, в зависимости от конструкции формы. В противоположность формовке в прессе, при литье часто можно отказываться от применения специальных средств, облегчающих выемку из форм. Процент отходов и брака, который при формовке процессе составляет в среднем 20 - 40%, может при литье снизится в среднем до 5 -20%. В отдельных случаях эта разница может быть значительно больше.

Недостатком является значительно более высокая себестоимость форм и машин. [1,13]

Инжекционно-компрессионный способ формования.

Важным направлением работ по сокращению отходов является использование инжекционно-компрессионного способа формования (в литьевых прессах 4520-113, «РЕП» и др.). При этом способе производства в форме имеется автономная литниковая система, которая соединена с инжекционным цилиндром и с гнездами одной части формы. После соединения формующего инструмента с инжекционным цилиндром резиновая смесь впрыскивается в полость формы, при этом происходят процессы формования и дозирования заготовки в гнезда формы. После окончания формования заготовок форма расстыковывается, литниковая система выводится из пресса, а ее место занимает вторая полуформа. После чего под давлением пресса осуществляется окончательное формование и вулканизация.

Перспективны безотходные процессы производства с использованием порошковой технологии, жидкого формования. Для заготовок используют порошкообразную или мелкогранулированную резиновую смесь с добавлением измельченных отходов - выпрессовок. Заготовки формуют как таблетки, а при изготовлении резиноармированных манжет в них запрессовывают металлическую арматуру. Сформованные заготовки можно применять на прессах-полуавтоматах, оснащенных перезарядчиком.

Жидкое формование позволяет исключить процессы резиносмешения и изготовления заготовок, характеризуется почти полным отсутствием отходов, резким сокращением трудовых затрат. В настоящее время методом жидкого формования изготавливают изделия преимущественно из полиуретанов на литьевых машинах «Десма», а также на оборудовании, разработанном ВНИИРТМАШем. С учетом вязкости перерабатываемых материалов выпускаются машины низкого (до 2,5 МПа) и высокого (до 30 МПа) давления. На установках низкого давления эффективно изготовление крупногабаритных материалоемких изделий методом свободного литья. В этом случае резко снижаются масса пресс-форм и их стоимость.

Метод основан на поликонденсации жидких компонентов (олигоэфиров и диизоцианатов) непосредственно в формах с образованием полиуретанов сетчатого строения. Скорость процесса регулируется подбором соответствующих катализаторов. Компоненты подаются в литьевую головку из баков шестеренчатым насосом. Жидкие компоненты впрыскиваются в форму с помощью самоочищающихся червячного устройства, при этом вращающийся червяк предварительно перемешивает оба жидких компонента (в виде суспензий, содержащих ингредиенты-добавки). [2,12,13]

Обработка деталей.

Для уменьшения ручного труда, увеличения производительности, предотвращения парезов, которые не допускаются на сальниках в технологический процесс вводится новая стадия обработка готового продукта на подрезном станке.

Машина с педальным управлением служит для выполнения среза с помощью сменных приспособлений для каждого типоразмера сальников, предусмотренных конструктором.

Машина служит для обработки сальников диаметром в приделах от 35 до 96 мм., а также для других сальников при замене приспособлений.

Производительность машины значительно не меняется при изменении диаметра уплотнителей и равняется примерно 1 500 штук в час. При обработке деталей обрезчиком с помощью ножниц производительность равняется примерно 600 штук в час. [2]

Анализ литературных данных показал, что в настоящее время наряду с модификацией резиновой смеси также совершенствуется технологический процесс.

В технологический процесс вводится новая стадия обработка готового продукта на подрезном станке. Применение которого увеличивает производительность обработки деталей с 600 штук деталей в час до 1 500 штук. [2,12,13]

1.2 Характеристика исходного сырья, вспомогательных материалов и готовой продукции

1.2.1 Характеристика исходного сырья

В составы вулканизирующих систем входят вулканизирующие вещества, ускорители и активаторы вулканизации, обуславливающие перевод каучука из пластического состояния в высокоэластического с образованием вулканизационных структур.

Для придания резинам требуемых свойств каучуки смешивают с сыпучими или жидкими органическими и неорганическими веществами.

Технологический процесс изготовления резиновой смеси должен соответствовать ТР 57-024-94 на производство резиновой смеси. [1,8,9]

Основные компоненты резиновой смеси 57-5037 для производства реактивной штанги.

Рецепт резиновой смеси приведен в таблице 1.2.1.1.

Таблица 1.2.1.1.

Наименование ингредиентов.

Массовая доля, %

Каучук БНКС-18АМН

Белила цинковые марка БЦО-М

Сульфенамид Ц

Тиурам Д

Масло мягчительное «ПМ3»

ДФФД

Santogord PVY

Диафен ФП

Дибутилдитиокарбомит никеля

Церезин 80

Кислота стеариновая

Пластификатор эфир ЛЗ-7

Мел природный

Углерод технический П-324

42,68

2,13

0,64

0,77

0,17

0,64

0,06

1,07

0,64

2,13

0,64

9,22

11,10

28,11

Итого

100

Теоретическая плотность - 1,25*103 кг/м3.

Физико-механические показатели [8,9] резиновой смеси 57-5037 для сальников реактивной штанги указаны в таблице 1.2.1.2.

Таблица 1.2.1.2.

Наименование показателей

Значение для резиновой смеси

Метод испытания

1. Твердость, единицы по Шору, А

2. Условная прочность при растяжении, МПа

(кгс/см2), не менее

3. Температурный диапазон применения, 0С

4. Относительное удлинение при разрыве, % не менее

5. Сопротивление раздиру, Н/мм

(кгс/мм), не менее

6. Температурный придел хрупкости 0С, не выше

7. Эластичность по откосу, %

8. Плотность, кг/м3

9. Стойкость к температурному старению в воздухе в течении (24,0±0,5) ч при температуре (125±2)0С

Изменение твердости, в единицы по Шору, А, в пределах

Изменение условий прочности при растяжении, %

10. Стойкость к озонному старению при t 50 0С в течении 72 ч с объемной долей озона (5,0±0,5) 10-5%

75-85

7,8

(80)

-50 до 125

200

29,4

(30)

-45

55-60

962

+12

0

±20

не допускаются трещены

ГОСТ 263-75

ГОСТ 270-75

ГОСТ 270-75

ГОСТ 350-80

ГОСТ 270-75

ГОСТ 7912-74

ГОСТ 832-76

ГОСТ 832-76

ГОСТ 9.024-74

ГОСТ 9.026-74

1.2.2 Характеристика вспомогательных материалов

Характеристика вспомогательных материалов [8,9] приведена в таблице 1.2.2.1.

Таблица 1.2.2.1.

Наименование показателей

Назначение

Обозначение документа

1. Производственная тара (контейнера)

2. Мешок (80х110)

3. Бумага оберточная

4. Клей 57-16

5. Цинка стеарат

6. Эмульсия КЭ-10-01

7. Маркировочна краска

8. Сетка проволочная 0,45-0,63

9. Бумага оберточная

10. Бумага парафинированная

11. Основа парафинированной бумаги ОДЭПГ-40 или ОДП-35

Для упаковки сальника

Для упаковки сальника

Для маркирующих листов и ярлыков

Для приклеивания ярлыков

Для приготовления противоадгезивного

Раствора

Противоадгезивный раствор для опрыскивания камеры

Для маркировки сальника

Для стренирования резиновой смеси при переработке в шприц машине

Для упаковки сальника

Для упаковки сальника

Для упаковки сальника

ГОСТ 14861-91

ГОСТ 14861-91

ГОСТ 8273-75

Рецепт

ТУ 6-09-262-88

ТУ 6-02-587-75

ГОСТ 6.753.77

ГОСТ 3826-82

ГОСТ 8273-75

ГОСТ 9569-79

ГОСТ 16711-84

1.2.3 Характеристика готового продукта

Готовым продуктом является сальник реактивной штанги. Он производится для автомобилей КАМАЗ. Служит для ограничения хода мостов вверх и смягчения их ударов о раму, для защиты от проникновения в них извне пыли и грязи на лонжеронах установлены сальники. Толкающие усилия и реактивные моменты передаются на раму шестью реактивными штангами. [8,9]

Технические требования.

Сальники должны соответствовать требованиям настоящих условий

ТУ 38.105823-88. Чертежам и изготавливаются по техническому регламенту ТР 57-015-98, утвержденному в установленном порядке.

Характеристика.

Сальники представляют собой резиновые профили состоящие из резины 57-5037. При оценке внешнего вида сальника различают видовые и не видовые поверхности. Видовыми считаются поверхности, выполняющие декоративные функции.

Внешний вид сальника [8,9] должен соответствовать характеристикам, указанным в таблице 1.2.3.1.

Таблица 1.2.3.1.

Наименование характеристик

Сальники

Видовая

не видовая

1. Возвышение, углубление

2. Отпечатки на поверхности

3. Шероховатость

4. Пузыри

5. Разнотон

6. Включения

7. Искажение формы

8. Продольные риски

9. Механические повреждения, срезы, вырывы

Не допускаются

Допускается размером не более 0,5 мм

Допускается по согласованию

Допускается размером не более 1,0 мм

Допускается

Допускается размером не более 1,0 мм

Допускается

Не допускаются

Не допускаются

Не допускаются

Допускается по согласованию

Допускается по согласованию

Допускается размером не более 1,0 мм

Допускается

Допускается размером не более 1,0 мм

Допускается

Не допускаются

Не допускаются

10. Прочность на срезе сальника

11. Морозостойкость при температуре минус (45±2)0С

12. Разрушающее давление, МПа

(кгс/см2), не менее

при t (23±5)0С

13. Относительная деформация, в %

14. Прочность связи наружного и внутреннего слоя, Н/мм

Допускается размером не более 0,5 мм

Не должно быть трещин

1,2

(12)

0,2

2,5

Допускается размером не более 0,5 мм

Не должно быть трещин

1,2

(12)

0,1

2,0

Физико-механические показатели [8,9] сальников должны соответствовать значениям, указанным в таблице 1.2.3.2.

Таблица 1.2.3.2.

Наименование показателей

Значение

Метод испытания

1. Усилие сжатия сальника, Н (кгс)

2. Твердость по ШОРА, в пределах

3. Нейтральность сальников к лакокрасочным покрытиям

4. Стойкость к азотному старению при температуре (50±2)0С в течении (72±1) ч с объемной долей озона (5±0,5) 10-5%

По чертежу

По чертежу

Не допускается появление темных пятен и налета

Не должно быть трещин в напряженном состоянии

П. 3.5

П. 3.7

П. 3.8

П. 3.14

1.3 Описание технологического процесса

Технологическая схема изготовления сальника реактивной штанги приведена на рис. 1.3.1.

Технологический процесс производства сальника реактивной штанги состоит из следующих стадий:

1) подготовка сырья;

2) изготовление заготовок;

3) вулканизация;

4) обработка

5) разбраковка и упаковка.

Подготовка сырья.

Резиновая смесь со склада подается на подогревательные вальца ПД 1500 (позиция 1)

Резиновая смесь загружают на вальцы 1 и многократно пропускают через зазор между вращающимися валками. Резиновая смесь втягивается в зазор под действием силы трения и в результате возникающего сцепления (адгезии) между резиновой смесью и поверхностью вращающихся валков. При этом зона деформации и степень захвата резины валками определяются углом альфа, который, колеблется в пределах от 10 до 45 градусов.

Передний и задний валки вращаются с различными окружными скоростями. Отношение окружной скорости заднего вала к окружной скорости переднего валка называется фрикцией и обозначается буквой f. В следствии разности скоростей вращения валков в резиновой смеси возникают деформации сдвига и среза, а в зоне деформации создается вращающийся запас материала, который постепенно втягивается в зазор между валками, усиленно в нем перемешивается и перетирается, распределяясь по всей длине зазора. Резиновая смесь выходит из зазора в виде листа, отклоняющегося в сторону валка, вращающегося с меньшей окружной скоростью (как правело, переднего по отношению к работающему на вальцах), прилипает к нему, образуя на валке сплошной слой, называемый шкуркой.


Подобные документы

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.