Судовые установки

Расчёт ходкости судна и выбора гребного винта, сопротивления. Проверка гребного винта на кавитацию. Выбор главного двигателя и обоснование его параметров. Автоматизация судовой энергетической установки. Техническое обслуживание и ремонт конструкций.

Рубрика Производство и технологии
Вид курсовая работа
Язык русский
Дата добавления 15.09.2009
Размер файла 215,6 K

Отправить свою хорошую работу в базу знаний просто. Используйте форму, расположенную ниже

Студенты, аспиранты, молодые ученые, использующие базу знаний в своей учебе и работе, будут вам очень благодарны.

С точки зрения сохранения температуры поверхностей охлаждения в допустимых пределах, обеспечения минимальных потерь теплоты с охлаждающей водой, уменьшения тепловых напряжений в охлаждаемых деталях двигателя, интенсивности кавитационной эрозии и электрохимической коррозии, а также предотвращения изнашивания деталей цилиндропоршневой группы при применении высокосернистого топлива оптимальным считается режим температур 7090С для замкнутых систем охлаждения.

Говоря о системах охлаждения двигателей как объектах автоматического управления, сам двигатель рассматривают как теплообменное устройство. Для обеспечения стабильной средней температуры охлаждающей воды по высоте цилиндра рекомендуется поддерживать в заданных пределах температуру воды на выходе из двигателя.

Систему охлаждения современного автоматизированного судна выполняют по двухконтурной замкнутой схеме с отдельными циркуляционными насосами в каждом контуре и общей расширительной цистерной. Но до сих пор применяются на мощных тихоходных судовых дизелях одноконтурные схемы охлаждения для цилиндров, поршней и форсунок.

При перепуске регулирующий орган распределяет выходящий из двигателя поток горячей воды частично на водоводяной охладитель (теплообменник, охлаждаемый забортной водой) при замкнутых системах охлаждения, или на слив при разомкнутых системах охлаждения, а частично на перепуск обратно к двигателю. Температура воды, входящей в двигатель, будет определяться соотношением потоков, идущих через охладитель и перепуск. Количество воды, прокачиваемой через двигатель не изменяется.

Процесс отвода тепла осуществляется последовательно через два теплообменных устройства: от газов через стенку цилиндровой втулки к пресной воде (первый теплообменник) и от пресной воды через теплообменник (холодильник) - к забортной воде. Забортная вода прокачивается через холодильник насосом забортной воды. Температурное состояние стенки цилиндра определяется температурой воды на выходе из двигателя 2 , поэтому эта температура принимается в качестве регулируемого параметра.

Сторону подвода объекта регулирования представляет тепловой поток, поступающий от рабочего тела (газа) через цилиндровую втулку к воде, циркулирующей в зарубашечном пространстве. Количество тепла, передаваемого воде в единицу времени через стенку цилиндровой втулки, можно выразить так:

qподв = qдв = Kдв * Fдв * ср , 14,

где Kдв - коэффициент теплопередачи от газов к воде;

Fдв - площадь теплообмена цилиндров двигателя;

ср - средний температурный напор.

В соответствии с теорией теплопередачи16 средний температурный напор ср может определяться как средняя логарифмическая либо как средняя арифметическая разность при различных комбинациях суммирования граничных температур, включая и регулируемый параметр - температуру охлаждающей воды на выходе.

С целью предварительной оценки физической сущности свойств объекта будем полагать, что коэффициент теплопередачи Кдв является постоянной величиной, имеющей определённое значение для каждой нагрузки двигателя, а средний температурный напор упрощённо представим так:

ср = г - 2 , 14,

гдег - температура газов;

2 - температура воды на выходе из двигателя.

Сторона отвода объекта оценивается количеством тепла, которое воспринимается охлаждающей водой и выражается уравнением 14:

qотв = c*G*(2-1) ,

где с - удельная теплоёмкость воды;

G - расход охлаждающей воды через зарубашечное пространство;

1 - температура охлаждающей воды на входе в зарубашечное пространство;

2 - температура воды на выходе из двигателя.

Если предположить, что температура охлаждающей воды на входе 1 постоянна и постоянно количество циркулирующей воды G, то получим одну характеристику отвода, описываемую линейным уравнением 14:

qотв = m * t2 - d ,

где m = c * G ;

d = c * G * 1.

Такая характеристика отвода показана на рисунке 4.1. жирной линией.

Характеристика отвода

рис. 4.2.

Точки пересечения её с характеристиками подвода соответствуют установившимся режимам системы охлаждения. Чтобы обеспечить процесс регулирования с поддержанием постоянного значения регулируемого параметра р = 2 , устанавливают на стороне отвода регулирующий орган, который воздействуя на условия отвода тепла позволяет иметь не одну характеристику отвода, а семейство характеристик. При этом возможны два принципа изменения условий отвода тепла. Один из них заключается в изменении температуры воды на входе 1, другой - в изменении количества прокачиваемой воды G. В первом случае, при 1 1 , характеристика отвода смещается эквидистантно, во втором случае (G G) - изменяется угол её наклона на , т.е. характеристика поворачивается. Изменение положения характеристик отвода показано на рисунке 4.1. штриховыми линиями.

Взаимное расположение статических характеристик подвода и отвода наглядно показывает, что система охлаждения как объект регулирования температуры охлаждающей воды обладает свойством положительного самовыравнивания.

Из двух возможных принципов изменения отвода тепла, принцип, основанный на изменении количества прокачиваемой через зарубашечное пространство двигателя охлаждающей воды, в судовых условиях самостоятельно не применяется. Это объясняется тем, что при малых количествах, а следовательно при малых скоростях воды возможно нарушение циркуляции и появление местных перегревов стенок с образованием паровых мешков.

Принцип изменения условий отвода тепла путём изменения температуры воды на входе в двигатель 1 может быть реализован следующими конструктивными способами:

перепуском во внутреннем контуре;

дросселированием;

обводом;

перепуском в контуре забортной воды.

Способ перепуска во внутреннем контуре в замкнутой системе позволяет изменять температуру воды на входе в двигатель 1 при постоянном её количестве G. Это достигается путём смешивания холодной воды поступающей из холодильника и горячей воды, поступающей из двигателя непосредственно перед входом её в двигатель.

Регулирующий орган распределяет поток воды выходящей из двигателя таким образом, что поддерживается необходимая температура для заданного режима работы двигателя. Во всех способах регулирования при замкнутой системе перепад температуры пресной воды в холодильнике пропорционален перепаду забортной воды в нём:

пр1-пр2 = (Gх/G)*(х2-х1), 14

Отношение расходов воды в контурах Gх/G при способе перепуска имеет постоянное значение. Анализируя полученные зависимости для перепадов температуры пресной воды на двигателе и на холодильнике можно заметить, что перепады этих температур равны между собой: пр1-пр2 = 2-1 , причём равны также и температура пр1 = 2 = р и пр2 = 1. По этим перепадам температур можно судить о тепловой нагрузке двигателя, так как на установившихся режимах при G=const , она пропорциональна количеству отводимого тепла.

Следует отметить, что при эксплуатации САР температуры охлаждающей воды судовых дизелей необходимо учитывать изменение технического состояния водяной рубашки и ЦПГ дизеля, а также теплообменного оборудования (загрязнение, обрастание холодильников). С этой точки зрения выгодно использовать САР температуры с двумя датчиками регулятора «Плайгер», однако такое исполнение автоматики ведёт к увеличению стоимости её изготовления и эксплуатации. В дипломном проекте принят вариант САР температуры охлаждающей воды с установкой датчика регулятора «Плайгер» на выходе воды из дизеля, что позволяет учитывать изменение технического состояния дизеля при надлежащей чистоте теплообменного оборудования СЭУ.

4.3.3 Статические свойства объектов при регулировании способом перепуска

Под объектом регулирования понимается система охлаждения, включающая в себя двигатель как теплообменное устройство. На рисунке 4.2. показаны координаты воздействий на объект и регулирующий орган.

Схема объекта

Рис.4.2.

Входная координата в объект со стороны отвода Хотв представляет собой координату регуляторного воздействия. Она равна выходной координате РО Yро. В качестве координаты Хотв (или Yро) выступает расход охлаждающей воды или соотношение её расходов по потокам. Эти расходы определяются расходными характеристиками РО.

Сторону подвода объекта представляет координата Хпод, которая характеризует нагрузку двигателя. В качестве координаты подвода принимается температура газов tг .

За выходную координату объекта принимается температура охлаждающей воды на выходе из двигателя (регулируемый параметр Y), так как она характеризует тепловое состояние стенки Y=t2. Свойства стороны подвода объекта можно определить уравнением 14:

qпод = qдв = Kдв*Fдв*дв ,

где дв - средний температурный напор, который может быть определён как разность между температурой газов и средним арифметическим входной и выходной температур охлаждающей воды 14:

дв = г - (2+1)/2

тогда уравнение подвода примет вид 14:

qпод = Kдв*Fдв*(г-(2+1)/2)

Коэффициент теплопередачи Кдв при постоянном количестве воды G, прокачиваемой через двигатель (что характерно для всех способов регулирования, имеющих практическое значение), зависит главным образом от типа двигателя и состояния поверхностей теплообмена (степени загрязнённости). Поэтому для нашего двигателя, состояния его поверхностей теплообмена и установленного количества циркулирующей воды во внутреннем контуре коэффициент теплопередачи Кдв может быть принят постоянным. Но в условиях эксплуатации из-за загрязнения поверхностей, изменения характеристик циркуляционного насоса или увеличения сопротивления трубопровода вследствие прикрытия клапана или при его засорении коэффициент теплопередачи изменяется.

4.3.4 Статические свойства и характеристики регулирующих органов

В системах терморегулирования дизельных установок находят применение трёхходовые регулирующие органы клапанного и золотникового типов. Конструктивная схема золотникового регулирующего органа выполнена так, что торцевые поверхности золотника служат запирающими поверхностями. Слив на холодильник закрыт при нижнем положении золотника. Существенным недостатком регулирующих органов золотникового типа является то обстоятельство, что между золотником и втулкой в процессе эксплуатации попадают частицы накипи и других твёрдых включений, вызывающие заедание и заклинивание, что приводит к скачкообразному движению золотника и нарушению процесса автоматического регулирования. При золотниковом РО трудно получить в начальный момент малое открытие. В средней части хода РО теряет способность управлять потоками, если общий ход золотника достаточно велик. Чтобы обеспечить желаемое пропорциональное и плавное изменение регуляторного воздействия и исключить появление пассивного хода в средней части, применяют клапанно-золотниковый регулирующий орган 13. Такая конструкция характеризуется наличием запорной поверхности, одновременно с профильными окнами в золотнике. Общий ход золотника при этом ограничивается до 1540 мм.

Качество работы любой системы автоматического регулирования в значительной мере зависит от свойств и статических характеристик РО. У РО терморегуляторов рассматривают статические характеристики геометрических, гидравлических и расходных видов.

Геометрическая характеристика представляет собой зависимость площади проходного сечения клапана от от входной координаты РО - Хро в качестве которой выступает перемещение штока клапана hкл: Fкл = f(hкл).

Гидравлическая характеристика РО описывает зависимость гидравлических сопротивлений по потокам охлаждающей жидкости в функции перемещения клапана 14:

ро.хол/ро.пер = f(hкл),

гдеро.хол - коэффициент гидравлического сопротивления РО на клапане слива в холодильник ;

ро.пер - коэффициент гидравлического сопротивления РО на клапане перепуска.

Расходная характеристика представляет собой зависимость выходной координаты РО - Yро от входной - перемещения клапана hкл 14:

Yро = Gсл/G = f(hкл),

В эксплуатационных системах охлаждения нередки случаи , когда расходные характеристики РО существенно нелинейны. Существует «пассивная зона» в которой перемещение клапана не вызывает изменения регуляторного воздействия, что приводит к неустойчивому состоянию системы регулирования в этой зоне и к нарушению плавности статической характеристики системы, на которой также появляется участок пассивной зоны, увеличивающий общую неравномернрсть регулирования. Две существующие схемы включения регулирующих органов смешения и разделения потоков, с точки зрения гидравлических сопротивлений принципиально различаются только направлением движения жидкости.

4.3.4 Конструктивная схема терморегулятора «Плайгер»

Наиболее распространённой является модель регулятора с клапанно-золотниковым РО и автономным позиционером типа SMS. Регулирующий орган регулятора выполнен в виде золотника. РО включён в систему охлаждения по принципу «подмеса», как смеситель потоков. Чем выше расположен золотник, тем большее количество воды проходит из охладителя и тем меньше от насоса горячей воды. Золотник перемещается пневматически сервомотором с мембраной , усилие на которой уравновешивается пружиной , а движение передаётся к золотнику штоком. На штоке укреплён рычаг ЖОС . При перемещении штока рычаг ЖОС поворачивается и изменяет натяг пружины ЖОС и заслонки. Сила деформации пружины и заслонки уравновешивается командным давлением воздуха из сопла второго каскада усиления. Командное давление подводится через дроссель регулировки коэффициента усиления после редукционного клапана и фильтра очистки воздуха. Давление за дросселем поддерживается строго постоянным, равным 1,1 бар. При различных степенях открытия сопла первого каскада усиления командное давление может принимать значения в диапазоне от 0,2 до 1,0 бар. Открытие сопла определяется температурой, замеренной датчиком (дилатометрическим чувствительным элементом). При установившемся значении регулируемой температуры открытие сопла остаётся постоянным; ему соответствует определённое давление командного воздуха, действующего на заслонку позиционера . Это давление уравновешивается давлением пружины ЖОС. От величины сжатия пружины зависит давление в камере А усилителя третьего каскада где золотник стравливает через отверстие в атмосферу воздух питания (1,5 бар) , подводимый к позиционеру. Каждому положению дросселя позиционера соответствует определённое давление рабочего воздуха Р раб и, следовательно, положение золотника.

Датчик температуры и блок управления , расположенные в закрытом корпусе устанавливают давление командного воздуха следующим образом: трубка датчика , материал которой обладает большим коэффициентом линейного расширения, при нагревании удлиняется и перемещает вниз стержень со скобой,жестко соединённый с ней в нижней части. Вместе со скобой перемещается регулировочный винт, который упирается в заслонку и поворачивает её вокруг опоры, преодолевая сопротивление пластинчатой пружины. Зазор между соплом и заслонкой увеличивается, и большее количество воздуха будет стравливаться в атмосферу, что приведёт к понижению командного давления. Меньшее командное давление воздуха, поступающего к позиционеру, вызовет уменьшение давления рабочего воздуха Рраб. Сервомотор переместит золотник вверх, доля потока из охладителя увеличится. Одновременно с перемещением золотника вверх происходит поворот рычага ЖОС с одновременным сжатием пружины. После установления равновесного состояния заслонки , с одной стороны пружиной , с другой стороны давлением командного воздуха из сопла, через золотник усилителя третьего каскада будет подаваться рабочий воздух с определённым значением давления, соответствующего значению установившегося рабочего состояния.

Если регулируемая температура понижается, то действие регулятора протекает в противоположном направлении: давление командного воздуха увеличивается, увеличивается и рабочее давление Рраб, регулирующий золотник перемещается вниз, поток через холодильник уменьшается.

4.3.5 Настройка регулятора

Настройка регулятора на тот или иной номинал регулирования осуществляется поворотом винта , в головке которого предусмотрено отверстие для специального регулировочного ключа. Длиной части винта , выступающей из скобы, определяется температура начала стравливания золотника из положения, когда поток на холодильник закрыт, а температура низкая. Чем больше ввёрнут винт , тем выше температура начала стравливания РО и тем выше номинал настройки регулятора. Контроль за установкой температуры осуществляется через специальное отверстие в корпусе (глазок).

Для настройки зоны пропорциональности (неравномерности) служит винт настройки ЖОС и винт корректировки ЖОС. С помощью винта можно изменить длину рычага ЖОС , а следовательно ширину зоны пропорциональности. Для увеличения зоны неравномерности длину рычага ЖОС увеличивают. Этот орган настройки обычно используют только при начальной настройке терморегулятора.

Третьим элементом настройки , который также используется только при начальной наладке работы регулятора, является редукционный клапан. Чем меньше его открытие, тем медленнее реагирует регулятор на одно и тоже скачкообразное изменение температуры и , следовательно, тем больше его инерционность. Степень открытия редукционных клапанов влияет на величину командного давления воздуха на установившихся режимах. Чем меньше этот клапан открыт, тем ниже будет Рком при том же значении температуры. Меньшему значению Рком будет соответствовать большее открытие регулирующего органа (золотника) для потока из холодильников. По рекомендации фирмы-изготовителя редукционные клапаны должны быть открыты на 0,250,5 оборота.

Четвёртым элементом настройки служит дроссель регулировки быстродействия, который служит для изменения времени открытия мембранного сервомотора.

Аварийное управление осуществляется при помощи ручного привода штока сервомотора (маховика). При переходе на ручное управление перекрывается подвод сжатого воздуха к регулятору.

Основные технические данные регуляторов температуры австрийской фирмы «Плайгер»:

диапазон установки уровня поддержания температуры - любой, какой требуется в системах терморегулирования дизельных установок, начиная с 10С;

неравномерность, устанавливаемая воздушным дросселем перед блоком управления - 26С ;

неравномерность, обеспечиваемая настройкой жёсткой обратной связи - 28С;

расход воздуха на регулятор - 200500 л/ч

4.3.6 Система автоматического регулирования температуры охлаждающей воды цилиндров главного двигателя с измерителем «Плайгер» на входе и выходе из двигателя

При применении схемы САР температуры воды, охлаждающей цилиндры ГД, с измерителем на выходе из двигателя, учитывается только техническое состояние ЦПГ двигателя, а техническое состояние теплообменника, охлаждаемого забортной водой, не учитывается. С целью устранения этого недостатка возможно использование измерителя «Плайгер» на входе и выходе воды из двигателя с общей исполнительно-усилительной частью. В этом случае внешние воздействия , под влиянием которых изменяется картина колебания температуры в САР оцениваются двумя факторами:

Изменение нагрузки ГД. В этом случае температура охлаждающей воды изменяется быстрее на выходе из двигателя.

Изменение условий работы охладителя. В этом случае быстрее изменится температура охлаждающей воды на входе в ГД.

Второй фактор может быть нейтрализован двумя путями:

установкой САР стабилизации температуры забортной воды, поступающей от насоса (суда типа «Норильск»), которые включают в себя не только охладители но и подогреватели, и поэтому они сложны и дороги и используются лишь в особых условиях;

установкой двух измерителей (на входе и выходе ГД) с общей исполнительной частью.

Преимуществом такой САР является минимальная инертность регулирующего воздействия на компенсацию обоих вышеупомянутых внутренних воздействий.

Следует отметить, что в варианте САР с двумя измерителями объектом регулирования являются как двигатель, так и охладитель, и как отмечалось выше, стоимость эксплуатации значительно повышается.

4.4 Состав и структура регулятора вязкости

Объектом регулирования является участок топливной магистрали с паровым топливоподогревателем 45, пар к которому подводится через клапан 43.

В качестве ЧЭ применена капиллярная трубка 4 , через которую топливо из магистрали прокачивается шестерённым насосом 2 постоянной подачи.Насос и капилляр смонтированы в угловом патрубке 1, установленном на трубопроводе, идущем к двигателю.

Сигнал с ЧЭ поступает на вход дифференциального сильфонного датчика 6. При установившемся режиме шток сильфона неподвижен и через соединительный валик, рычаг 8, пластинчатую пружину 9 удерживает на ролике 10 заслонку 5 относительно сопла с зазором 1. Так как датчик может быть установлен на значительном расстоянии от пульта управления 18, то в него введён двухкаскадный усилитель мощности 14. Сжатый воздух от стабилизатора 17 под давлением 1,4*105 Па подаётся к двухседельному клапану 16 и дросселю 15 делителя давления. Давление Р1 на кольцевой торец нижних сильфонов уравновешивается силой жёсткости всех сильфонов, и двухседельный клапан 16 удерживается в закрытом положении, что соответствует определённому значению выходного давления Р2 в камере А. Это же давление действует на мембрану ЖОС 13, сила которой уравновешивается действием пружины на её жёсткий центр, удерживая через талрепный шток 12 поперечину 11 и опорный ролик 10 заслонку 5 в положении, пропорциональном приращению давления Рк.

Сигнал Р2, пропорциональный вязкости топлива, поступает в полость сильфонного датчика 21 изодромного ПИ-преобразователя, смонтированного в пульте 18. Сжатый воздух подаётся к пульту под давлением Рп от тогоже стабилизатора 17, поступая к дросселю делителя давления 20, задатчику дистанционного управления 41, и усилителю мощности 42.

Давление Р2 на торце сильфона 21 уравновешивается силой от его жёсткости. Торец сильфона системой тяг и рычагов связан с приводом оси стрелки 22 указателя истинной вязкости топлива и с рычагом 28. Рычаг через палец 29, пружину с петлёй 30 и ось 31 удерживает угловую заслонку 32 относительно сопла 34 в определённом положении. Зазор 2 и открытие дросселя 20 определяют давление Р3 в магистрали перед соплом и под мембраной датчика усилителя 42. Выходной сигнал усилителя в виде давления Р4 поступает в поллость мембранного исполнительного механизма 44 и к сильфонному блоку 25 изодромной обратной связи.

Схема функциональной структуры регулятора показана на рисунке 4.3.

Схема функциональной структуры регулятора

Рис. 4.4.

4.4.1 Настроечные органы регулятора и настройка в эксплуатации

Динамическую настройку САР выполняют изменением степени действия ИОС (пропорциональной составляющей). Установку пропорциональности производят по шкале диска 40, разворачиваемого вокруг оси О, при помощи вращения винта, входящего в зацепление с диском через фрикционную передачу. С удалением оси О рычага 38 от оси рычага 37 действие ИОС возрастает, т.к. при том же перемещении штока сильфона блока происходит большее осевое перемещение тяги, разворот рычага и воздействие на заслонку. Время изодрома регулируют изменением проходного сечения дросселя. Статическую настройку САР на нужное значение вязкости выполняют изменением установки задания регулятора вращением маховика. От него через фрикционное соединение разворачивается угловой рычаг с соплом относительно оси О. При этом изменяется предварительный зазор между соплом и заслонкой и разворачивается стрелка указателя задания. При установившемся режиме стрелки должны быть совмещены. Ширина зоны пропорциональности может быть от 2 до 200 % , время интегрирования от 0,03 до 5 минут, уставка регулятора от 0 до 200 с Red.12.

Определение оптимальных значений настроечных параметров этого регулятора вязкости топлива может быть выполнена несколькими способами. Переходная функция рассматриваемой разомкнутой системы при небольших (до 10%) возмущениях по регулирующему воздействию - расходу пара на подогреватель, имеет вид кривой асимптоты и параметры настройки регулятора могут быть определены по локальным элементам этой кривой.

При использовании метода незатухающих колебаний в силу инерционности колебательные процессы можно регистрировать визуальным наблюдением с интервалом 2030 секунд.

4.4.2 Расчёт системы регулирования вязкости топлива

С целью количественной и качественной оценки показателей САР вязкости выполним расчёт динамических характеристик.

4.4.2.1 Уравнение динамики и передаточные функции объекта регулирования

На рисунке 4.4. представлена схема парового подогревателя как двухёмкостного объекта регулирования температуры.

101

Топливоподогреватель как объект регулирования

Рис. 4.4.

р = m/mmax ; м = м/м max ; т = т/т max = /

Первое выражено через относительное открытие парового клапана. м max и т max принятые максимальные (базовые)значения температур металла и топлива. К и Кт - коэффициенты усиления подогревателя соответственно по температуре металла трубок и расходу топлива (внешней нагрузке).

К = Rм*mmax / ((Rп+Rм)* м max) * п/mр

Кт = Rп*т max/((Rп+Rм)*м max)

Км = 1+Ст*mто*Rм ; К = Ст*то*Rм

См, mм, Ст, mт - удельная теплоёмкость и масса соответственно металла трубок и топлива в трубках.

Rп и Rм - сопротивление теплопередачи от пара к металлу и от металла к топливу.

mр - открытие парорегулирующего клапана.

Согласно источника 12, уравнение динамики подогревателя топлива выглядит следующим образом:

Тт*Тм*т(t)+(Тт+Тм)*т(t)+(1-Км*Кт)*т(t) = Км*К*р(t)-К*т-К*Тм*т.

Для получения передаточной функции объекта регулирования по регулирующему воздействию запишем это уравнение при возмущающем воздействии т=0 :

Тт*Тм*т(t)+(Тт+Тм)*т(t)+(1-Км*Кт)*т(t) = Км*К*р(t).

При замене относительных изменений соответствующими изображениями равенство сохраняется в области комплексного переменного:

Тт*Тм*т(s)*S2 + (Тт+Тм)*м(s)*S + (1-Км*Кт)*т(s) = К*Км*р(s).

Тогда передаточная функция по регулирующему воздействию:

WoR(s) = т(s)/ Mp(s) = Км*К /(Тт*Тм*S2+(Тт+Тм)*S+(1-Км*Кт))

Для получения передаточной функции объекта регулирования по внешнему возмущению записываем уравнение динамики подогревателя топлива при регулирующем воздействии р=0.

Тт*Тм*т(f)+(Тт+Тм)*т(f)+(1-Км*Кт)*т(f) = - К*т - К*Тм*т.

Заменяем относительные изменения изображениями:

Тт*Тм*т(s)*S2 + (Тт+Тм)*т(s)*S + (1-Км*Кт)*т(s) = -К*т(s) - K*Тм*т(s)*S.

Тогда передаточная функция по внешнему воздействию:

Wo(s) = т(s)/т(s) = (-К - K*Тм*S)/ Тт*Тм*S2 + (Тт+Тм)*S + (1-Км*Кт),

где: Тм = Rп*Rм/(Rп+Rм)*См*mп - постоянная аккумулятора тепла металла трубок, характеризует тепловую инерционность массы металла подогревателя, сек.;

Тт = Rм*Ст*mт - постоянная времени аккумулятора тепла массы топлива в подогревателе, характеризует тепловую инерционность массы топлива в подогревателе, сек.

4.4.2.2 Уравнения динамики и передаточные функции измерителя, промежуточного усилителя и сервомотора

На рисунке 4.5. представлена структурная схема регулятора.

Структурная схема регулятора

Рис.4.5.

Под измерителем подразумевается собственно сам измеритель и дифференциальный датчик давления, под промежуточным усилителем собственно сам промежуточный усилитель, под сервомотором - усилитель и регулирующий паровой клапан.

и = Р2/Рном - относительное изменение давления воздуха за измерителем. Рном - базовое значение давления воздуха за измерителем.

пу = Р1/Рном - относительное изменение давления воздуха за промежуточным усилителем. Рном - базовое значение давления воздуха за промежуточным усилителем.

Т.к. инерционность измерителя по сравнению с другими элементами несравнимо мала, то уравнение динамики измерителя как безинерционного звена:

и(t) = K1 * т(t),

где

К1= * ном/Рном - коэффициент усиления измерителя.

Заменим относительные изменения изображениями:

Ми(s) = K1*т(s).

Передаточная функция измерителя:

Wи = Ми(s) / т(s) = K1.

Уравнение динамики пропорционально-интегрального регулятора:

пу(t) = К2*и(t) + K2/Ти*и(t)dt ,

где К2 - коэффициент усиления промежуточного усилителя;

К2 = Р2/Р3;

Ти - постоянная времени интегрирования, с .

Заменяем относительные изменения их изображениями:

Мпу(s) = К2*Ми(s) + (К2/Ти)*(Ми(s)/S).

Тогда передаточная функция:

Wпу(s) = Мпу(s)/Ми(s) = К2 + К2/(S*Ти) = К2*(S*Ти+1)/(S*Ти).

Согласно источника 12, уравнение динамики сервомотора со следящей связью:

Т3*р(t) + р(t) = K3*пу(t);

Тs*(t) = K3*пу(t) - коэффициент усиления сервомотора;

Тs - время сервомотора, с.

После заменим относительные изменения их изображениями:

Тs*Mp(s)*S+Mp(s) = K3*Mпоз(s).

Тогда передаточная функция сервомотора:

Wсм(s) = Mп(s)/Мпу(s) = K3/(Ts*S+1)

Передаточная функция регулятора:

Wи+пу+см(s) = Wи(s)*Wпу(s)*Wсм(s) =

= К1*К2*К3*(s*Ти+1)/(s*Ти*(s*Ти+1)).

Таким образом, мы получили передаточные функции всех звеньев САР вязкости топлива.

4.4.2.3 Уравнение динамики системы регулирования вязкости топлива

Передаточная функция замкнутой САР вязкости топлива при принятой схеме:

Wз(s) = Фт(s)/т(s) = Wo(s)/(1+Wи(s)*Wпу(s)*Wсм(s)*WoR(s)).

Или подставляя выражения соответствующих передаточных функций:

Wз(s) = -K-K*Tм*S/Тт*Тм*S2+(Тт+Тм)*S+(1-Км*Кт)/

/1+К1*К2*К3*(S*Ти+1)*Км*К/S*Ти*(S*Тs+1)*(Тт*Тм*S2+(Тт+Т)*S+(1--К*Кт)).

Wз(s) = K*(Ти*Тs*S2+S*Ти+Ти*Тs*Тм*S3+Ти*Тм*S2)/

/Ти*Тs*Тт*Тм*S4+Ти*Тs*(Тт+Тм)*S3+Ти*Тs*(1-Км*Кт)*S2*S*Ти*(1-К*Кт)+К1*К2*К3*Ти*Км*К*S+К1*К2*К3*Км*К.

Отсюда уравнение динамики САР вязкости топлива будет 4-го порядка:

Тт*Тм*Ти*Тs*т(t) + (Тт*Тм*Ти+Тт*Ти*Тs+Тм*Ти*Тs)*(t) +

+ (Ти*Тs+Км*Кт*Ти*Тs+Тт*Ти+Тм*Ти)*(t) +

+ (Ти+Км*К*К1*К2*К3*Ти)*(t) +

+ Км*К*К1*К2*К3*(t) =

= - Тм*Ти*Тs*K*т(t)-(Ти*Тs*T+Ти*Тм)*т(t)-Ти*К*т(t).

Уравнение статики САР вязкости топлива:

т(t) = 0

Уравнение динамики САР вязкости топлива с регулятором VAF-Вискотерм в дифференциальной форме

Выше были представлены уравнения динамики, выраженные через передаточные функции, которые позволяют анализировать устойчивость САР вязкости с использованием известных критериев Раута-Гурвица или А. В. Михайлова. Для целей численного моделирования на ЭВМ рассмотрим уравнение динамики САР вязкости топлива в дифференциальной форме.

Вязкость топлива однозначно зависит от его температуры, поэтому в качестве объекта регулирования принимаем топливный паровой подогреватель, рассматриваемый как совокупность двух аккумуляторов энергии: массы металла теплообменных трубок и массы топлива. Внутри трубок течёт подогреваемое топливо, снаружи их омывает пар от регулирующего клапана.

Уравнение динамики подогревателя (его структурная схема изображена на рисунке 4.4.):

Тм*м + м = Кр*р+Ктм*т;

Тт*т + т = Кмт*м - К*т ,

где Тм = Rп*Rм/(Rп+Rм)*См*mм*mmax/Qм max = 2 мин.

Qм - температура металла;

Кр = Rм*mmax*Кп/(Rп+Rм)*Qм = 0,8

Кт = Rп*mmax/(Rп+Rм)*Qм max = 0,2

Тт = Rм*Ст*mт*Qм max/Qт max = 3,5 мин.

Км = 1+Ст*mт max *Rм = 2,0

К = Ст*Qт max*Rм = 1,0

В результате получаем уравнение динамики объекта регулирования:

т - Кт*Км/(Тм*т+т)*(Тт*т+т) =

= Км*Кр*/(Тт*т+т)*(Тм*т+т) + К*/(Тт*т+т).

Структурная схема САР и регулятора представлена на листе приложения.

Уравнения динамики:

Z* = K* - Kx*Xзад;

Кy*G = - y - Koc*Xoc , =1 ;

Ts*y = ;

yi = Ti*p , p = Xoc = ;

p = Kp*yc ;

Принимаем: Ts = 2 c ; Ti = 0,5 c ; (рекомендации фирмы Тi = 0,03 мин)

Z = E/hпр - Рм/Р * hпр ном*Кy/Рном = 1,25

Кy = K4 = 0,8

Кос = 0,5 ; К = 1,0 ; К4 = 2,0 .

4.4.3 Определение оптимальных настроечных параметров системы автоматического регулирования вязкости топлива

Конечной задачей исследования САР вязкости топлива на практике является определение её оптимальных настроечных параметров. Для регулятора VAF , который работает по ПИ-закону регулирования - это коэффициент усиления КR и время интегрирования Ти.

Как видно из подраздела 4.6. полученное уравнения динамики САР представляет собой дифференциальное уравнение четвёртого порядка. Ввиду этого нахождение оптимальных настроечных параметров путём решения этого уравнения динамики весьма затруднительно.

Поэтому, для нахождения оптимальных параметров настройки, используем метод их нахождения по элементам переходной функции разомкнутой системы. Суть этого метода заключается в том, что замкнутая САР размыкается (посредством отключения регулятора), разомкнутой САР сообщается ступенчатое возмущение, на выходе из объекта регулирования снимается переходная функция, которая потом аппроксимируется одноёмкостным звеном и участком запаздывания. По её элементам и определяются оптимальные настроечные параметры.

Для размыкания системы предусмотрен переключатель ПР (см. рис. 4.6.). Ступенчатое возмущение разомкнутой системе можно сообщить посредством задатчика дистанционного управления ПП. Переходную функцию снимаем по показаниям стрелки текущего значения вязкости.

После размыкания замкнутая САР вязкости топлива превращается в разомкнутую САР(см. рис. 4.7.)

Структурная схема замкнутой САР вязкости

Рис. 4.6.

Структурная схема разомкнутой САР вязкости

Рис. 4.7.

Эту многоёмкостную разомкнутую систему рассматриваем как одноёмкостное звено с предвключённым звеном запаздывания. Тогда переходная функция многоёмкостного объекта аппроксимируется переходной функцией одноемкостного звена с предвключённым звеном запаздывания.

Переходная функция многоемкостной САР вязкости топлива

Рис.4.8.

Переходная функция одноёмкостного звена с запаздыванием

Рис. 4.9.

Передаточная функция многоемкостной разомкнутой системы заменяется передаточной функцией одноемкостного звена, включённого последовательно со звеном запаздывания и имеет вид:

W(s) = Ko(e(-z*s))/(Т*S+1),

где z - время запаздывания;

Т - инерционная постоянная;

Ко - статический коэффициент усиления.

В замкнутой САР на выходе дифференциального датчика давления подключен манометр со шкалой, тарированной в единицах вязкости - секундах Редвуда (сR); изменение пневматического сигнала от 0 до 100 кПа (давление Р2) соответствует изменению вязкости топлива от 0 до 120 сR. Рабочий диапазон сигналов на входе (Р2) и выходе (Р3) промежуточного усилителя составляет от 20 до 100 кПа. Номинальный расход топлива в системе Вном=3000 кг/ч. Испытания проводятся при номинальном расходе топлива.

Статические свойства объекта регулирования по каналу внешнего воздействия (изменению расхода топлива через подогреватель) представлены в таблице 4.4.

Таблица 4.4.

Зависимость вязкости топлива от его расхода

Вязкость топлива, , сR

Расход топлива, В кг/ч

2400

2550

2700

2850

3000

3150

на входе в подогреватель

155

155

155

155

155

155

на выходе из подогревателя

50,6

56,0

59,0

63,2

65,5

67,5

Коэффициент усиления Ко по внешнему воздействию вычисляем как угловой коэффициент касательной к кривой, выражающей зависимость регулируемой величины от нагрузки:

Ко = (67,5-155)-(63,2-155)/3150-2850 = 0,0143 сR/ кг/ч.

Безразмерное значение коэффициента:

Ко = 0,0143 Вном/max = 0,358

Посредством задатчика дистанционного управления сообщаем системе ступенчатое возмущение равное Рупр = 8 кПа.

Относительная величина возмущения:

о= Рупр/(Р3max-P3min) = 8/(100-20)=0,1=10%

Результаты эксперимента - переходная функция разомкнутой системы автоматического регулирования вязкости топлива и расчёт приведены в таблице 4.5.

Согласно источника 12 , постоянная времени Т и время запаздывания Z вычисляются по следующим выражениям, обеспечивающим оптимальное аппроксимирование по минимуму среднеквадратичной погрешности:

Т = (n-k)*fi2 - (fi)2/(n-k)*(fi*yжi) - fi*yжi.

Z = fi*(fi* yжi) - fi2*yжi/(n-k)*(fi*yжi) - fi*yжi.

Здесь n=200; k=40 - время, при котором считается, что экспериментальная точка отклоняется от оси абсцисс.

fi2 = 327200 с2 ; fi = 1800 с; (fi*yжi) = 3419,3 ; yжi = 17,07;

(fi)2 = 3240000 с2.

Т = 95,12 с ; Z = 0,12+20,0 = 20,12 с

Коэффициент усиления системы по регулирующему воздействию определяется как отношение ординаты асимптоты к возмущению.

В безразмерной форме:

КoR = /max Pупр/(P3max-P3min)

KoR = 7,5/120 8/(100-20) = 0,625

Используя полученные результаты, можно определить оптимальные параметры настройки САР вязкости тяжёлого топлива. Согласно источника 12 :

КR = A/Ko * (Z/T)(-B) ;

Ти = Т*С*(Z/T)D.

Если в качестве критерия оптимальной настройки выбираем критерий минимума интеграла от модуля ошибки то :

А = 1,0 ; В = 0,99 ; С = 1,6 ; D = 0,71 .

Тогда: КR = 1/0,625 *(20,11/95,12)(-0,99) = 7,45 ;

Ти = 90,7*1,6*(20,11/95,12)0,71 = 48,15 с.

Если выбираем критерий минимума интеграла от квадрата отклонения то:

А = 0,9 ; В = 0,98 ; С = 1,5 ; D = 0,68

Тогда: КR = 0,9/0,625 * (20,11/95,12)(-0,98) = 6,60 ;

Ти = 90,7 * 1,5 *(20,11/95,12)0,68 = 47,30 с.

Как видно, в зависимости от критерия оптимальной настройки оптимальные параметры настройки изменяются. Вопрос о выборе того или иного критерия качества переходного процесса не имеет однозначного ответа. В данном случае наилучшим критерием качества работы САР представляется интеграл от модуля ошибки, так как обычно ухудшение качества регулирования представляется линейной функцией ошибки. Ввиду этого окончательно выбираем:

коэффициент усиления регулятора КR =7,45 ;

время интегрирования Ти = 48,15 с.

4.4.4 Определение параметров настройки регулятора по характеристикам замкнутой системы

Кроме методов настройки регулятора по характеристикам разомкнутой системы существуют методы настройки регуляторов по характеристикам замкнутой системы. Существуют два метода расчёта оптимальных параметров настройки, основанные на характеристиках переходных процессов либо в форме незатухающих колебаний (при КR/КR кр = 1), либо при дискременте затухания 0,25. Разработан также экспресс-метод оценки параметров настройки в замкнутом контуре по величине запаздывания.

Для определения оптимальных параметров настройки САР вязкости топлива по методу незатухающих колебаний прежде всего устанавливают время интегрирования регулятора равным бесконечности. Далее, постепенно увеличивая коэффициент усиления регулятора, ухудшают устойчивость системы, добиваясь её выхода в режим незатухающих колебаний. При достижении этих условий фиксируется значение коэффициента усиления КRкр и период колебаний Тпр . Тогда оптимальные настроечные параметры определяются по формулам:

КR = 0,45*КR кр;

Ти = 0,83* Тпр .

Такой эксперимент был проведён на судне серии «Астрахань». В данном случае выходной сигнал (давление Р) снимается на выходе из регулятора. Если в замкнутой системе возникли установившиеся колебания на границе устойчивости, частота их будет одинаковой на выходе любого из звеньев системы: объекта, сервопривода, измерителя, регулятора. Поэтому наблюдение за колебаниями производят там, где амплитуда хорошо различима. В данном случае отмечалось давление на выходе из регулятора. Как видно, для экспериментального определения значений критического коэффициента усиления КR кр и предельного периода колебаний Тпр достаточно провести небольшое число опытов, так как по дискременту затухания первой полученной кривой переходного процесса можно судить о том, насколько коэффициент усиления близок к критическому значению. При режиме незатухающих колебаний было зафиксировано, что КRкр = 12,5 , а Тпр = 4 мин . Тогда оптимальные параметры настройки:

КR = 0,45*КRкр = 0,45*12,5 = 5,63 ;

Ти = 0,83*Тпр = 0,83*4 = 3,3 мин.

5. Техническое обслуживание и ремонт регуляторов температуры

Основными эксплуатационными недостатками регуляторов температуры прямого и непрямого действия, распространённых на морских транспортных судах отечественного флота, являются утечка рабочей жидкости, пропуски воды в соединении с регулирующим органом, отложение накипи в регулирующем органе. Рекомендуется через каждые 1000 часов работы вскрывать регулирующий орган для очистки от накипи. Периодически, через каждые 2,53 года работы, следует заменять измерительный элемент. В случаях, когда регулятор не обеспечивает поддержание заданной температуры, причиной неисправности обычно является поломка или ослабление возвратной пружины, в результате чего регулирующий орган не перемещается при уменьшении температуры регулируемой среды.

Преимущественное распространение на морских отечественных судах получили РТНД пневматического типа. Эксплуатация таких регуляторов сводится к проверке плотности соединений магистралей сжатого воздуха и обеспечению надлежащего качества воздуха. Последнее достигается путём своевременной продувки маслоотделителей и очистки воздушных фильтров. Периодически, один раз в год, следует проводить полную проверку регулятора. При этом надо обращать особое внимание на состояние мембран и дросселей. Мембраны со следами выпучин необходимо заменять. Неисправности в работе пневматических регуляторов в большинстве случаев возникают от попадания в воздух воды, масла, механических примесей. Приведённые в таблице 4.6. возможные неисправности регуляторов типа РТНД и ТРП характерны и для других пневматических регуляторов непрямого действия.

Эффективность эксплуатации судна в целом и в частности полнота использования мощности, экономичность работы его энергетической установки в конкретных условиях плавания, в определённой степени зависят от надёжной работы и качества настройки средств терморегулирования, используемых для стабилизации температур в основных системах, обслуживающих главный двигатель на оптимальных уровнях. Поэтому своевременный ремонт и настройка регуляторов играет важную роль в правильном эксплуатировании энергетических установок.

Дефекты регуляторов выявляют на пробном пуске ремонтируемого механизма и осмотром деталей после его разборки. Заедания, разработку и изломы обнаруживают по следам касания, натиров и выработок, а также измерением.

При непрямом регулировании, выбранном для данной системы, сборка регулятора и передаточных рычажных механизмов считается удовлетворительной, если при неизменном положении муфты мертвый ход сервомотора не превышает 3% от его максимального хода. Для проверки, установив регулятор на двигатель, вручную нажимают на передаточно-рычажную систему. При этом золотник и соответственно сервомотор переместятся на величину «мёртвого хода».

При сборке регуляторов особое внимание следует обращать на состояние главных пружин. Ослабленные и поломанные пружины заменяются новыми. Затягиваются главные пружины на величину, измеренную до ремонта, с проверкой возможности полного рабочего хода муфты. От этого зависит своевременное страгивание муфты с места и открытие (закрытие) регулирующих клапанов.

Монтируют регуляторы на судне с корректировкой к реальным условиям работы. На заводах для наладки регуляторов имеются специальные стенды с источником рабочей среды, применяемой в регуляторе, а также приспособления, при помощи которых имитируются условия работы аппаратуры и особенности её эксплуатационных режимов.

Таблица 5.1.

Характерные неисправности пневматических регуляторов температуры типов РТНД и ТРП

Причина

Способ устранения

Понизилась температура регулируемой среды по сравнению с заданной.

Засорился фильтр или дроссель. Нарушена герметичность пневматических линий или мембраны.

Промыть фильтр, прочистить дроссель. Уплотнить линии, заменить мембрану.

Повысилась температура регулируемой среды по сравнению с заданной.

Вышла из строя термочувствительная система. Засорилась линия датчика или ИМ.

Заменить термочувствительную систему. Прочистить линии.

Регулятор не работает при изменении нагрузки, а давление в камере мембраны меняется.

Зажат сальник штока. Перекос или заедание штока.

Отпустить сальник, устранить перекос или заедание.

Отсутствует давление в камере мембраны.

Повреждение или засорение воздушной линии, нарушение герметичности, повреждение мембраны.

Прочистить линии, устранить неплотности, заменить мембрану.

В установившемся режиме регулируемая температура колеблется в широких пределах.

Колеблется давление силового воздуха, заедание регулирующего золотника, неисправность блока управления.

Устранить колебания давления воздуха, проверить подвижность золотника, проверить блок управления.

6. Безопасность жизнедеятельности

6.1 Правила безопасности при обслуживании и ремонте систем автоматического регулирования температур охлаждающей воды и вязкости топлива

При введении в действие систем автоматического регулирования температур охлаждающей воды и вязкости топлива необходимо произвести тщательный осмотр и убедится в следующем:

ограждения, защитные кожухи и теплоизоляция находятся на месте и надёжно закреплены;

на движущихся частях отсутствуют посторонние предметы;

все предохранительные устройства и контрольно-измерительные приборы находятся на штатных местах и исправны;

все соединения движущихся частей надёжно закреплены и исключена возможность их ослабления во время работы;

Во избежание гидравлических ударов запрещается резко открывать клапаны и краны на паровых магистралях без предварительного прогрева и продувания трубопровода;

Запрещается стоять против продувочных кранов, при продувании цилиндров золотниковых коробок, паропроводов, баллонов, конденсационных горшков и т.п.;

Все течи и пропуски в топливной аппаратуре, топливоподогревателях и топливопроводах следует немедленно устранять.

6.2 Противопожарная безопасность

Пожар в машинном отделении представляет особую опасность вследствие чрезвычайно высокой скорости распространения огня из-за наличия отходов горюче-смазочных материалов в льялах, топлива в поддонах котла и районе расположения оборудования топливных систем.

Для предотвращения пожаров необходимо пунктуально выполнять требования Правил пожарной безопасности. Так, в МО запрещается размещать горючие и огнеопасные материалы (дерево, сосуды с бензином и другими горючими жидкостями). Промасленную ветошь следует хранить в специальных металлических ящиках и удалять в конце каждой вахты.

При возникновении пожара обслуживающий персонал должен действовать в соответствии с расписанием по тревоге. Однако в любом случае человек, обнаруживший очаг пожара, должен попытаться потушить его переносными средствами тушения, а если это не удаётся, то принять меры по ограничению распространения огня, по распоряжению капитана или старшего механика немедленно вывести котёл из действия, людей эвакуировать из МО и загерметизировать его, затем включить стационарные системы включения пожаров, выполняя указания инструкций.

Правила безопасности труда при эксплуатации оборудования должны выполняться также неукоснительно, как и правила пожарной безопасности.

6.2.1 Водяная противопожарная система

Водяная противопожарная система является важнейшей системой общесудового спасательного назначения, обеспечивающей целостность судна, сохранность грузов и охрану жизни членов экипажа. Морской Регистр предъявляет к водяной противопожарной системе ряд требований. Суммарная производительность пожарных насосов должна быть не менее:

Q = k*m2 ,

где k=0,0080,016 ;

m=1,68*L*(B+H)+25 = 1,68*117*(17,3+6,9)+25 = 89,7

Q = 0,008*89,72 = 0,017 м3/с

На проектируемом судне установлены два электрических центробежных пожарных насоса и один дизель-насос. Эти насосы обеспечивают производительность и минимальное давление 0,3 МПа в любом пожарном рожке, независимо от его местоположения. Водяная противопожарная система оборудуется пожарными рукавами длиной 1520 метров на открытых палубах и не менее 10 метров во внутренних помещениях.

Рукава размещаются возле рожков в сборе со стволом на вьюшках или в корзинах в состоянии, удобном для приведения их в действие. Диаметры рукавов, присоединительной арматуры и пожарных стволов должны соответствовать расходу воды через их сечение. Рукава хранятся в проветриваемых водо-защищенных шкафах с надписями «ПР». Для тушения пожара в жилых, служебных помещениях ручные пожарные стволы должны иметь спрыск диаметром 12 мм. Диаметр спрыска ручных стволов в МО и на открытых палубах устанавливается из условия обеспечения наибольшего расхода воды через две струи от насоса наименьшей производительности при давлении, регламентированном Регистром. Во внутренних помещениях рекомендуется применять комбинированные ручные пожарные стволы. Каждый пожарный насос оборудуется отдельным приводом. Пожарные насосы и системы не должны использоваться для осушения отсеков, в которых хранились нефтепродукты или остатки других горючих жидкостей. Пожарный насос может использоваться для других целей, если другой насос находится в постоянной готовности к немедленным действиям по тушению пожара.

Все пожарные насосы и их кингстоны должны располагаться ниже ватерлинии судна в порожнем состоянии. Если пожарные насосы одновременно с водяной системой обслуживают другие системы пожаротушения, то их производительность должна быть увеличена. При этом также необходимо учитывать давление в системах. Скорость воды в трубах водяной противопожарной системы не должна превышать 4 м/с , а давление в трубопроводах должно быть не менее 1 МПа.

Для предотвращения замораживания трубопроводы, проложенные на открытых палубах, снабжаются запорной арматурой для отключения от систем, проходящих в отапливаемых помещениях. Насосы снабжаются клапанами для отключения приёмного и напорного трубопроводов.

Пожарные рожки в коридорах устанавливаются на расстоянии не более 20 м, а на палубах на расстоянии не более 40 м. В небольших помещениях рожки устанавливаются у входов. В МКО должно быть не менее двух рожков с каждого борта, не считая рожков, установленных непосредственно у насосов. Так же рожок устанавливается в носовой части туннеля гребного вала. Все рожки окрашиваются в красный цвет.

Аварийный дизель-насос устанавливается в отдельном помещении и имеет отдельный кингстон и запас топлива, необходимый для 18-и часов работы. Его производительность должна быть достаточной для работы 2-х стволов с наибольшим диаметром спрыска.

На приёмных трубопроводах насосов устанавливаются грязевые коробки.

6.3 Охрана окружающей среды

Активное использование Мирового океана как важнейшей транспортной магистрали, эксплуатация его пищевых, сырьевых и энергетических ресурсов, освоение континентального шельфа, загрязнение внешних и внутренних водоёмов, имеющих сток в мировой океан, создали реальную угрозу нарушения его экологического баланса.

Охрана морской среды от загрязнения предусматривает комплекс мероприятий, направленных на исключение появления новых причин и источников загрязнения, а также постепенное сведение к минимуму и, там, где возможно, полную ликвидацию уже имеющихся.

Большая роль в охране морской среды отводится ООН. Ещё с 1934 года велась работа по борьбе с загрязнением, но только в 1950 году ООН проявила инициативу в создании Межправительственной Морской Консультативной организации (с 1983 г. ИМО) в которой теперь состоит более 110 государств.

В результате усилий ООН в 1954 году в Лондоне была проведена Международная конференция по борьбе с выбросами нефти и нефтесодержащих отходов. Это первый закон, который человечество направило для охраны морской среды. Он был зарегистрирован ООН и вступил в силу с 26 июня 1958 года. Поправки, вводившиеся в закон в последующие 1962 и 1969 годы, усиливали положение закона (ОЙЛПОЛ 54) и распространяли действие конвенции на весь Мировой океан и на танкеры валовой вместимостью до 150 регистровых тонн; были определены новые условия сброса нефти с судов, расширены запретные зоны, введены конструктивные ограничения к размерам и расположению грузовых танков и т.д.


Подобные документы

  • Определение смоченной поверхности, расчёт сопротивления трения судна. Определение полного сопротивления движению судна по данным прототипа. Профилировка лопасти гребного винта, его проверка на кавитацию. Расчёт паспортной диаграммы гребного винта.

    курсовая работа [119,3 K], добавлен 23.12.2009

  • Выбор средств технологического оснащения и расчет показателей механизации и автоматизации технологического процесса ремонта гребного винта. Модернизация старого оборудования и замена на новые технические устройства. Подготовка судна к сварочным работам.

    курсовая работа [378,0 K], добавлен 10.12.2014

  • Этапы проектировочного расчёта винта. Анализ схемы для расчета винта на износостойкость. Основные особенности проверки обеспечения прочности и устойчивости винта принятыми размерами. Приведение расчета винт-гайки. Рассмотрение параметров резьбы винта.

    контрольная работа [384,4 K], добавлен 27.08.2012

  • Плоскость вращения втулки несущего винта. Определение момента сопротивления вращения несущего винта и мощности потребной для создания заданной тяги. Расчет диаметра зоны обратного обтекания. Определение суммарной осевой скорости движения несущего винта.

    реферат [11,2 K], добавлен 07.12.2009

  • Схема установки для приготовления сиропа, перечень контролируемых и регулируемых параметров. Материальный и тепловой баланс установки. Разработка функциональной схемы установки, выбор и обоснование средств автоматизации производственного процесса.

    курсовая работа [264,2 K], добавлен 29.09.2014

  • Гребной винт — распространённый движитель судов, конструктивная основа движителей других типов. Производство, материалы и определение шага гребного винта. Технология изготовления и преимущества сборных конструкций нержавеющих винтов перед алюминиевыми.

    презентация [1,4 M], добавлен 12.03.2014

  • Выбор типа установки и его обоснование. Общие энергетические и материальные балансы. Расчёт узловых точек установки. Расчёт основного теплообменника. Расчёт блока очистки. Определение общих энергетических затрат установки. Расчёт процесса ректификации.

    курсовая работа [126,9 K], добавлен 21.03.2005

  • Рассмотрение понятия и назначения винта диспергатора. Описание основных дефектов, возникающих при эксплуатации детали. Выбор и обоснование наиболее эффективных методов устранения дефектов Разработка технологического маршрута ремонта винта диспергатора.

    курсовая работа [508,6 K], добавлен 26.04.2015

  • Анализ конструкторской документации на обтекатель втулки винта. Оценивание производственной технологичности конструкции обтекателя втулки винта по качественным критериям. Выбор и обоснование типа производства. Разработка схемы сборки, а также увязки.

    курсовая работа [171,5 K], добавлен 13.01.2014

  • Описание принципиальной схемы и техническая характеристика машины. Автоматизация холодильной установки, компрессорной и конденсаторной групп, испарительной системы. Требования техники безопасности. Эксплуатация и техническое обслуживание установки.

    курсовая работа [35,4 K], добавлен 24.12.2010

Работы в архивах красиво оформлены согласно требованиям ВУЗов и содержат рисунки, диаграммы, формулы и т.д.
PPT, PPTX и PDF-файлы представлены только в архивах.
Рекомендуем скачать работу.