Участок по переработке лома твёрдых сплавов способом хлорирования

Классификация и свойства твердых сплавов. Источники лома и основные способы его переработки: хлорирование, методы регенерации и окисления. Оборудование для предварительной обработки сырья. Разработка технологической схемы переработки. Материальный баланс.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 04.01.2009
Размер файла 2,0 M

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

кг

Хлор входит во все продукты реакций, и для изучения процесса хлорирования возмём хлор с избытком на 5%. Необходимая стехиометричеческая масса хлора равна:

кг

Для моделирования процесса хлорирования твердого сплава возьмем данные из таблицы 4.2.1, 10000 кг хлора и 2443 кг кислорода.

Таблица 4.2.2.2. Результат моделирования процесса хлорирования при помощи прграммы TERRA, при температуре 700°C и давлении 0,1 МПа.

Химическая формула

Масса

[кг]

WOCl4

12291,53

WO2Cl2

5,9

WCl4

0,3

WCl6

0,6

TiCl4

4239,3

CoCl2(c)

1179,9

FeCl3

203,3

CuCl2(c)

43,2

ZnCl2(c)

28,4

ZnCl2

14,4

CO2

2567,6

Cl2

904,57

Всего:

21479

4.2.2.1. Основные реакции протикающие при хлорировании твердосплавного лома

При рассмотрении таблицы 4.2.2.2 можно определить основные реакции.

1.

2.

3.

4.

5.

6.

4.2.2.2 Краткая характеристика продуктов реакций

Таблица 4.2.2.2.1. Краткая характеристика продуктов реакций [11].

Соединение

Температура плавления

[°С]

Температура кипения

[°С]

Плотность

[г/см3]

WOCl4 - Оксодихлорид вольфкама (VI)

212

~ 300

н. д.

TiCl4 - Хлорид титана (IV)

-24,1

+136,4

2,33(20°С)

CoCl2 - Хлорид кобальта (II)

740

1049

3,367

FeCl3 - Хлорид железа (III)

307,5

316

2,898

CuCl2 - Хлорид меди (II)

596

993

3,386

ZnCl2 - Хлорид цинка (II)

293

733

2,907

4.3. Разработка принципиальной схемы

При разработке технологии подготовки сырья (см. раздел 3) и выборе процесса хлорирования (см. раздел 4.2.1), были сделаны предпосылки для разработки схемы хлорирования в эвтектическом расплаве хлоридов щелочных и щелочноземельных металлов. Представленная схема (Рис.4.3.1) представляет собой адаптированную под твёрдый сплав принципиальную схему подобную той, что применяется на ниобий - танталовом производстве при хлорировании лопарита.

Схема 4.3.1. Принципиальная схема хлорирования твердосплавного лома

4.4. Разработка аппаратурно-технологической схемы

При выборе оборудования, прежде всего, учитывают соображения о необходимости опробования оборудования до принятия его в проекте промышленного производства. Так как от оборудования зависят условия работы его конструктивных элементов, а при значительном изменении может меняться режим основного процесса, опытную проверку должен пройти до включения в проект не только принципиальный тип конструкции аппарата, но и его конкретный типоразмер. Это относится в основном к процессам плохо моделирующимся, в первую очередь к пирометаллургическим. Следует, однако, отметить, что требование проверки конструкции оборудования не всегда можно выполнить в полном объеме.

Оценка результатов опытных работ и изучение других технологических и технических вопросов позволяет решить вопрос о технологической и технической обоснованности выбора определенного типоразмера аппарата. Но для принятия решения о выборе типоразмера аппарата необходимо провести технико-экономический анализ изменения показателей проекта в целом, включая изменения требований к смежным частям проекта, в зависимости от масштаба аппарата.

Экономическая эффективность определяется влиянием масштаба аппаратуры на капитальные затраты при создании производства и на затраты, связанные с его последующей эксплуатацией.

Увеличение производительности аппаратуры повышает производительность труда основных производственных рабочих. Увеличение производительности аппарата на несколько десятков процентов обычно не повышает трудозатрат на обслуживание [12].

Основными характеристиками процесса являются высокая конверсия сырья, и высокий выход целевого продута, следовательно, сырьё должно быть максимально прохлорированно, и должно получаться минимальное количество побочных продуктов.

При использовании хлорного метода получаются высококачественные продукты. Хлориды и оксохлориды металлов обладают различными свойствами, что существенно облегчает их разделение и очистку.

Наиболее подходящим оборудованием для хлорирования твердых сплавов является оборудование для хлорирования лопарита, применяющееся в ниобий - танталовом производстве. Данное оборудование может применяться без принципиальных изменений в конструкции [3].

Взаимодействие твёрдого сплава с газовой хлоро - кислородной смесью в широком интервале температур характеризуется положительными значениями ?G° [9].

Схема 4.4.1. Технологическая схема переработки твердосплавного лома методом хлорирования.

4.4.1. Аппаратурное оформление

1 - Одновальцовая дробилка CEB 16/40

2 - Молотковая мельница CHM 23/20

3 - Магнитный сепаратор ПБС-63/50

4 - Хлоратор для хлорирования в солевом расплаве

5 - Теплоизоляционная емкость с подогревом

6 - Солевой фильтр с аэролифтной циркуляцией расплава

7 - Комбинированная система конденсации ПГС

4.4.2.Описание схемы переработки твердого сплава

4.4.2.1. - 4.4.2.2. Дробление и измельчение

Исходное сырье поступает в одновальцовую дробилку CEB 16/40, затем в молотковую мельницу CHM 23/20, где происходит измельчение сырья до нужного размера до 0,5 - 1,0 мм. .

4.4.2.3. Обогащение твердого сплава

После измельчения сырье направляется в магнитный сепаратор ПБС-63/50. Магнитная сепарация позваляет значительно отделить твердосплавный лом от стали, что благоприятно влияет на параметры процесса.

4.4.2.4. Хлорирование в расплаве

Далее обогащенный твердосплавный концентрат хлорируют в эвтектическом расплаве хлоридов натрия и калия (температура плавления меньше 600°C). Хлорирование в расплаве имеет ряд преемуществ перед другими методами хлорироания их числе: непрерывность процесса, позволяющая автоматизировать управление; более высокие скорость процесса и удельная производительность основного аппарата; более эффективные массо - и теплообмен; ненужно сырье брикетировать.

Твердосплавный концентрат шнековым питателем на зеркало расплава. В нижнюю зону хлоратора через фурмы подается хлор, который барботирует через расплав хлоридов. Проходя через слой расплавленных хлоридов, хлор нагревается и вступает во взаимодействие с диспергированным в расплаве концентратом.

Солевая ванна состоит из хлоридов, натрия, калия и образующихся при взаимодействии концентрата с хлором CoCl2, FeCl3, ZnCl2 и CuCl2

При барботировании хлора в хлораторе создается интенсивная циркуляция расплава, что обеспечивает эффективный массо-и теплообмен, высокие скорости процесса хлорирования и соответственно повышенную производительность аппаратуры.

Расплав, содержащий сумму хлоридов кобальта, железа периодически по мере накопления необходимо сливать из хлоратора и направляют на дальнейшую переработку.

Сливаемый из хлоратора расплав хлоридов содержит непрохлорированный остаток, улерод и др [3].

4.4.2.5. Очистка расплава хлоридов от нерастворимого остатка

Очистка расплава хлоридов от нерастворимого остатка осуществляется отстаиванием.

Отстаивание обеспечивает очистку от непрохлорированного остатка примерно на 80%. Метод отстаивания связан с необходимостью возврата осадка в хлоратор, что является трудоемкой операцией [3].

4.4.2.6. Очистка парогазовойсмеси от хлоридов железа

Метод "солевой" очистки основан на большей термической стабильности комплексов МFeС14 (М = Na, К) по сравнению с комплексами, образованными оксохлоридом вольфрама и титана с хлоридами натрия и калия. При контакте ПГС с хлоридами натрия и калия хлориды железа связываются в прочные комплексы. Термическая стабильность соединений TiC14 и WOCl4 с МС1 (М = Na, К) в сопоставимых условиях значительно ниже; W и Ti хлоридами щелочных металлов не удерживаются.

Оксохлорид вольфрама соединений не образует c МС1 (М = Na, К). Тетрахлорид титана с хлоридом натрия не взаимодействует, а с хлоридом калия образует термически непрочное соединение К2Т1С16.

В пар переходят хлориды щелочных металлов, что и объясняет их появление в системе конденсации после аппарата солевой очистки - солевого оросительного фильтра (СОФ).

Реализация процесса связана с использованием расплавов хлоридов натрия и калия: это делается для понижения температуры плавления расплава, уменьшения его вязкости. Кроме того, хлороферраты калия термически более устойчивы и, следовательно, степень очистки повышается. В промышленной практике для работы в СОФ используют отработанный электролит магниевого производства, содержащий хлориды калия и натрия.

Температурный режим процесса "солевой" очистки определяется двумя факторами. С понижением температуры расплава прочность комплексов хлоридов железа с хлоридами щелочных металлов возрастает и очистка парогазовойсмеси от этих элементов улучшается. В то же время снижение температуры приводит к увеличению потерь титана с расплавом за счет образования соединений с хлористым калием K2TiCl6. Повышение температуры > 600°С нежелательно, так как степень очистки от железа падает.

Солевая очистки ПГС смеси может быть осуществлена: в слое насадки из хлоридов натрия или калия, барботированием через расплав хлоридов щелочных металлов, орошением парогазовой смеси легкоплавким расплавом хлористых солей в скруббере. Скруббер, орошаемый легкоплавким расплавом хлоридов щелочных металлов, который органически вписывается в конденсационную систему и размещается на выходе их хлоратора перед конденсационной системой. В этом случае очистка парогазовой смеси совмещается с ее охлаждением, что стабилизирует температурный режим процесса конденсации очищенной ПГС. Очистка хлоропроизводных вольфрама и титана от хлоридов железа обеспечивается на ~ 95% [3].

4.4.2.7. Конденсация ПГС

После солевой очистки ПГС поступает систему конденсации. Устройства конденсации ПГС предназначаются для: удаления ПГС из аппарата хлорирования; отвода тепла от ПГС с целью достижения температур, при которых происходит совместная или селективная конденсация компонентов; сбора продуктов конденсации.

В зависимости от способа осуществления процессов конденсации ПГС их можно разделить на три типа система раздельной или селективной конденсации твердых и жидких хлоридов; система совместной конденсации; комбинированная система конденсации. В ПГС, образующегося при хлорировании твёрдого сплава, содержится большое количество “твердого” оксохлорида вольфрама и значительно меньшее количество хлорида титана, следовательно, необходимо выделяют часть "твердых" хлоридов на первых ступенях конденсации, осуществляемой в камерных конденсаторах. Для такого процесса используется комбинированная система конденсации.

Комбинированная система конденсации. Температура, при которой начинается образование твердых частиц (~ 200°С), не зависит от производительности хлоратора и определяется составом ПГС.

Число оросительных конденсаторов колеблется от трех до четырех, а температуры (на выходе) падают от ~ 70 до - 6°С.

Важным положительным моментом работы комбинированной системы является то, что значительная часть хлорида вольфрама извлекается в твердом состоянии и может быть непосредственно использована для дальнейшей переработки.

Сконденсированный тетрахлорид титана, скорее всего, будет содерхать твердй оксохлорид вольфрама. Тетрахлорид титана можно очистить: дистилляцией, фильтрацией, отстаиванием, центрифугированием или комбинацией этих способов.

Комбинированная система конденсации имеют онедостаток: невозможность эффективно поддерживать требуемый уровень теплосъема в зависимости от температуры окружающего воздуха, рабочего состояния оборудования и его производительности.

4.4.2.8. Фильтрация технического TiCl4

Очистка технического тетрахлорида титана. Технический TiCl4 содержит растворенные примеси и некоторое количество твердых примесей в виде тонкой взвеси (~ 10 г/л). Для очистки от тврдых частиц TiCl4 фильтруют через керамические, металлокерамические патроны, асбест и т.п.

4.4.2.9. Описание аппаратурной схемы

1 - Бункер исходного сырья

2 - Одновальцовая дробилка CEB 16/40

3 - Бункер для хранения раздробленного сырья

4 - Молотковая мельница CHM 23/20

5 - Бункер для хранения размолотого сырья

6 - Магнитный сепаратор ПБС-63/50

7 - Бункер для хранения твердосплавного концентрата

8 - Бункер для хранения ферромагнитного концентрата

9 - Хлоратор

10 - Бункер и дозатор для хранения сухого NaCl

11 - Бункер и дозатор для хранения сухого KCl

12 - Газовый баллон для хранения сжиженного хлора

13 - Газовый баллон для хранения сжатого кислорода

14 - Реактор для приготовления хлорирующего газа

15 - Реактор для осаждения непрореагировавшего сырья

16 - Бункер для хранения отработавшего расплава хлоратора

17 - Система теплорегулирования хлоратора (электронагев, воздоохлаждение)

18 - Емкость с холодной водой

19 - Емкость с водой

20 - Солевой фильтр с аэролфтной циркуляцией расплава

21 - Бункер для хранения отработавшего расплава фильтра

22 - Комбинированная система конденсации ПГС

23 - Система теплорегулирования комбинированной системы конденсации ПГС (воздоохлаждение)

24 - Бункер для хранения WOCl4

25 - Фильтр

26 - Емкость для хранения TiCl4

5. Расчет материального баланса

Метод расчета технологической схемы в целом заключается в составлении и решении системы уравнений, в которых неизвестными являются потоки ценного компонента. Этот метод универсален - он не зависит от структуры технологической схемы. Использование компьютеров позволяет рассчитывать технологические схемы с любым числом операций.

Введем некоторые обозначения.

Таблица 5.1 Принятые обозначения.

Поток

Состав потока

X

Обозначение потока по компоненту

G01

Лом твердого сплава

Состав: твердый сплав - 90%, сталь - 9,4%, паечные материалы - 0,6%

G10

Ферромагнитный концентрат

Состав: твёрдый сплав ~ 8%, сталь ~ 90%, паечные материалы ~ 2%

G12

Твердосплавный концентрат

Состав: твёрдый сплав ~ 98,5%, сталь ~ 1%, паечные материалы ~ 0,5%

G021

Газовая смесь хлора с кислородом

Состав: хлор ~ 80%, кислород ~ 20%

G022

Смесь солей для эвтектического расплава

Состав: NaCl ~ 50%, KCl ~ 50%

G23

Солевой расплав из хлоратора

Состав: NaCl ~ 40%, KCl ~ 40%, CoCl2 ~10%, FeCl3 ~ 0,8%,

CuCl2 ~ 0,5%, ZnCl2 ~ 0,5%, не прохлорировавший твёрдый сплав ~ 5%

G32

Не прохлорировавший твердый сплав

Состав: не прохлорировавший твёрдый сплав 80%, NaCl ~ 10%, KCl ~ 10%

G30

Солевой расплав после отстаивания

Состав: NaCl ~ 41,6%, KCl ~ 41,6%, CoCl2 ~11%, FeCl3 ~ 0,8%, CuCl2 ~ 0,5%, ZnCl2 ~ 0,5%, не прохлорировавший твёрдый сплав ~ 1%

G24

ПГС из хлоратора

Состав: CO2 ~ 13%, Cl2 ~ 2,6%, WOCl4 ~ 62,3%, TiCl4 ~ 21,5%, FeCl3 ~ 0,6%

G40

Солевой расплав из солевого фильтра

Состав: NaCl ~ 45%, KCl ~ 45%, FeCl3 ~ 10%,

G04

Смесь солей для эвтектического расплава

Состав: NaCl ~ 50%, KCl ~ 50%,

G45

ПГС после солевой очистки

Состав: CO2 ~ 13,1%, Cl2 ~ 2,6%, WOCl4 ~ 62,7%, TiCl4 ~ 21,6%

G501

Конденсированный WOCl4 (Т)

Состав: WOCl4 ~ 99,9%

G502

Неконденсируемые газы

Состав: CO2 ~ 83,6%, Cl2 ~ 16,4%

G56

Конденсированный TiCl4 (Ж)

Состав: TiCl4 ~ 90%, WOCl4 ~ 10%

Продолжение таблицы.

G65

Пульпа

Состав: WOCl4(т) ~ 90%, TiCl4(ж) ~ 10%

G60

Хлорид титана

Состав: TiCl4(ж) ~ 100%

5.1 Уравнения материального баланса.

Расчет будем вести из расчета переработки 10 000 кг твёрдосплавного лома в год. Будим считать, что вольфрам переходит в возгоны на 98%, остальные компоненты хлорируются на 100%. Расчет будем вести в килограммах.

Схему переработки можно разбить на 6 узлов:

5.1.1. Расчет блока №1

G01=10000 кг

Производительность по поступающему сырью можно рассчитать по производительности самого меленого аппарата (см.3.7.1). При работе аппарата 7 часов в сутки производительность равна: 230 кг/ч · 7 ч = 1610 кг

В дробилке и мельнице твердосплавный лом измельчается до крупности частиц 0,5 - 1 мм.

Магнитная сепарация разделяет данное сырье на две части - твердосплавный концентрат и ферромагнитный концентрат.

Данный поток был рассмотрен в таблице 3.7.3, и расчитан в таблице 4.2.1. Следовательно:

G10 = 940 кг

G12 = G01 ? G10

G12 = 10000 - 940 = 9060 кг

Потоки компонентов G12 и G10 равны:

G12 - твердосплавный концентрат

G10 - ферромагнитный концентрат

X12(WC) = 7050,75

X12(TiC) = 1338,75

X12(Co) = 535,5

X12(Fe) = 70

X12(Cu) = 20,5

X12(Zn) = 20,5

X10(WC) = 59,3

X10(TiC) = 11,2

X10(Co) = 4,5

X10(Fe) = 835

X10(Cu) = 9,5

X10(Zn) = 9,5

5.1.2. Расчет блока № 2

В блок 2 поступает измельченное и обогащенное сырье не более 1 мм.

Продуктами хлорирования являются WOCl4, TiCl4, CoCl2, FeCl3, CuCl2, ZnCl2, не прохлорировавший твёрдый сплав ~ 2%.

Летучие WOCl4, TiCl4 и FeCl3 возгоняются и направляются на солевую очистку и конденсацию. Не летучие CoCl2, CuCl2, ZnCl2 остаются в расплаве NaCl - KCl, также в расплаве остается некоторое количество FeCl3, доля FeCl3 задержаного в расплаве примем ~ 40%. Не прореагировавший карбид также остается в расплаве.

Для расчета материального баланса нам необходимо знать состав тведосплавного концентрата, идущего на хлорирование и протекающие реакции. Химический состав сырья идущий на хлорирование представлен в таблице 4.2.1, основные протекающие реакции представлены в разделе 4.2.2.1.

Поток G021: Данный поток был расчитан в пункте 4.2.2.

[кг/год]

При избытке Cl2 на 5%

=10223

X021(Cl2) = 10223 [кг/год]

X021(O2) = 2443 [кг/год]

G021 = X12(Cl2) + X12(O2) = 12043 [кг/год]

Поток G022: Данный поток рассчитывается из сходя из того, что при содержании CoCl2 ~ 10% в расплаве, расплав сливают на переработку.

[кг/год]

Т. к. NaCl ? 50% и KCl ? 50% следовательно

X022(NaCl) = 5309,1 [кг/год]

X022(KCl) = 5309,1 [кг/год]

Поток G23:

G23 = G12 + G021 + G022 + G32 ? G24

Поток G24: В поток G24 переходят летучие WOCl4, TiCl4 и 60% FeCl3.

5.1.3. Расчет блока № 3

Поток G32: Данный поток рассчитывается из сходя из того, что отстаивание обеспечивает очистку от не прохлорировавшего твердого сплава примерно на 80%, который возращают на дохлорирование, остальные 20% переходят в поток G30. С не прохлорировавшим твердвм сплавом в поток G32 переходит 10% расплава.

Поток G30:

G30 = G23 ? G32

5.1.4. Расчет блока № 4

Поток G04: Данный поток рассчитывается из сходя из того, что при содержании FeCl3 ~ 10% в расплаве, расплав сливают на переработку.

[кг/год]

Т. к. NaCl ? 50% и KCl ? 50% следовательно

X022(NaCl) =550 [кг/год]

X022(KCl) = 550 [кг/год]

Поток G40:

G40 = G24 + G04 ? G45

G40 = G04 + X24(FeCl3) = G04 =1100 + =1222 [кг/год]

Поток G45: В поток G24 переходят летучие WOCl4, TiCl4

5.1.5. Расчет блока № 5

Поток G501: Конденсированный WOCl4(т)

Поток G502: Неконденсируемые газы Cl2, СO2.

[кг/год]

10223,7?=486,8 [кг/год]

G502= 2567,5 + 486,8 = 3054,3 [кг/год]

Поток G56: Конденсированный TiCl4(ж) и WOCl4(т) ? 10%

5.1.6. Расчет блока № 6

Поток G65: Пульпа WOCl4(т) ? 90%, TiCl4(ж) ? 10%

Поток G60: TiCl4(ж) ? 100%

5.2 Расчет технологической схемы в целом

Запишем уравнения, используя исходные данные и принятые значения для потоков вольфрама.

= 7050,75 кг

1) измельчение и обогащение: в твердосплавный концентрат переходит 7050,75 кг соответственно 0,2 и 0,8 количества молибдена, поступающего на операцию;

2) возгонка: в остатке от возгонки 0,3, в возгонах 0,7 количества молибдена;

3) выщелачивание: в растворе 0,98, в отвалах выщелачивания 0,02;

4) очистка от тяжелых металлов: в сульфидном кеке 0,05, в очищенном растворе 0,95;,.

5) нейтрализация: в кислом маточном растворе 0,01, в кристаллах тетрамолибдата аммония 0,99;

6) перекристаллизация: в маточном растворе 0,1, в кристаллах парамолибдата аммония (конечный продукт) 0,9. /

Зададимся производительностью по молибдену в конечном продукте 1000 т/год.

Обозначим потоки молибдена (т.е. количества его в различных материалах), т/год, неизвестными x-i; Хг, - ', Х^2, *13 в соответствии с рис.7.

Для определения неизвестных составим систему, состоящую их уравнений трех типов.

1. Уравнение, в котором задана производительность:

х-i з=1000.

2. Уравнения, в которых использованы соотношения между потоками. Это могут быть непосредственно содержащиеся в исходных данных сведения о доле ценного компонента от количества, поступающего на операцию, переходящей в каждый из продуктов этой операции, например:,

Х2 = 0,2 (xl + Х2), Х3 = 0,8 (Xi + X2), Х4 = 0,3 Х3,

Х5 = 0,7, Х3,

или вытекающие из этих сведений соотношения между потоками, выходящими с одной и той же операции, например:

Х3 = 4Х2,... .

Х5= 7/3 Х4.

Кроме того, возможно использование соотношения между потоками, относящимися к разным операциям схемы. Дело в том, что в реальных технологических схемах количества ценного компонента в тех или иных материалах (особенно в выводимых из схемы) часто задают как долю от количества ценного компонента в исходном материале или конечном продукте. Так, например, исходные данные. могли бы содержать,:; следующее указание: "Потери молибдена с, остатком выщелачивания составляют в среднем 0,6% от количества, поступающего с молибденитовым концентратом"; соответствующее, уравнение имело бы вид

Х7= 0,006 Xi.

Следует отметить, что в тех случаях, когда вместо данных, относящихся к потокам одной и той же операции, заданы соотношения между потоками разных операций, расчет методом "от операции к операции" невозможен.

3. Уравнения, отражающие равенство количества - ценного компонента, поступающего на операцию, количеству, выходящему с нее:;

Ха + Хз = Xi + *2 * или Хз = xl;

х4 + х5 = х3, Х6 + Х7 = Х4,

Х8 + Х9 = Хб + Х12 И Т.Д.

Легко убедиться, что общее число уравнений всех типов, которые можно составить, во много раз превышает число неизвестных, хотя система должна иметь единственное решение и соответственно число уравнений должно быть равно числу неизвестных. Причина, очевидно, состоит в том, что большая часть уравнений представляет собой линейные комбинации других; например, из

Х2 = 0,2 (Хт + Х2),

Х3 = 0,8 (Xi + Х2) следует

Ха + Хз = Xi + х2, или Хз = Xi;

Хз: Х2 = 0,8: 0,2, или Х3 = 4Х2.

В то же время решение возможно только при условии, что при числе уравнений, равном числу неизвестных, все уравнения линейно независимы. Поэтому после составления системы уравнений необходим тщательный контроль отсутствия в ней линейно зависимых (дублирующих) уравнений.

По-видимому, дублирования уравнений проще всего избежать, используя в системе, кроме уравнения, задающего производительность, только соотношения между количеством ценного компонента в потоке, выходящем с операции, и количеством, поступающим на эту операцию. Для схемы, показанной на рис.7, можно составить, например, следующую систему уравнений для определения потоков ценного компонента при производительности по конечному продукту, равной 1000:

1. Х2 = 0,2 (х-i + Х2), или Х2 = 0,25 Xi;

2. х3 = 0,8(х1 +х2);

3. х4 = о. з Хз;

4. Х5 = 0,7 Хз;

5. Хб = 0,98 Х4;

б ху = 0,02 х4;

7. х8 = 0,05 (х6 + х12);

8. Х9 = 0,95(Х6 + Х12);

э. хю = 0,01 х9;

10. Хц =0,99 Xg;

11. х12 = о,1 (хб + хц);

12. Х13 = 0,9(Х5 + Хц);

13. Х13 = 1000.

Подобную систему уравнений можно довольно легко решить вручную, путем последовательной подстановки, сокращения переменных при вычитании одних уравнений из других и т.д. Однако если число неизвестных очень велико (а в реальных схемах число потоков может достигать многих десятков и даже сотен), возрастает трудоемкость расчетов и вероятность ошибок. В подобных случаях для сокращения числа уравнений можно рекомендовать обозначать неизвестными не количества ценного компонента в каждом из потоков, а суммарные количества, поступающие на операции схемы; при этом, очевидно, число уравнений на 1 больше числа операций. Например, для той же схемы (рис.7) получаем:

1. У1 = G ucx + 0,2 /!, или 0,8 у! = G исх;

2. у2 = 0,8 yi;

3. уз = о, з у2;

4. у4 = 0,98 Уз + 0,1 Уб',

5. у5 = 0,95 у4;

6. у6 = 0,7 у2 + 0,99 у5;

7. G исх = 0,9 у6.

После решения подобной системы уравнений расчет количества ценного компонента в каждом из потоков не вызывает затруднений.

Однако наиболее эффективным способом преодоления трудностей расчета сложных технологических схем является использование компьютеров.

В отличие от человека, выбирающего для каждой конкретной системы уравнений наиболее рациональный путь решения, в программах для цифровых вычислительных машин можно использовать только универсальные, единые для всех систем линейных уравнений способы вычисления. Среди таких способов наиболее распространены метод Гаусса с выбором главного элемента столбца или строки и метод обращения матрицы [2].

До начала вычислений необходимо ввести исходные данные: при использовании метода Гаусса - расширенную матрицу коэффициентов системы линейных уравнений (значения коэффициентов при неизвестных и свободные члены каждого из уравнений):

а при использовании метода обращения матрицы - отдельно квадратную матрицу коэффициентов и вектор-столбец свободных членов:

Для составления матрицы коэффициентов члены уравнений, содержащие неизвестные, необходимо расположить слева от знака равенства в порядке возрастания индекса неизвестного, оставив справа только свободные члены; отсутствующие неизвестные вносят в уравнения с коэффициентами, равными нулю. После этого можно приступить к вводу матрицы коэффициентов.

Однако применительно к системе уравнений, получаемой при описании распределения ценного компонента по потокам технологической схемы, этот способ нерационален, так как подавляющая часть коэффициентов равна нулю. Например, при вводе коэффициентов составленной ранее системы из 13 уравнений первые две строки должны быть записаны в следующем виде: - 0,25 Xi + 1 Х2 + О Х3 + О Х4 + О Х5 + О Х6 + О Х7 + О Х8 + О Х9 +

+ о х10 + о хп + ох12+ о х13 = о;

- 0,8 х1 - 0,8 х2 + 1 хЗ + 0 х4 + 0 х5 + 0 хб + 0 х7 + 0 х8 + О Х9 +

+ о Хю+ о х-и +о X-I2 + о х13 = о,

а первые две строки расширенной матрицы коэффициентов соответственно

-0,25 1 000000000000 - 0,8 - 0,8 000000000000

При большом числе неизвестных количество вводимых нулей становится громадным: например, при 40 неизвестных расширенная матрица состоит из 40 х 41 = 1640 коэффициентов, из которых более 1500 будут равны нулю. Очевидно, что ввод подобной матрицы настолько трудоемок и неизбежно сопровождается таким количеством ошибок, что превращается в сложную задачу.

Это затруднение устраняется, если ввод матрицы осуществлять в два этапа: сначала заполнить всю матрицу нулями (эта операция выполняется очень легко), а затем ввести ненулевые коэффициенты, заменяя ими нули.

Ниже описан расчет балансов по ценному компоненту методом Гаусса с помощью программы на языке BASIC и методом обращения матрицы с помощью табличного процессора EXCEL [3, 4].

5.1. Уравнения материального баланса.

+ 0,4 · + +

G23 = 12043 + 10174,5 + + 0,4 · + +

=

Xi=Xo+XK2i i+XO2l 1+X21+X221

Хо=166,67

Хк211=0,2*0,1 *(0,78+0,15) *Xi

X2i=0,65*0,02*(0,78+0,15) *X1

X22i=0,15*0,01*(0,78+0,15) *Xi

0,1 - не окислившегося карбида в циклоне

0,02 - доля не окислившегося карбида в огарке

0,01 - доля не окислившегося карбида в рукаве

Получим:

Хк211=0,019*Xi

X2i=0,012*X!

Х221=0,001*Х!

Решение:

X1-0,019*Xi-0,012*X1-0,001*X1=166,67

0,968*Х1=166,67

Ху=172Л8 (без оксидов и связующих компонентов)

5.1.1. Расчет потоков:

Поток Хк2ц равен:

Хи„=3, 202

Найдем количества веществ в этом потоке:

Xk2ii(WC): 0,2*0,78*0,1*172,18=2,686

ХииСТЮ): 0,2*0,15*0,1*172,18=0,516

Поток X2i равен:

Х2] =2,082

Найдем количества веществ в этом потоке:

X2i(WC): 0,65*0,02*0,78*172,18=1,746 X2i(TiC): 0,65*0,02*0,15*172,18=0,336

Поток X22i равен:

X22i(WC): 0,15*0,01*0,78*172,18=0, 201

X22i(TiC): 0,15*0,01*0,15*172,18=0,039

5.1.2. Расчет циклонной пыли.

Количество карбида окисляемого в циклоне в виде металлов (Со, Zn, Cu, Fe), (кг/ч): 3, 202*(0,06+0,006+0,003+0,001) /(0,78+0,15) = 0,241

Количество оксидов в циклоне без учета оксидов поступающих из шихты:

X'o22i = 0,2 *0,9*Xi=30,992

Количества оксидов, (кг/ч):

По реакции (1) WO3: 0,78*30,992*231,82/195,86=28,612

По реакции (2) ТЮ2: 0,15*30,992*79,88/59,84=6, 206

По реакции (3) СоО: (0,06*(30,992+0,241)) *74,93/58,93=2,383

По реакции (4) ZnO: (0,06*(30,992+0,241)) *81,39/65,39=0,233

По реакции (5) Си2О: (0,06*(30,992+0,241)) *143,1/2*63,55=0,105

По реакции (6) Fe2O3: (0,06*(30,992+0,241)) *231,55/2*55,85=0,065

Суммарное количество оксидов, (кг/ч): 37,604

Таблица 6. Количество оксидов в циклоне без учета оксидов поступающих из шихты.

W03

ТЮ2

СоО

ZnO

Cu2O

Fe203

всего

кг/ч

28,612

6, 206

2,383

0,233

0,105

0,065

37,604

%

76,088

16,504

6,337

0,620

0,279

0,173

100

Итоговое количество оксида в шихте:

Хо2ц=37,604+0,2*Хо2ц

0,8*Х211=37,604

Xo2i 1=47,005 кг/ч

Количество оксида приходящее из шихты в циклон:

0,2*Xo2i 1=9,401 кг/ч

Состав и количество приходящих в циклон оксидов их шихты, (кг/ч):

WO3: 9,401*0,761=7,154

ТЮ2: 9,401*0,165=1,551

СоО: 9,401*0,063=0,592

ZnO: 9,401*0,006=0,056

Cu20: 9,401*0,003=0,028

Fe2O3: 9,401*0,003=0,019

Итоговое суммарное состав и количество оксидов, (кг/ч):

WO3: 7,154 + 28,612=35,766

ТЮ2: 1,551+6, 206=7,757

СоО: 0,592+2,383=2,975

Си20: 0,028+0,105=0,133

ZnO: 0,056+0,233=0,289

Fe2O3: 0,019+0,065=0,084

5.1.4. Количество связующих веществ в исходной шихте.

Количество WC в шихте, (кг/ч): 166,67*0,76+1,746+2,686+0, 201=134,636 Количество ТЮ в шихте, (кг/ч):

166,67*0,15+0,516+0,336+0,039=25,531 Количество шихты без связующих веществ, (кг/ч): 166,67+47,005+0,24+2,082,3, 202=219, 199

Количество связующих веществ 219, 199*(14%+6%) /80%:

Н2О: 219, 199*0,14/0,8=38,360 кг/ч Хшо=3 8,360 кг/ч

Бентонита: 219, 199*0,06/0,8=16,440кг/ч Распределение бентонита, (кг/ч):

огарок: 16,440*0,65=10,686

пыль циклона: 16,440*0, 20=3,288

пыль рукавного фильтра: 16,440*0,15=2,466 Хбент. =16,440 - 3,288=13,152

Таблица 7. Состав шихты поступающей на обжиг.

WC

ТЮ

Со

Zn

Си

Fe

W03

ТЮ2

СоО

ZnO

Си2О

Fe2O3

Н2О

бенг

всего

кг/ч 134,636% 49, 202

25,531 9,330

10,000 3,654

1,000 0,365

0,500 0,183

ОД 67 0,061

35,766 13,071

7,757 2,835

2,975 1,087

0,289 0,106

0,133 0,049

0,084 0,031

38,360 14,019

16,440 6,008

273,638 100,000

5.2 Окисление карбидов.

5.2.1. Окисление WC:

Распределение компонента, (кг/ч):

огарок: 134,636*0,65=87,513

пыль циклона: 134,636*0, 20=26,927

пыль рукавного фильтра: 134,636*0,15=20, 195

Основная реакция: WC + 2.5О? = WCb + ССЬ

М=195,86 М=16 М=231,82 М=44,01 (г/моль)

1) в огарке окислится: 26,927*0,9= 85,763 кг/ч Расходуется кислорода, (кг/ч):

02: 85,763*2,5*2*16/195,86=17,515

Образуется веществ, (кг/ч):

С02: 85,763*44,01/195,86=19,272

WO3: 85,763*231,82/195,86=101,509

Оксида WO3 в исходной шихте, (кг/ч): 47,005*0,65*0,761=23,251

Суммарное количество WOs, (кг/ч): 124,76

2) в циклоне окислится: 26,927*0,9=24,234 кг/ч Расходуется кислорода, (кг/ч):

О2: 24,334 * 2,5*2*1,6/195,86 = 4,949 Образуется веществ, (кг/ч): СО2: 24,334*44,01/195,86=5,445

WO3: 28,612

Оксида WO3 в исходной шихте, (кг/ч): 47,005*0,2*0,761=7,154

Суммарное количество WO3, (кг/ч): 35,76

3) в рукаве окислится: 20, 195*0,99=19,993 кг/ч

Расходуется кислорода, (кг/ч):

О2: 19,993*2,5*2*16/195,86=4,083

Образуется веществ, (кг/ч):

СО2: 19,993*44,01/195,86=4,492

W03: 19,993*231,82/195,86=23,664

Оксида WO3 в исходной шихте, (кг/ч): 47,005*0,15*0,761=5,366

Суммарное количество WO3, (кг/ч): 29,03

5.2.2. Окисление TiC:

Распределение компонента, (кг/ч):

огарок: 25,531*0,65=16,595

пыль циклона: 25,531*0, 20=5,106

пыль рукавного фильтра: 25,531*0,15=3,830

Основная реакция: TiC + 2OZ = TIP? + СО?

M=59,84 M=16 М=79,88 М=44,01 (г/моль)

1) в огарке окислится: 16,595* 0,98=10,787 кг/ч Расходуется кислорода, (кг/ч):

02: 10,787*2*2* 16/59,84=5,768 кг/ч

Образуется веществ, (кг/ч):

ТЮ2: 10,787*79,88/59,84=14,399

СО2: 10,787*44,01/59,84=7,933

Оксида ТЮ2 в исходной шихте, (кг/ч): 47,005*0,65*0,165=5,042

Суммарное количество ТЮ2, (кг/ч): 12,975

2) в циклоне окислится: 5,106*0,9 =3,319 кг/ч Расходуется кислорода, (кг/ч):

О2: 3,319*2*2*16/59,84=1,331

Образуется веществ, (кг/ч):

СО2: 3,319*44,01/59,84=2,441

ТЮ2: 6, 206

Оксида ТЮ2 в исходной шихте, (кг/ч): 47,005*0, 20*0,165=1,551

Суммарное количество ТЮ2, (кг/ч): 12,975

3) в рукаве окислится: 3,830*0,99=2,498 кг/ч Расходуется кислорода, (кг/ч):

02: 2,489*2*2*16/59,84=1,331

Образуется веществ, (кг/ч):

ТЮ2: 2,489*79,88/59,84=3,322

С02: 2,489*44,01/59,84=1,831

Оксида ТЮ2 в исходной шихте, (кг/ч): 47,005*0,15*0,165=1,163

Суммарное количество ТЮ2, (кг/ч): 4,485

5.2.3. Окисление Со:

Распределение компонента, (кг/ч):

огарок: 10*0,65=6,5

пыль циклона: 10*0,2=2,0

пыль рукавного фильтра: 10*0,15=1,5

Реакции: а) Со + 0.5От= СоО

М=58,93 М=16 М=74,93 (г/моль)

б) 2СоО + 0.5О7 = CozCb М=74,93 М=16 М=165,86 (г/моль)

Весь СоО оседает в циклоне, а Со2Оз образуется в огарке и пыли рукавного фильтра. СоО приходящий с исходной шихтой (оборотный) окисляется до Со2Оз нацело.

1) в огарке окислится: 6,5кг/ч По реакции (а):

Расходуется кислорода, (кг/ч):

О2: 6,5* 16/58,93=1,765 Образуется веществ, (кг/ч):

Считаем, что СоО из шихты образуется 100% -98%=2%: 6,5* 2%=0,13

Из этого СоО по реакции (б) не будет доокисляться: 0,13*74,94/58,93=0,165

СоО: 6,5*74,93/58,93=8,265

По реакции (б):

Расходуется кислорода, (кг/ч):

О2: 8,965*16/165,86=0,865 Образуется веществ, (кг/ч):

СогО3: (8,265-0,165) * 165; 86/2*7,493=8; 965

Оксида СоО в исходной шихте, (кг/ч): 47,005*0,65*0,063=1,934 Со203: 1,934*165,86/2*7,493=2,140 Суммарное количество Со2Оз, (кг/ч): 11,105

2) в огарке окислится: 2,0 кг/ч

В циклоне окисление идет до СоО.

Расходуется кислорода, (кг/ч):

О2: 2,0*16/58,93=0,543

Образуется веществ, (кг/ч):

СоО: 2,383

Оксида СоО в исходной шихте, (кг/ч): 47,005*0, 20*0,0,063=0,592

Суммарное количество СоО, (кг/ч): 2,975

3) в рукаве окислится: 1,5 кг/ч По реакции (а):

Расходуется кислорода, (кг/ч):

О2: 1,5*16/58,93=0,407 Образуется веществ, (кг/ч):

Считаем, что СоО из шихты образуется 100% -99%=1%: 1,5* 1%=0,015

Из этого СоО по реакции (б) не будет доокисляться: 0,015*74,94/58,93=0,019

СоО: 1,5*74,93/58,93=1,907

По реакции (б):

Расходуется кислорода, (кг/ч):

О2: (1,907 - 0,019) * 16/165,86=0,182

Образуется веществ, (кг/ч):

Со2О3: (1,907-0,019) * 165,86/2*74,93=2,091

Оксида СоО в исходной шихте, (кг/ч): 47,005*0,15*0,063=0,444

Со203: 0,444*165,86/2*74,93=0,492

Суммарное количество Со2Оз, (кг/ч): 2,583

5.2.4. Окисление Zn:

Распределение компонента, (кг/ч):

огарок: 1,0*0,65=0,65

пыль циклона: 1,0*0, 20=0, 20

пыль рукавного фильтра: 1,0*0,15=0,15

Основная реакция: Zn + 0,50? = ZnO

М=65,39 М=16 М=81,39 (г/моль)

1) в огарке окислится: 0,65 кг/ч Расходуется кислорода, (кг/ч):

О2: 0,65*16/65,39=0,159 Образуется веществ, (кг/ч):

ZnO: 0,65*81,39/65,39=0,809

Оксида ZnO в исходной шихте, (кг/ч): 47,005*0,65*0,006=0,188 Суммарное количество ZnO, (кг/ч): 0,997

2) в циклоне окислится: 0,2 кг/ч Расходуется кислорода, (кг/ч):

02: 0,2*16/65,39=0,049 Образуется веществ, (кг/ч):

ZnO: 0,233

Оксида ZnO в исходной шихте, (кг/ч): 47,005*0, 20*0,006=0,056 Суммарное количество ZnO, (кг/ч): 0,289

3) в рукаве окислится: 0,15кг/ч Расходуется кислорода, (кг/ч):

02: 0,15*16/65,39=0,037 Образуется веществ, (кг/ч):

ZnO: 0,15*81,39/65,39=0,187

Оксида ZnO в исходной шихте, (кг/ч): 47,005*0,15*0,006=0,043 Суммарное количество ZnO, (кг/ч): 0,230

5.2.5. Окисление Си:

Распределение компонента, (кг/ч):

огарок: 0,5*0,65=0,325

пыль циклона: 0,5 *0, 20=0,1

пыль рукавного фильтра: 0,5*0,15=0,075

Реакции: а) 2Си + 0.5О2 = СшО

М=63,552 М=16 М=143,1 (г/моль)

По реакции (а): Расходуется кислорода, (кг/ч): О2: 0,325*16/63,552*2=0,041 Образуется веществ, (кг/ч): Си2О: 0,325*143,1/63,55*2=0,366

Оксида Си2О в исходной шихте, (кг/ч): 47,005*0,65*0,003=0,086

Из исходной шихты Си2О окисляется до СиО нацело. Из окислившегося Си2О по реакциям не будет окисляться до СиО 100% -98%=2%: 0,366*2%=0,007кг/ч Отношение распределения образования оксидов: Cu20/CuO = 2/1 0,366*0,98=0,359 кг/ч следовательно образуется: Си2О=0,244 кг/ч и 0,122 кг/ч идет на доокисление до СиО Суммарное количество Си2О, (кг/ч): 0,007+0,244=0,251

По реакции (б):

Расходуется кислорода, (кг/ч):

О2: 0,232*1/4*32/79,56=0,023

Образуется веществ, (кг/ч):

СиО: (0,122+0,086) *79,55/143,1* 1/2=0,232

2) в циклоне окислится: 0,1 кг/ч

Будем считать, что реакция идет до образования Си2О.

Расходуется кислорода, (кг/ч):

02: 0,1*16/2*63,55=0,013

Образуется веществ, (кг/ч):

Си20: =0,105

Оксида Си2О в исходной шихте, (кг/ч): 47,005*0, 20*0,003=0,028

Суммарное количество Си2О, (кг/ч): 0,133

3) в рукаве окислится: 0,075кг/ч По реакции (а):

Расходуется кислорода, (кг/ч):

О2: 0,075*169/2*63,55=0,009 Образуется веществ, (кг/ч):

Си2О: 0,075*143,1/63,55*2=0,084

Оксида Си2О в исходной шихте, (кг/ч): 47,005*0,15*0,003=0,002

Из исходной шихты Си2О окисляется до СиО нацело. Из окислившегося Си2О по реакциям

не будет окисляться до СиО 100% -99%=2%: 0,084*1%=0,001кг/ч

Отношение распределения образования оксидов: Cu20/CuO = 2/1

0,084*0,99=0,083 кг/ч следовательно образуется:

Си2О=0,056 кг/ч и 0,028 кг/ч идет на доокисление до СиО

Суммарное количество Си2О, (кг/ч): 0,001+0,056=0,057

По реакции (б):

Расходуется кислорода, (кг/ч):

О2: 0,053*1/4*32/79,55=0,005

Образуется веществ, (кг/ч):

СиО: (0,028+0,133*0,15) *79,55=0,005

5.2.6. Окисление Ге:

Распределение компонента, (кг/ч):

огарок: 0,167*0,65=0,108

пыль циклона: 0,167*0,2=0,033

пыль рукавного фильтра: 0,167*0,15=0,025

Реакции: a) Fe + 0.50? = FeO

М=55,85 М=16 М=71,85 (г/моль)

1) в огарке окислится: 0,108 кг/ч

Отношение распределения образования оксидов: РеаОз/ FeO =3/1=0,081/0,027

По реакции (а):

Расходуется кислорода, (кг/ч):

О2: 0,027*16/55,85=0,008

Образуется веществ, (кг/ч):

FeO: 0,027*71,85/55,85=0,035

По реакции (б):

Расходуется кислорода, (кг/ч):

02: 0,081*1,5*32/55,85*2=0,04

Образуется веществ, (кг/ч):

FeiOs: 0,081*159,7/2*55,85=0,116

Оксида FeiOs в исходной шихте, (кг/ч): 47,005*0,65*0,002=0,065

Суммарное количество Ре2Оз, (кг/ч): 0,181

2) в циклоне окислится: 0,033кг/ч

В циклоне окисление идет до РеаОз.

Расходуется кислорода, (кг/ч):

О2: 0,033*1,5*32/55,85*2=0,014

Образуется веществ, (кг/ч):

РегОз =0,065

Оксида Ре2Оз в исходной шихте, (кг/ч): 47,005*0, 20*0,002=0,019

Суммарное количество Ре2Оз, (кг/ч): 0,084

1) в огарке окислится: 0,025 кг/ч

Отношение распределения образования оксидов: РезОз/ FeO =3/1=0,019/0,006

По реакции (а):

Расходуется кислорода, (кг/ч):

О2: 0,006*16/55,85=0,002

Образуется веществ, (кг/ч):

FeO: 0,006*71,85/55,85=0,008

По реакции (б):

Расходуется кислорода, (кг/ч):

О2: 0,019*1,5*32/55,85*2=0,008

Образуется веществ, (кг/ч):

FeiOs: 0,019*159,7/2*55,85=0,027

Оксида Ре2Оз в исходной шихте, (кг/ч): 47,005*0,15*0,002=0,013

Суммарное количество Ре2Оз, (кг/ч): 0,04

5.2.7. Теоретическое количество воздуха.

Суммарное количество кислорода, (кг/ч): 35,03+9,939+11,563+3,55+2,662+ 1,765+0,865 +0,543+0,407+0,182+0,159+0,049+0,037+0,023+0,013+0,009+0,005+0,003+ 0,008+ 0,014+0,002+0,008=75,043

Теоретический расход воздуха (из расчета. Оа - 23% по массе)

75,043*0,23=326,274 кг/ч

Количество азота: 326,274 - 75,043= 251,231 кг/ч

Количество влаги, вносимое с воздухом при Т=20°С и относительной влажности 80%

(содержание влаги "0,012 кг. на 1кг. сухого воздуха):

326,274* 0,012 = 3,915 кг/ч

Теоретический расход влажного воздуха (кг/ч)

326,274 + 3,915 = 330,189 кг/ч.

Таблица 8. Состав огарка.

Со203

11,105

6,793

WC

ТЮ

Со

Zn

Си

Fe

WO3

ТЮ2

СоО

ZnO

Си2О

Fe203

H20

Бент. всего

кг/ч

1,746

0,336

0

0

0

0

124,760

12,975

0,165

0,997

0,251

0,181

0

10,686 163,469

%

1,068

0, 206

0

0

0

0

76,320

7,937

0,101

0,610

0,154

0,111

0

6,537 100,000

СиО FeO

0,232 0,035

0,142 0,021

Таблица 9. Состав циклонной пыли.

WC

TiC

Со

Zn

Си

Fe

WO3

ТЮ2

СоО

ZnO

Си2О

Fe2O3

Н2О

Бент.

всего

кг/ч

2,686

0,516

0

0

0

0

35,766

7,757

2,925

0,289

0,133

0,084

0

3,288

53,444

%

5,026

0,965

0

0

0

0

66,922

14,514

5,473

0,541

0,249

0,157

0

6,152

100,000

Таблица 10. Состав пыли рукавного фильтра.

Со2ОЗ

2,583

6,587

WC

TiC

Со

Zn

Си

Fe

WO3

ТЮ2

СоО

ZnO

Си2О

Fe2O3

H2O

Бент.

всего

кг/ч

0, 201

0,039

0

0

0

0

29,030

4,485

0,019

0,230

0,057

0,040

0

2,466

39,211

%

0,513

0,099

0

0

0

0

74,035

11,438

0,048

0,587

0,145

0,102

0

6,289

100,000

СиО

FeO

0,053

0,008

0,135

0,020

Таблица 11. Состав газов.

N2 кг/ч 251,231

Н2О 42,275

СО2

41,414

всего 334,920

% 75,012

12,622

12,365

100,000

Таблица 12. Материальный баланс обжига.

Г

Приход

Об

разуется

Вещество

кг/ч

%

Вещество

кг/ч

%

WC

134,636

22,366

WC

4,633

0,786

TiC

25,531

4,241

TiC

0,891

0,151

Со

10,000

1,661

Zn

1,000

0,166

WO3

189,556

32,172

Си

0,500

0,083

ТЮ2

25,217

4,280

Fe

0,167

0,028

СоО

3,109

0,528

Со203

13,688

2,323

W03

35,766

5,941

ZnO

1,516

0,257

ТЮ2

7,757

1,289

Си20

0,441

0,075

СоО

2,975

0,494

СиО

0,285

0,048

ZnO

0,289

0,048

Fe203

0,305

0,052

Си2О

0,133

0,022

FeO

0,043

0,007

Fe203

0,084

0,014

бент

16,440

2,790

бент

16,440

2,731

H20

40,424

6,715

H20

40,424

6,861

N2

251,231

42,640

02

75,043

12,466

C02

41,414

7,029

N2

251,231

41,734

Всего

601,976

100

Всего

589, 193

100

Нее

пр

язка от ихода

12,783

2,124

тшо: 3,036*МШо/201,38=0,270

тшо: 0,594*МШо/165,54=0,065

тшо: 0,178*МШо/165,54=0,019 Остаток воды: 547,236-21,251=525,985 кг.

Количество NH3 пошедшее на реакции, (кг/ч):

тотв: 201,227*2*MNH3 (17) 7303,3=22,557

тшз: 0,520* 6*МШЗ /211,93=0,250

тшз: 34,980*12* Мню /211,93=33,670

ткш: 3,036* 6*МШЗ /201,38=1,537

тшз: 0,594*4* Мынз /165,54=0,240

6) тщз: ОД78* 4*МШЗ /165,54=0,078 Остаток NH3: 60,804-58,324=2,480 кг.

Таблица 13. Материальный баланс выщелачивания.

Приход

Образуется

Вещество WC

кг/ч 1,947

% 0,236

Вещество (NH4) 2WO4

кг/ч 201,227

% 25,084

TiC

0,375

0,046

[Co(NH3) 6] (OH) 3

35,500

4,425

WO3

153,790

18,662

[Zn (NH3) 6] (OH) 2 [Cu (NH3) 6j (OH) 2

3,036 0,774

0,378 0,096

ТЮ2

17,460

2,119

СоО

0,184

0,022

WC

1,947

0,243

Со203

13,688

1,661

TiC

0,375

0,047

ZnO

1,227

0,149

Cu20

13,688

1,661

ТЮ2

17,460

2,177

CuO

0,285

0,035

Fe203

0,221

0,028

Fe2O3

0,221

0,027

FeO

0,043

0,005

FeO

0,043

0,005

бент

13,152

1,639

бент

13,152

1,596

NH3

60,804

7,378

NH3

2,480

0,309

H20

547,236

66,404

H20

525,985

65,568

Всего

824,100

100

Всего

802,2

100

Невязка от прихода

21,900

2,657

Сущность метода рассмотрим на примере условной схемы переработки молибденитового концентрата, включающей возгонку триоксида молибдена и гидрометаллургическую переработку остатка от возгонки (рис.7). *

Примем, что пооперационные балансы молибдена характеризуются следующими цифрами:

1) грануляция и обжиг в кипящем слое: в пыль и в огарок переходит соответственно 0,2 и 0,8 количества молибдена, поступающего на операцию;

2) возгонка: в остатке от возгонки 0,3, в возгонах 0,7 количества молибдена;

3) выщелачивание: в растворе 0,98, в отвалах выщелачивания 0,02;

4) очистка от тяжелых металлов: в сульфидном кеке 0,05, в очищенном растворе 0,95;,.

5) нейтрализация: в кислом маточном растворе 0,01, в кристаллах тетрамолибдата аммония 0,99;

6) перекристаллизация: в маточном растворе 0,1, в кристаллах парамолибдата аммония (конечный продукт) 0,9. /

Зададимся производительностью по молибдену в конечном продукте 1000 т/год.

Обозначим потоки молибдена (т.е. количества его в различных материалах), т/год, неизвестными x-i; Хг, - ', Х^2, *13 в соответствии с рис.7.

Для определения неизвестных составим систему, состоящую их уравнений трех типов.

1. Уравнение, в котором задана производительность:

х-i з=1000. " ".

2. Уравнения, в которых использованы соотношения между потоками. Это могут быть непосредственно содержащиеся в исходных данных сведения о доле ценного компонента от количества, поступающего на операцию, переходящей в каждый из продуктов этой операции, например:,

Х2 = 0,2 (xl + Х2), Х3 = 0,8 (Xi + X2), Х4 = 0,3 Х3,

Х5 = 0,7, Х3,

или вытекающие из этих сведений соотношения между потоками, выходящими с одной и той же операции, например:

Х3 = 4Х2,... .

Х5= 7/3 Х4.

Кроме того, возможно использование соотношения между потоками, относящимися к разным операциям схемы. Дело в том, что в реальных технологических схемах количества ценного компонента в тех или иных материалах (особенно в выводимых из схемы) часто задают как долю от количества ценного компонента в исходном материале или конечном продукте. Так, например, исходные данные. могли бы содержать,:; следующее указание: "Потери молибдена с, остатком выщелачивания составляют в среднем 0,6% от количества, поступающего с молибденитовым концентратом"; соответствующее, уравнение имело бы вид

Х7= 0,006 Xi.

Следует отметить, что в тех случаях, когда вместо данных, относящихся к потокам одной и той же операции, заданы соотношения между потоками разных операций, расчет методом "от операции к операции" невозможен.

3. Уравнения, отражающие равенство количества - ценного компонента, поступающего на операцию, количеству, выходящему с нее:;

Ха + Хз = Xi + *2 * или Хз = xl;

х4 + х5 = х3, Х6 + Х7 = Х4,

Х8 + Х9 = Хб + Х12 И Т.Д.

Легко убедиться, что общее число уравнений всех типов, которые можно составить, во много раз превышает число неизвестных, хотя система должна иметь единственное решение и соответственно число уравнений должно быть равно числу неизвестных. Причина, очевидно, состоит в том, что большая часть уравнений представляет собой линейные комбинации других; например, из

Х2 = 0,2 (Хт + Х2),

Х3 = 0,8 (Xi + Х2) следует

Ха + Хз = Xi + х2, или Хз = Xi;

Хз: Х2 = 0,8: 0,2, или Х3 = 4Х2.

В то же время решение возможно только при условии, что при числе уравнений, равном числу неизвестных, все уравнения линейно независимы. Поэтому после составления системы уравнений необходим тщательный контроль отсутствия в ней линейно зависимых (дублирующих) уравнений.

По-видимому, дублирования уравнений проще всего избежать, используя в системе, кроме уравнения, задающего производительность, только соотношения между количеством ценного компонента в потоке, выходящем с операции, и количеством, поступающим на эту операцию. Для схемы, показанной на рис.7, можно составить, например, следующую систему уравнений для определения потоков ценного компонента при производительности по конечному продукту, равной 1000:

1. Х2 = 0,2 (х-i + Х2), или Х2 = 0,25 Xi;

2. х3 = 0,8(х1 +х2);

3. х4 = о. з Хз;

4. Х5 = 0,7 Хз;

5. Хб = 0,98 Х4;

б ху = 0,02 х4;

7. х8 = 0,05 (х6 + х12);

8. Х9 = 0,95(Х6 + Х12);

э. хю = 0,01 х9;

10. Хц =0,99 Xg;

11. х12 = о,1 (хб + хц);

12. Х13 = 0,9(Х5 + Хц);

13. Х13 = 1000.

Подобную систему уравнений можно довольно легко решить вручную, путем последовательной подстановки, сокращения переменных при вычитании одних уравнений из других и т.д. Однако если число неизвестных очень велико (а в реальных схемах число потоков может достигать многих десятков и даже сотен), возрастает трудоемкость расчетов и вероятность ошибок. В подобных случаях для сокращения числа уравнений можно рекомендовать обозначать неизвестными не количества ценного компонента в каждом из потоков, а суммарные количества, поступающие на операции схемы; при этом, очевидно, число уравнений на 1 больше числа операций. Например, для той же схемы (рис.7) получаем:

1. У1 = G ucx + 0,2 /!, или 0,8 у! = G исх;

2. у2 = 0,8 yi;

3. уз = о, з у2;

4. у4 = 0,98 Уз + 0,1 Уб',

5. у5 = 0,95 у4;

6. у6 = 0,7 у2 + 0,99 у5;

7. G исх = 0,9 у6.

После решения подобной системы уравнений расчет количества ценного компонента в каждом из потоков не вызывает затруднений.

Однако наиболее эффективным способом преодоления трудностей расчета сложных технологических схем является использование компьютеров.

В отличие от человека, выбирающего для каждой конкретной системы уравнений наиболее рациональный путь решения, в программах для цифровых вычислительных машин можно использовать только универсальные, единые для всех систем линейных уравнений способы вычисления. Среди таких способов наиболее распространены метод Гаусса с выбором главного элемента столбца или строки и метод обращения матрицы [2].

До начала вычислений необходимо ввести исходные данные: при использовании метода Гаусса - расширенную матрицу коэффициентов системы линейных уравнений (значения коэффициентов при неизвестных и свободные члены каждого из уравнений):

а при использовании метода обращения матрицы - отдельно квадратную матрицу коэффициентов и вектор-столбец свободных членов:

Для составления матрицы коэффициентов члены уравнений, содержащие неизвестные, необходимо расположить слева от знака равенства в порядке возрастания индекса неизвестного, оставив справа только свободные члены; отсутствующие неизвестные вносят в уравнения с коэффициентами, равными нулю. После этого можно приступить к вводу матрицы коэффициентов.

Однако применительно к системе уравнений, получаемой при описании распределения ценного компонента по потокам технологической схемы, этот способ нерационален, так как подавляющая часть коэффициентов равна нулю. Например, при вводе коэффициентов составленной ранее системы из 13 уравнений первые две строки должны быть записаны в следующем виде: - 0,25 Xi + 1 Х2 + О Х3 + О Х4 + О Х5 + О Х6 + О Х7 + О Х8 + О Х9 +

+ о х10 + о хп + ох12+ о х13 = о;

- 0,8 х1 - 0,8 х2 + 1 хЗ + 0 х4 + 0 х5 + 0 хб + 0 х7 + 0 х8 + О Х9 +

+ о Хю+ о х-и +о X-I2 + о х13 = о,

а первые две строки расширенной матрицы коэффициентов

соответственно

-0,25 1 000000000000 - 0,8 - 0,8 000000000000

При большом числе неизвестных количество вводимых нулей становится громадным: например, при 40 неизвестных расширенная матрица состоит из 40 х 41 = 1640 коэффициентов, из которых более 1500 будут равны нулю. Очевидно, что ввод подобной матрицы настолько трудоемок и неизбежно сопровождается таким количеством ошибок, что превращается в сложную задачу.

Это затруднение устраняется, если ввод матрицы осуществлять в два этапа: сначала заполнить всю матрицу нулями (эта операция выполняется очень легко), а затем ввести ненулевые коэффициенты, заменяя ими нули.

Ниже описан расчет балансов по ценному компоненту методом Гаусса с помощью программы на языке BASIC и методом обращения матрицы с помощью табличного процессора EXCEL [3, 4].

mCu(H20) 4ci2: (0,594+0,178) Mcu(mo) 4 012 206,44/165,54 = 0,963

mcocn: 7,756 M 7,756 Mc0ci2129,83/165,25= 6,093

Количество МНЦ С1, (кг/ч):

(165,765*2*53,5/249,85) +(7,756*6*53,5/165,28) +(3,683*6*53,5/244,28) +(0,963* 4*53,5/

206,44) =91,891

Количество поглощаемой реакциями H2O, (кг/ч):

(3,683*4*18/244,28) +(0,963*2*18/206,44) +(6,093*0,5*18/129,83) =1,676

Количество образующейся Н2О, (кг/ч):

7,756*3*18/165,765=2,527

Количество Н2О, приходящее с кислотой, (кг/ч):

Состав кислоты 19,8% НС1 80,2% Н2О

Количество требуемого НС1, (кг/ч):

(165,765*2*36,45/249,85) + (7,756 * 9 * 36,45 / 165,28) + (3,683 * 8 * 36,45 / 244,28) +(0,963*6*36,45/206,

44) =69,177

Приходящей с кислотой Н2О, (кг/ч):

69,177*0,802/0, 198= 280, 202

Суммарное количество приходящей Н2О, (кг/ч):

280, 202+525,985=806,187

Суммарное количество уходящей Н2О, (кг/ч):

806,187+2,527-1,676=807,03 8

Таблица 14. Материальный баланс осаждения.

Приход

Образуется

Вещество

кг/ч

%

Вещество

кг/ч

%

(NH4) 2 WO4

201,227

18,033

H2W04

165,765

15,414

[Co(NH3) 6] (OH) 3

35,500

3,181

Zn(H2O) 6Cl2

3,683

0,342

[Zn (NH3) 6] (OH) 2

3,036

0,272

Си(Н2О) 4С12

0,963

0,090

[Си (NH3) 6] (OH) 2

0,774

0,069

СоС12

6,093

0,567

NH4C1

91,891

8,545

НС1

69,177

6, 199

Н2О

806,187

72,245

Н20

807,038

75,043

Всего

1115,901

100

Всего

1075,433

100

Невя:

ка от прихода

40,468

3,626

5.5 Блок 5 Прокалка и сушка.

WOs получают термическим разложением H2WC4 при 750-800 °С

При прокалке идет следующая реакция:

H2WO4^WO3+H2O


Подобные документы

  • Исследование состава металлического лома, описание способов и оборудования для его переработки. Сравнительная характеристика достоинств и недостатков порошковой металлургии. Классификация механических и физико-химических методов получения порошков.

    реферат [407,4 K], добавлен 05.09.2011

  • Виды и схемы переработки различных видов древесного сырья: отгонка эфирных масел, внесение отходов в почву без предварительной обработки. Технология переработки отходов фанерного производства: щепа, изготовление полимерных материалов; оборудование.

    курсовая работа [1,6 M], добавлен 13.12.2010

  • Технологический процесс подготовки и окраски металлического корпуса бегунов. Марки, свойства и способ изготовления металлокерамических твердых сплавов для режущего инструмента. Способы переработки пластмасс в изделия в зависимости от вида наполнителя.

    контрольная работа [25,0 K], добавлен 01.12.2009

  • Анализ технологических схем переработки плодов косточковых культур. Обзор технологического оборудования, применяемого при переработке плодов: протирочных, косточковыбивных, косточковырезных машин. Описание модернизируемого устройства, его силовой расчет.

    курсовая работа [119,3 K], добавлен 25.11.2012

  • Особенности медных сплавов, их получение сплавлением меди с легирующими элементами и промежуточными сплавами - лигатурами. Обработка медных сплавов давлением, свойства литейных сплавов и область их применения. Влияние примесей и добавок на свойства меди.

    курсовая работа [994,4 K], добавлен 29.09.2011

  • Загрязнение свинцом и его всевозможными соединениями как одна из острых проблем современной экологии. Негативное влияние свинцового отравления на организм человека. Методы и этапы процесса переработки лома цветных металлов и аккумуляторного лома.

    реферат [930,9 K], добавлен 27.11.2011

  • Разработка поточной схемы завода по переработке нефти. Физико-химическая характеристика сырья. Шифр танатарской нефти согласно технологической классификации. Характеристика бензиновых фракций. Принципы расчета материальных балансов, разработка программы.

    курсовая работа [290,6 K], добавлен 09.06.2014

  • Способ переработки магниевого скрапа. Способ переработки магниевых шлаков, содержащих металлический магний, хлористые соли и оксид магния. Разработка концепции технологических процессов утилизации хлоридных отходов титаномагниевого производства.

    контрольная работа [188,2 K], добавлен 14.10.2011

  • Краткий обзор и характеристики твердых материалов. Группы металлических и неметаллических твердых материалов. Сущность, формирования строения и механические свойства твердых сплавов. Производство и применение непокрытых и покрытых твердых сплавов.

    реферат [42,3 K], добавлен 19.07.2010

  • Применение безвольфрамовых твердых сплавов в сфере производства или потребления. Классификационные признаки безвольфрамовых твердых сплавов. Технология производства и её технологическая оценка. Контроль качества, стандарты на правила приемки, хранения.

    курсовая работа [55,4 K], добавлен 21.06.2008

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.